版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
福建省三明市三地三校2025屆高一下數(shù)學期末經(jīng)典試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設是△所在平面上的一點,若,則的最小值為A. B. C. D.2.已知數(shù)列(,)具有性質(zhì):對任意、(),與兩數(shù)中至少有一個是該數(shù)列中的一項,對于命題:①若數(shù)列具有性質(zhì),則;②若數(shù)列,,()具有性質(zhì),則;下列判斷正確的是()A.①和②均為真命題 B.①和②均為假命題C.①為真命題,②為假命題 D.①為假命題,②為真命題3.在中,邊,,分別是角,,的對邊,且滿足,若,則的值為A. B. C. D.4.若直線的傾斜角為,則的值為()A. B. C. D.5.已知、是球的球面上的兩點,,點為該球面上的動點,若三棱錐體積的最大值為,則球的表面積為()A. B. C. D.6.某市在“一帶一路”國際合作高峰論壇前夕,在全市高中學生中進行“我和‘一帶一路’”的學習征文,收到的稿件經(jīng)分類統(tǒng)計,得到如圖所示的扇形統(tǒng)計圖.又已知全市高一年級共交稿2000份,則高三年級的交稿數(shù)為()A.2800 B.3000 C.3200 D.34007.在中,,,則的最大值為A. B. C. D.8.己知函數(shù)的最小值為,最大值為,若,則數(shù)列是()A.公差不為0的等差數(shù)列 B.公比不為1的等比數(shù)列C.常數(shù)數(shù)列 D.以上都不對9.在中,是邊上一點,,且,則的值為()A. B. C. D.10.在正方體中,為棱的中點,則異面直線與所成角的余弦值為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.在中,,則______.12.已知六棱錐的底面是正六邊形,平面,.則下列命題中正確的有_____.(填序號)①PB⊥AD;②平面PAB⊥平面PAE;③BC∥平面PAE;④直線PD與平面ABC所成的角為45°.13.關于的不等式的解集是,則______.14.已知無窮等比數(shù)列的前項和,其中為常數(shù),則________15.若各項均為正數(shù)的等比數(shù)列,,則它的前項和為______.16.已知,,且,若恒成立,則實數(shù)的取值范圍是____.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.在銳角中,角所對的邊分別為,已知,,.(1)求角的大??;(2)求的面積.18.已知A、B兩地的距離是100km,按交通法規(guī)定,A、B兩地之間的公路車速x應限制在60~120km/h,假設汽油的價格是7元/L,汽車的耗油率為,司機每小時的工資是70元(設汽車為勻速行駛),那么最經(jīng)濟的車速是多少?如果不考慮其他費用,這次行車的總費用是多少?19.已知不等式的解集為或.(1)求實數(shù)a,b的值;(2)解不等式.20.已知向量,滿足:=4,=3,(Ⅰ)求·的值;(Ⅱ)求的值.21.如圖,四棱錐P-ABCD的底面是矩形,PA⊥平面ABCD,E,F(xiàn)分別是AB,PD的中點,且PA=AD.(Ⅰ)求證:AF∥平面PEC;(Ⅱ)求證:平面PEC⊥平面PCD.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】分析:利用向量的加法運算,設的中點為D,可得,利用數(shù)量積的運算性質(zhì)可將原式化簡為,為AD中點,從而得解.詳解:由,可得.設的中點為D,即.點P是△ABC所在平面上的任意一點,為AD中點.∴.當且僅當,即點與點重合時,有最小值.故選C.點睛:(1)應用平面向量基本定理表示向量的實質(zhì)是利用平行四邊形法則或三角形法則進行向量的加、減或數(shù)乘運算.(2)用向量基本定理解決問題的一般思路是:先選擇一組基底,并運用該基底將條件和結(jié)論表示成向量的形式,再通過向量的運算來解決.2、A【解析】
本題是一種重新定義問題,要我們理解題目中所給的條件,解決后面的問題,把后面的問題挨個驗證.【詳解】解:①若數(shù)列具有性質(zhì),取數(shù)列中最大項,則與兩數(shù)中至少有一個是該數(shù)列中的一項,而不是該數(shù)列中的項,是該數(shù)列中的項,又由,;故①正確;②數(shù)列,,具有性質(zhì),,與至少有一個是該數(shù)列中的一項,且,若是該數(shù)列中的一項,則,,易知不是該數(shù)列的項,.若是該數(shù)列中的一項,則或或,a、若同,b、若,則,與矛盾,c、,則,綜上.故②正確.故選:.【點睛】考查數(shù)列的綜合應用,此題能很好的考查學生的應用知識分析、解決問題的能力,側(cè)重于對能力的考查,屬中檔題.3、A【解析】
利用正弦定理把題設等式中的邊換成角的正弦,進而利用兩角和公式化簡整理可得的值,由可得的值【詳解】在中,由正弦定理可得化為:即在中,,故,可得,即故選【點睛】本題以三角形為載體,主要考查了正弦定理,向量的數(shù)量積的運用,考查了兩角和公式,考查了分析問題和解決問題的能力,屬于中檔題。4、B【解析】
根據(jù)題意可得:,所求式子利用二倍角的正弦函數(shù)公式化簡,再利用同角三角函數(shù)間的基本關系弦化切后,將代入計算即可求出值.【詳解】由于直線的傾斜角為,所以,則故答案選B【點睛】本題考查二倍角的正弦函數(shù)公式,同角三角函數(shù)間的基本關系,以及直線傾斜角與斜率之間的關系,熟練掌握公式是解本題的關鍵.5、A【解析】
當點位于垂直于面的直徑端點時,三棱錐的體積最大,利用三棱錐體積的最大值為,求出半徑,即可求出球的表面積.【詳解】如圖所示,當點位于垂直于面的直徑端點時,三棱錐的體積最大,設球的半徑為,此時,.因此,球的表面積為.故選:A.【點睛】本題考查球的半徑與表面積的計算,確定點的位置是關鍵,考查分析問題和解決問題的能力,屬于中等題.6、D【解析】
先求出總的稿件的數(shù)量,再求出高三年級交稿數(shù)占總交稿數(shù)的比例,再求高三年級的交稿數(shù).【詳解】高一年級交稿2000份,在總交稿數(shù)中占比,所以總交稿數(shù)為,高二年級交稿數(shù)占總交稿數(shù)的,所以高三年級交稿數(shù)占總交稿數(shù)的,所以高三年級交稿數(shù)為.故選D【點睛】本題主要考查扇形統(tǒng)計圖的有關計算,意在考查學生對該知識的理解掌握水平,屬于基礎題.7、A【解析】
利用正弦定理得出的外接圓直徑,并利用正弦定理化邊為角,利用三角形內(nèi)角和關系以及兩角差正弦公式、配角公式化簡,最后利用正弦函數(shù)性質(zhì)可得出答案.【詳解】中,,,則,,其中由于,所以,所以最大值為.故選A.【點睛】本題考查正弦定理以及兩角差正弦公式、配角公式,考查基本分析計算能力,屬于中等題.8、C【解析】
先根據(jù)判別式法求出的取值范圍,進而求得和的關系,再展開算出分析即可.【詳解】設,則,因為,故,故二次函數(shù),整理得,故與為方程的兩根,所以為常數(shù).故選C.【點睛】本題主要考查判別式法求分式函數(shù)范圍的問題,再根據(jù)二次函數(shù)的韋達定理進行求解分析即可.9、D【解析】
根據(jù),用基向量表示,然后與題目條件對照,即可求出.【詳解】由在中,是邊上一點,,則,即,故選.【點睛】本題主要考查了平面向量基本定理的應用及向量的線性運算.10、D【解析】
利用,得出異面直線與所成的角為,然后在中利用銳角三角函數(shù)求出.【詳解】如下圖所示,設正方體的棱長為,四邊形為正方形,所以,,所以,異面直線與所成的角為,在正方體中,平面,平面,,,,,在中,,,因此,異面直線與所成角的余弦值為,故選D.【點睛】本題考查異面直線所成角的計算,一般利用平移直線,選擇合適的三角形,利用銳角三角函數(shù)或余弦定理求解,考查推理能力與計算能力,屬于中等題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
由已知求得,進一步求得,即可求出.【詳解】由,得,即,,則,,,則.【點睛】本題主要考查應用兩角和的正切公式作三角函數(shù)的恒等變換與化簡求值.12、②④【解析】
利用題中條件,逐一分析答案,通過排除和篩選,得到正確答案.【詳解】∵AD與PB在平面的射影AB不垂直,∴①不成立;∵PA⊥平面ABC,∴PA⊥AB,在正六邊形ABCDEF中,AB⊥AE,PAAE=A,∴AB⊥平面PAE,且AB面PAB,∴平面PAB⊥平面PAE,故②成立;∵BC∥AD∥平面PAD,平面PAD平面PAE=PA,∴直線BC∥平面PAE也不成立,即③不成立.在Rt△PAD中,PA=AD=2AB,∴∠PDA=45°,故④成立.故答案為②④.【點睛】本題考查命題真假的判斷,解題時要注意直線與平面成的角、直線與平面垂直的性質(zhì)的合理運用,屬于中檔題.13、【解析】
利用二次不等式解集與二次方程根的關系,由二次不等式的解集得到二次方程的根,再利用根與系數(shù)的關系,得到和的值,得到答案.【詳解】因為關于的不等式的解集是,所以關于的方程的解是,由根與系數(shù)的關系得,解得,所以.【點睛】本題考查二次不等式解集和二次方程根之間的關系,屬于簡單題.14、1【解析】
根據(jù)等比數(shù)列的前項和公式,求得,再結(jié)合極限的運算,即可求解.【詳解】由題意,等比數(shù)列前項和公式,可得,又由,所以,所以,可得.故答案為:.【點睛】本題主要考查了等比數(shù)列的前項和公式的應用,以及熟練的極限的計算,其中解答中根據(jù)等比數(shù)列的前項和公式,求得的值,結(jié)合極限的運算是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.15、【解析】
利用等比數(shù)列的通項公式求出公比,由此能求出它的前項和.【詳解】設各項均為正數(shù)的等比數(shù)列的公比為,由,得,且,解得,它的前項和為.故答案:.【點睛】本題考查等比數(shù)列的前項和的求法,考查等比數(shù)列的性質(zhì)等基礎知識,考查運算求解能力,屬于基礎題.16、(-4,2)【解析】試題分析:因為當且僅當時取等號,所以考點:基本不等式求最值三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】試題分析:(1)先由正弦定理求得與的關系,然后結(jié)合已知等式求得的值,從而求得的值;(2)先由余弦定理求得的值,從而由的范圍取舍的值,進而由面積公式求解.試題解析:(1)在中,由正弦定理,得,即.又因為,所以.因為為銳角三角形,所以.(2)在中,由余弦定理,得,即.解得或.當時,因為,所以角為鈍角,不符合題意,舍去.當時,因為,又,所以為銳角三角形,符合題意.所以的面積.考點:1、正余弦定理;2、三角形面積公式.18、80,280【解析】
將總費用表示出來,再利用均值不等式得到答案.【詳解】設總費用為則當時等號成立,滿足條件故最經(jīng)濟的車速是,總費用為280【點睛】本題考查了函數(shù)表達式,均值不等式,意在考查學生解決問題的能力.19、(1);(2)答案不唯一,見解析【解析】
(1)題意說明是方程的解,代入可得,把代入可求得原不等式的解集,從而得值;(2)因式分解后討論和6的大小可得不等式的解集.【詳解】(1)依題意,得:,解得,所以,不等式為,解得,或,所以,所以,;(2)不等式為:,即,當時,解集為當時,解集為當時,解集為【點睛】本題考查解一元二次不等式,考查一元二次不等式的解集與一元二次方程根的關系,在解含參數(shù)的一元二次不等式時要注意分類討論.20、(Ⅰ)=2(Ⅱ)【解析】
(I)計算,結(jié)合兩向量的??傻茫唬↖I)利用,把求模轉(zhuǎn)化為向量的數(shù)量積運算.【詳解】解:(Ⅰ)由題意得即又因為所以解得=2.(Ⅱ)因為,所以=16+36-4×2=44.又因為所以.【點睛】本題考查平面向量的數(shù)量積,解題關鍵是掌握性質(zhì):,即模數(shù)量積的轉(zhuǎn)化.21、(Ⅰ)見解析(Ⅱ)見解析【解析】
(Ⅰ)取PC的中點G,連結(jié)FG、EG,AF∥EG又EG?平面PCE,AF?平面PCE,AF∥平面PCE;(Ⅱ)由(Ⅰ)得EG∥AF,只需證明AF⊥面PDC,即可得到平面PEC⊥平面PCD.【詳解】證明:(Ⅰ)取PC的中點G,連結(jié)FG、EG,∴FG為△CDP的中位
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度智慧城市建設擔保協(xié)議3篇
- 運動隊訓練中的科技裝備與智能化管理
- 2025版商業(yè)綜合體物業(yè)商鋪裝修管理及維護服務協(xié)議書3篇
- 網(wǎng)絡信息搜索與評價能力的培養(yǎng)方案設計
- 小學數(shù)學課堂的科學實驗教學探討
- 2025年粵教新版選修6歷史下冊階段測試試卷含答案
- 二零二五年度離婚協(xié)議中夫妻共同財產(chǎn)分割及子女撫養(yǎng)協(xié)議范本6篇
- 2025年蘇人新版必修1歷史下冊月考試卷含答案
- 2025版無息醫(yī)療健康貸款合同書示例3篇
- 2025年浙教版選擇性必修三語文下冊階段測試試卷
- 2019版新人教版高中英語必修+選擇性必修共7冊詞匯表匯總(帶音標)
- 新譯林版高中英語必修二全冊短語匯總
- 基于自適應神經(jīng)網(wǎng)絡模糊推理系統(tǒng)的游客規(guī)模預測研究
- 河道保潔服務投標方案(完整技術(shù)標)
- 品管圈(QCC)案例-縮短接臺手術(shù)送手術(shù)時間
- 精神科病程記錄
- 閱讀理解特訓卷-英語四年級上冊譯林版三起含答案
- 清華大學考博英語歷年真題詳解
- 人教版三年級上冊口算題(全冊完整20份 )
- 屋面及防水工程施工(第二版)PPT完整全套教學課件
- 2023年高一物理期末考試卷(人教版)
評論
0/150
提交評論