版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
廣東省廣州市荔灣區(qū)真光中學(xué)2025屆高一數(shù)學(xué)第二學(xué)期期末教學(xué)質(zhì)量檢測試題注意事項(xiàng)1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.用數(shù)學(xué)歸納法證明1+a+a2+…+an+1=(a≠1,n∈N*),在驗(yàn)證n=1成立時(shí),左邊的項(xiàng)是()A.1 B.1+a C.1+a+a2 D.1+a+a2+a42.大衍數(shù)列,來源于《乾坤普》中對易傳“大衍之?dāng)?shù)五十”的推論,主要用于解釋中國傳統(tǒng)文化中太極衍生原理.?dāng)?shù)列中的每一項(xiàng),都代表太極衍生過程中,曾經(jīng)經(jīng)歷過的兩翼數(shù)量總和,是中國傳統(tǒng)文化中隱藏著的世界數(shù)學(xué)史上第一道數(shù)列題.其前10項(xiàng)依次是0,2,4,8,12,18,24,32,40,50,……則此數(shù)列的第20項(xiàng)為()A.200 B.180 C.128 D.1623.已知的三邊滿足,則的內(nèi)角C為()A. B. C. D.4.已知在角終邊上,若,則()A. B.-2 C.2 D.5.若,則的最小值為()A. B. C. D.6.已知點(diǎn),,則直線的斜率是()A. B. C.5 D.17.《九章算術(shù)》卷第六《均輸》中,提到如下問題:“今有竹九節(jié),下三節(jié)容量四升,上四節(jié)容量三升.問中間二節(jié)欲均容,各多少?”其大致意思是說,若九節(jié)竹每節(jié)的容量依次成等差數(shù)列,下三節(jié)容量四升,上四節(jié)容量三升,則中間兩節(jié)的容量各是()A.升、升 B.升、升C.升、升 D.升、升8.已知圓柱的側(cè)面展開圖是一個(gè)邊長為的正方形,則這個(gè)圓柱的體積是()A. B. C. D.9.已知=(2,3),=(3,t),=1,則=A.-3 B.-2C.2 D.310.在中,已知,那么一定是()A.直角三角形 B.等腰三角形 C.等腰直角三角形 D.正三角形二、填空題:本大題共6小題,每小題5分,共30分。11.如果3個(gè)正整數(shù)可作為一個(gè)直角三角形三條邊的邊長,則稱這3個(gè)數(shù)為一組勾股數(shù).現(xiàn)從1,2,3,4,5中任取3個(gè)不同的數(shù),則這3個(gè)數(shù)構(gòu)成一組勾股數(shù)的概率為.12.設(shè),數(shù)列滿足,,將數(shù)列的前100項(xiàng)從大到小排列得到數(shù)列,若,則k的值為______;13.已知等比數(shù)列的公比為,它的前項(xiàng)積為,且滿足,,,給出以下四個(gè)命題:①;②;③為的最大值;④使成立的最大的正整數(shù)為4031;則其中正確命題的序號為________14.如圖,為了測量樹木的高度,在處測得樹頂?shù)难鼋菫?,在處測得樹頂?shù)难鼋菫?,若米,則樹高為______米.15.設(shè)為三條不同的直線,為兩個(gè)不同的平面,給出下列四個(gè)判斷:①若則;②若是在內(nèi)的射影,,則;③底面是等邊三角形,側(cè)面都是等腰三角形的三棱錐是正三棱錐;④若球的表面積擴(kuò)大為原來的16倍,則球的體積擴(kuò)大為原來的32倍;其中正確的為___________.16.公比為2的等比數(shù)列的各項(xiàng)都是正數(shù),且,則的值為___________三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.已知方程有兩個(gè)實(shí)根,記,求的值.18.在物理中,簡諧運(yùn)動中單擺對平衡位置的位移與時(shí)間的關(guān)系,交流電與時(shí)間的關(guān)系都是形如的函數(shù).已知電流(單位:)隨時(shí)間(單位:)變化的函數(shù)關(guān)系是:,(1)求電流變化的周期、頻率、振幅及其初相;(2)當(dāng),,,,(單位:)時(shí),求電流.19.已知,是第四象限角,求和的值.20.已知數(shù)列滿足,令(1)求證數(shù)列為等比數(shù)列,并求通項(xiàng)公式;(2)求數(shù)列的前n項(xiàng)和.21.隨著中國經(jīng)濟(jì)的加速騰飛,現(xiàn)在手有余錢的中國家庭數(shù)量越來越多,在房價(jià)居高不下?股市動蕩不定的形勢下,為了讓自己的財(cái)富不縮水,很多家庭選擇了投資理財(cái).為了了解居民購買理財(cái)產(chǎn)品的情況,理財(cái)公司抽樣調(diào)查了該市2018年10戶家庭的年收入和年購買理財(cái)產(chǎn)品支出的情況,統(tǒng)計(jì)資料如下表:年收入x(萬元)204040606060707080100年理財(cái)產(chǎn)品支出y(萬元)9141620211918212223(1)由該樣本的散點(diǎn)圖可知y與x具有線性相關(guān)關(guān)系,請求出回歸方程;(求時(shí)利用的準(zhǔn)確值,,的最終結(jié)果精確到0.01)(2)若某家庭年收入為120萬元,預(yù)測某年購買理財(cái)產(chǎn)品的支出.(參考數(shù)據(jù):,,,)
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、C【解析】
在驗(yàn)證時(shí),左端計(jì)算所得的項(xiàng),把代入等式左邊即可得到答案.【詳解】解:用數(shù)學(xué)歸納法證明,
在驗(yàn)證時(shí),把當(dāng)代入,左端.
故選:C.【點(diǎn)睛】此題主要考查數(shù)學(xué)歸納法證明等式的問題,屬于概念性問題.2、A【解析】
由0、2、4、8、12、18、24、32、40、50…,可得偶數(shù)項(xiàng)的通項(xiàng)公式:,即可得出.【詳解】由0、2、4、8、12、18、24、32、40、50…,可得偶數(shù)項(xiàng)的通項(xiàng)公式:,則此數(shù)列第20項(xiàng)=2×102=1.故選:A.【點(diǎn)睛】本題考查了數(shù)列遞推關(guān)系、通項(xiàng)公式、歸納法,屬于基礎(chǔ)題.3、C【解析】原式可化為,又,則C=,故選C.4、C【解析】
由正弦函數(shù)的定義求解.【詳解】,顯然,∴.故選C.【點(diǎn)睛】本題考查正弦函數(shù)的定義,屬于基礎(chǔ)題.解題時(shí)注意的符號.5、D【解析】
根據(jù)對數(shù)運(yùn)算可求得且,,利用基本不等式可求得最小值.【詳解】由得:且,(當(dāng)且僅當(dāng)時(shí)取等號)本題正確選項(xiàng):【點(diǎn)睛】本題考查利用基本不等式求解和的最小值的問題,關(guān)鍵是能夠利用對數(shù)運(yùn)算得到積的定值,屬于基礎(chǔ)題.6、D【解析】
根據(jù)直線的斜率公式,準(zhǔn)確計(jì)算,即可求解,得到答案.【詳解】由題意,根據(jù)直線的斜率公式,可得直線的斜率,故選D.【點(diǎn)睛】本題主要考查了直線的斜率公式的應(yīng)用,其中解答中熟記直線的斜率公式,準(zhǔn)確計(jì)算是解答的關(guān)鍵,著重考查了運(yùn)算與求解能力,屬于基礎(chǔ)題.7、D【解析】
由題意知九節(jié)竹的容量成等差數(shù)列,至下而上各節(jié)的容量分別為a1,a2,…,an,公差為d,利用等差數(shù)列的前n項(xiàng)和公式和通項(xiàng)公式列出方程組,求出首項(xiàng)和公差,由此能求出中間一節(jié)的容量.【詳解】由題意知九節(jié)竹的容量成等差數(shù)列,至下而上各節(jié)的容量分別為a1,a2,…,a9,公差為d,即=4,=3,∴=4,=3,解得,,∴中間兩節(jié)的容量,,故選:D.【點(diǎn)睛】本題考查等差數(shù)列的通項(xiàng)公式,利用等差數(shù)列的通項(xiàng)公式列出方程組,解出首項(xiàng)與公差即可,考查計(jì)算能力,屬于基礎(chǔ)題.8、A【解析】
由已知易得圓柱的高為,底面圓周長為,求出半徑進(jìn)而求得底面圓半徑即可求出圓柱體積?!驹斀狻康酌鎴A周長,,所以故選:A【點(diǎn)睛】此題考查圓柱的側(cè)面展開為長方形,長為底面圓周長,寬為圓柱高,屬于簡單題目。9、C【解析】
根據(jù)向量三角形法則求出t,再求出向量的數(shù)量積.【詳解】由,,得,則,.故選C.【點(diǎn)睛】本題考點(diǎn)為平面向量的數(shù)量積,側(cè)重基礎(chǔ)知識和基本技能,難度不大.10、B【解析】
先化簡sinAcosB=sinC=,即得三角形形狀.【詳解】由sinAcosB=sinC得所以sinBcosA=0,因?yàn)锳,B∈(0,π),所以sinB>0,所以cosA=0,所以A=,所以三角形是直角三角形.故答案為A【點(diǎn)睛】本題主要考查三角恒等變換和三角函數(shù)的圖像性質(zhì),意在考查學(xué)生對這些知識的掌握水平和分析推理能力.二、填空題:本大題共6小題,每小題5分,共30分。11、.【解析】試題分析:從中任取3個(gè)不同的數(shù),有,,,,,,,,,共10種,其中只有為勾股數(shù),故這3個(gè)數(shù)構(gòu)成一組勾股數(shù)的概率為.考點(diǎn):用列舉法求隨機(jī)事件的概率.12、【解析】
根據(jù)遞推公式利用數(shù)學(xué)歸納法分析出與的關(guān)系,然后考慮將的前項(xiàng)按要求排列,再根據(jù)項(xiàng)的序號計(jì)算出滿足的值即可.【詳解】由已知,a1=a,0<a<1;并且函數(shù)y=ax單調(diào)遞減;∵∴1>a2>a1∴,∴a2>a3>a1∵,且∴a2>a4>a3>a1……當(dāng)為奇數(shù)時(shí),用數(shù)學(xué)歸納法證明,當(dāng)時(shí),成立,設(shè)時(shí),,當(dāng)時(shí),因?yàn)?,結(jié)合的單調(diào)性,所以,所以即,所以時(shí)成立,所以為奇數(shù)時(shí),;當(dāng)為偶數(shù)時(shí),用數(shù)學(xué)歸納法證明,當(dāng)時(shí),成立,設(shè)時(shí),,當(dāng)時(shí),因?yàn)?,結(jié)合的單調(diào)性,所以,所以即,所以時(shí)成立,所以為偶數(shù)時(shí),;用數(shù)學(xué)歸納法證明:任意偶數(shù)項(xiàng)大于相鄰的奇數(shù)項(xiàng)即證:當(dāng)為奇數(shù),,當(dāng)時(shí),符合,設(shè)時(shí),,當(dāng)時(shí),因?yàn)椋Y(jié)合的單調(diào)性,所以,所以,所以,所以時(shí)成立,所以當(dāng)為奇數(shù)時(shí),,據(jù)此可知:,當(dāng)時(shí),若,則有,此時(shí)無解;當(dāng)時(shí),此時(shí)的下標(biāo)成首項(xiàng)為公差為的等差數(shù)列,通項(xiàng)即為,若,所以,所以.故答案為:.【點(diǎn)睛】本題考查數(shù)列與函數(shù)的綜合應(yīng)用,難度較難.(1)分析數(shù)列的單調(diào)性時(shí),要注意到數(shù)列作為特殊的函數(shù),其定義域?yàn)椋?2)證明數(shù)列的單調(diào)性可從與的關(guān)系入手分析.13、②③【解析】
利用等比數(shù)列的性質(zhì),可得,得出,進(jìn)而判斷②③④,即可得到答案.【詳解】①中,由等比數(shù)列的公比為,且滿足,,,可得,所以,且所以是錯(cuò)誤的;②中,由等比數(shù)列的性質(zhì),可得,所以是正確的;③中,由,且,,所以前項(xiàng)之積的最大值為,所以是正確的;④中,,所以正確.綜上可得,正確命題的序號為②③.故答案為:②③.【點(diǎn)睛】本題主要考查了等比數(shù)列的性質(zhì)的應(yīng)用,其中解答中熟記等比數(shù)列的性質(zhì),合理推算是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于中檔試題.14、【解析】
先計(jì)算,再計(jì)算【詳解】在處測得樹頂?shù)难鼋菫?,在處測得樹頂?shù)难鼋菫閯t在中,故答案為【點(diǎn)睛】本題考查了三角函數(shù)的應(yīng)用,也可以用正余弦定理解答.15、①②【解析】
對四個(gè)命題分別進(jìn)行判斷即可得到結(jié)論【詳解】①若,垂足為,與確定平面,,則,,則,,則,故,故正確②若,是在內(nèi)的射影,,根據(jù)三垂線定理,可得,故正確③底面是等邊三角形,側(cè)面都是有公共頂點(diǎn)的等腰三角形的三棱錐是正三棱錐,故不正確④若球的表面積擴(kuò)大為原來的倍,則半徑擴(kuò)大為原來的倍,則球的體積擴(kuò)大為原來的倍,故不正確其中正確的為①②【點(diǎn)睛】本題主要考查了空間中直線與平面之間的位置關(guān)系、球的體積等知識點(diǎn),數(shù)量掌握各知識點(diǎn)然后對其進(jìn)行判斷,較為基礎(chǔ)。16、2【解析】
根據(jù)等比數(shù)列的性質(zhì)與基本量法求解即可.【詳解】由題,因?yàn)?又等比數(shù)列的各項(xiàng)都是正數(shù),故.故.故答案為:【點(diǎn)睛】本題主要考查了等比數(shù)列的等積性與各項(xiàng)之間的關(guān)系.屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、【解析】
求出的值和的范圍即可【詳解】因?yàn)?,所以又有兩個(gè)實(shí)根所以所以因?yàn)樗裕运运怨蚀鸢笧椋骸军c(diǎn)睛】1.要清楚反三角函數(shù)的定義域和值域,如的定義域?yàn)?,值域?yàn)?.由三角函數(shù)的值求角時(shí)一定要判斷出角的范圍.18、(1)周期:,頻率:,振幅:,初相:;(2)當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),.【解析】
(1)按照函數(shù)的周期、頻率、振幅和初相的求法求解即可;(2)將,,,,分別代入函數(shù)關(guān)系中計(jì)算即可.【詳解】(1)周期:,頻率:,振幅:,初相:;(2)當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)時(shí),.【點(diǎn)睛】本題考查函數(shù)模型在物理學(xué)中的應(yīng)用,考查對基礎(chǔ)知識的掌握,考查計(jì)算能力.19、,【解析】
利用誘導(dǎo)公式可求的值,根據(jù)是第四象限角可求的值,最后根據(jù)三角函數(shù)的基本關(guān)系式可求的值,根據(jù)誘導(dǎo)公式及倍角公式可求的值.【詳解】,又是第四象限角,所以,所以,.【點(diǎn)睛】本題考查同角的三角函數(shù)的基本關(guān)系式、誘導(dǎo)公式以及二倍角公式,此題屬于基礎(chǔ)題.20、(1);(2)【解析】
(1)由變形可得,即,于是可得數(shù)列為等比數(shù)列,進(jìn)而得到通項(xiàng)公式;(2)由(1)得,然后分為奇數(shù)、偶數(shù)兩種情況,將轉(zhuǎn)化為數(shù)列的求和問題解決.【詳解】(1)∵,∴,∵,∴.又,∴數(shù)列是首項(xiàng)為8,公比為3的等比數(shù)列,∴.(2)當(dāng)為正偶數(shù)時(shí),.當(dāng)為正奇
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版化工危險(xiǎn)品倉庫租賃及消防設(shè)施配備協(xié)議3篇
- 2024校車司機(jī)服務(wù)滿意度調(diào)查聘用合同3篇
- 專業(yè)墻面刷涂料分包合作合同一
- 二零二五年度不銹鋼欄桿設(shè)計(jì)與安裝服務(wù)協(xié)議3篇
- 二零二五年特色街區(qū)攤位租賃經(jīng)營協(xié)議2篇
- 2025賓館客房租賃及酒店旅游咨詢服務(wù)合同范本3篇
- 二零二五年度智能機(jī)器人OEM研發(fā)與生產(chǎn)合作協(xié)議
- 二零二五版影視作品眾籌投資與分成合同3篇
- 2024版工程設(shè)計(jì)協(xié)議終止協(xié)議范本版B版
- 忻州職業(yè)技術(shù)學(xué)院《生物藥物臨床前評價(jià)》2023-2024學(xué)年第一學(xué)期期末試卷
- 健康中國產(chǎn)業(yè)園規(guī)劃方案
- (2024年)二年級上冊音樂
- 2024屆高考英語一輪復(fù)習(xí)讀后續(xù)寫脫險(xiǎn)類續(xù)寫講義
- ISO13485內(nèi)部審核檢查表+內(nèi)審記錄
- 2024年《藥物臨床試驗(yàn)質(zhì)量管理規(guī)范》(GCP)網(wǎng)絡(luò)培訓(xùn)題庫
- 新華健康體檢報(bào)告查詢
- 2024版智慧電力解決方案(智能電網(wǎng)解決方案)
- 公司SWOT分析表模板
- 小學(xué)預(yù)防流行性感冒應(yīng)急預(yù)案
- 生物醫(yī)藥大數(shù)據(jù)分析平臺建設(shè)-第1篇
- 美術(shù)家協(xié)會會員申請表
評論
0/150
提交評論