廣東省中山市一中豐山學部2025屆高一下數(shù)學期末調研試題含解析_第1頁
廣東省中山市一中豐山學部2025屆高一下數(shù)學期末調研試題含解析_第2頁
廣東省中山市一中豐山學部2025屆高一下數(shù)學期末調研試題含解析_第3頁
廣東省中山市一中豐山學部2025屆高一下數(shù)學期末調研試題含解析_第4頁
廣東省中山市一中豐山學部2025屆高一下數(shù)學期末調研試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

廣東省中山市一中豐山學部2025屆高一下數(shù)學期末調研試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若函數(shù)有零點,則實數(shù)的取值范圍為()A. B. C. D.2.已知是邊長為4的等邊三角形,為平面內一點,則的最小值是()A. B. C. D.3.若三棱錐的四個面都為直角三角形,平面,,,則三棱錐中最長的棱長為()A. B. C. D.4.函數(shù),當上恰好取得5個最大值,則實數(shù)的取值范圍為()A. B. C. D.5.已知,成等差數(shù)列,成等比數(shù)列,則的最小值是A.0 B.1 C.2 D.46.半圓的直徑,為圓心,是半圓上不同于的任意一點,若為半徑上的動點,則的最小值是()A.2 B.0 C.-2 D.47.已知四棱錐中,平面平面,其中為正方形,為等腰直角三角形,,則四棱錐外接球的表面積為()A. B. C. D.8.若三個球的半徑的比是1:2:3,則其中最大的一個球的體積是另兩個球的體積之和的()倍.A.95 B.2 C.529.的內角的對邊分別為,若的面積為,則()A. B. C. D.10.以點和為直徑兩端點的圓的方程是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.在中,,點在邊上,若,的面積為,則___________12.已知三棱錐,若平面ABC,,則異面直線PB與AC所成角的余弦值為______.13.若數(shù)據(jù)的平均數(shù)為,則____________.14.給出以下四個結論:①過點,在兩軸上的截距相等的直線方程是;②若是等差數(shù)列的前n項和,則;③在中,若,則是等腰三角形;④已知,,且,則的最大值是2.其中正確的結論是________(寫出所有正確結論的番號).15.某工廠生產(chǎn)甲、乙、丙、丁四種不同型號的產(chǎn)品,產(chǎn)量分別為200,400,300,100件,為檢驗產(chǎn)品的質量,現(xiàn)用分層抽樣的方法從以上所有的產(chǎn)品中抽取60件進行檢驗,則應從丙種型號的產(chǎn)品中抽取________件.16.已知數(shù)列中,,,設,若對任意的正整數(shù),當時,不等式恒成立,則實數(shù)的取值范圍是______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數(shù)的最小正周期為,且該函數(shù)圖象上的最低點的縱坐標為.(1)求函數(shù)的解析式;(2)求函數(shù)的單調遞增區(qū)間及對稱軸方程.18.已知向量滿足,,且向量與的夾角為.(1)求的值;(2)求.19.如圖,已知以點為圓心的圓與直線相切.過點的動直線與圓A相交于M,N兩點,Q是的中點,直線與相交于點P.(1)求圓A的方程;(2)當時,求直線的方程.20.在ΔABC中,角A,B,C的對邊分別為a,b,c,a=8,c-1(1)若ΔABC有兩解,求b的取值范圍;(2)若ΔABC的面積為82,B>C,求b-c21.已知為等差數(shù)列,且,.求的通項公式;若等比數(shù)列滿足,,求的前n項和公式.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】

令,得,再令,得出,并構造函數(shù),將問題轉化為直線與函數(shù)在區(qū)間有交點,利用數(shù)形結合思想可得出實數(shù)的取值范圍.【詳解】令,得,,令,則,所以,,構造函數(shù),其中,由于,,,所以,當時,直線與函數(shù)在區(qū)間有交點,因此,實數(shù)的取值范圍是,故選D.【點睛】本題考查函數(shù)的零點問題,在求解含參函數(shù)零點的問題時,若函數(shù)中只含有單一參數(shù),可以采用參變量分離法轉化為參數(shù)直線與定函數(shù)圖象的交點個數(shù)問題,難點在于利用換元法將函數(shù)解析式化簡,考查數(shù)形結合思想,屬于中等題.2、A【解析】

建立平面直角坐標系,表示出點的坐標,利用向量坐標運算和平面向量的數(shù)量積的運算,求得最小值,即可求解.【詳解】由題意,以中點為坐標原點,建立如圖所示的坐標系,則,設,則,所以,所以當時,取得最小值為,故選A.【點睛】本題主要考查了平面向量數(shù)量積的應用問題,根據(jù)條件建立坐標系,利用坐標法是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.3、B【解析】

根據(jù)題意,畫出滿足題意的三棱錐,求解棱長即可.【詳解】因為平面,故,且,則為直角三角形,由以及勾股定理得:;同理,因為則為直角三角形,由,以及勾股定理得:;在保證和均為直角三角形的情況下,①若,則在中,由勾股定理得:,此時在中,由,及,不滿足勾股定理故當時,無法保證為直角三角形.不滿足題意.②若,則,又因為面ABC,面ABC,則,故面PAB,又面PAB,故,則此時可以保證也為直角三角形.滿足題意.③若,在直角三角形BCA中,斜邊AB=2,小于直角邊AC=,顯然不成立.綜上所述:當且僅當時,可以保證四棱錐的四個面均為直角三角形,故作圖如下:由已知和勾股定理可得:,顯然,最長的棱為.故選:B.【點睛】本題表面考查幾何體的性質,以及棱長的計算,涉及線面垂直問題,需靈活應用.4、C【解析】

先求出取最大值時的所有的解,再解不等式,由解的個數(shù)決定出的取值范圍.【詳解】設,所以,解得,所以滿足的值恰好只有5個,所以的取值可能為0,1,2,3,4,由,故選C.【點睛】本題主要考查正弦函數(shù)的最值以及不等式的解法,意在考查學生的數(shù)學運算能力.5、D【解析】解:∵x,a,b,y成等差數(shù)列,x,c,d,y成等比數(shù)列根據(jù)等差數(shù)列和等比數(shù)列的性質可知:a+b=x+y,cd=xy,當且僅當x=y時取“=”,6、C【解析】

將轉化為,利用向量數(shù)量積運算化簡,然后利用基本不等式求得表達式的最小值.【詳解】畫出圖像如下圖所示,,等號在,即為的中點時成立.故選C.【點睛】本小題主要考查平面向量加法運算,考查平面向量的數(shù)量積運算,考查利用基本不等式求最值,屬于中檔題.7、D【解析】

因為為等腰直角三角形,,故,則點到平面的距離為,而底面正方形的中心到邊的距離也為,則頂點正方形中心的距離,正方形的外接圓的半徑為,故正方形的中心是球心,則球的半徑為,所以該幾何體外接球的表面積,應選D.8、D【解析】

設最小球的半徑為R,根據(jù)比例關系即可得到另外兩個球的半徑,再利用球的體積公式表示出三個球的體積,即可得到結論?!驹斀狻吭O最小球的半徑為R,由三個球的半徑的比是1:2:3,可得另外兩個球的半徑分別為2R,3R;∴最小球的體積V1=43π∴V故答案選D【點睛】本題主要考查球體積的計算公式,屬于基礎題。9、C【解析】

由題意可得,化簡后利用正弦定理將“邊化為角“即可.【詳解】解:的面積為,,,故選:C.【點睛】本題主要考查正弦定理的應用和三角形的面積公式,屬于基礎題.10、A【解析】

可根據(jù)已知點直接求圓心和半徑.【詳解】點和的中點是圓心,圓心坐標是,點和間的距離是直徑,,即,圓的方程是.故選A.【點睛】本題考查了圓的標準方程的求法,屬于基礎題型.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

由,的面積為可以求解出三角形,再通過,我們可以得出(兩三角形等高)再利用正弦形式表示各自面積,即能得出的值.【詳解】,的面積為,所以為等邊三角形,又所以(等高),又所以填寫2【點睛】已知三角形面積及一邊一角,我們能把形成該角的另外一邊算出,從而把三角形所有量都能計算出來(如果需要),求兩角正弦值的比值,我們更多聯(lián)想到正弦定理的公式,或面積公式.12、【解析】

過B作,且,則或其補角即為異面直線PB與AC所成角由此能求出異面直線PB與AC所成的角的余弦值.【詳解】過B作,且,則四邊形為菱形,如圖所示:或其補角即為異面直線PB與AC所成角.設.,,平面ABC,,.異面直線PB與AC所成的角的余弦值為.故答案為.【點睛】本題考查異面直線所成角的求法,是中檔題,解題時要認真審題,注意空間思維能力的培養(yǎng).13、【解析】

根據(jù)求平均數(shù)的公式,得到關于的方程,求得.【詳解】由題意得:,解得:,故填:.【點睛】本題考查求一組數(shù)據(jù)的平均數(shù),考查基本數(shù)據(jù)處理能力.14、②④【解析】

①中滿足題意的直線還有,②中根據(jù)等差數(shù)列前項和的特點,得到,③中根據(jù)同角三角函數(shù)關系進行化簡計算,從而進行判斷,④中根據(jù)基本不等式進行判斷.【詳解】①中過點,在兩軸上的截距相等的直線還可以過原點,即兩軸上的截距都為,即直線,所以錯誤;②中是等差數(shù)列的前n項和,根據(jù)等差數(shù)列前項和的特點,,是一個不含常數(shù)項的二次式,從而得到,即,所以正確;③中在中,若,則可得,所以可得或,所以可得或,從而得到為直角三角形或等腰三角形,所以錯誤;④中因為,,且,由基本不等式,得到,所以,當且僅當,即時,等號成立.所以,即的最大值是,所以正確.故答案為:②④【點睛】本題考查截距相等的直線的特點,等差數(shù)列前項和的特點,判斷三角形形狀,基本不等式求積的最大值,屬于中檔題.15、1【解析】應從丙種型號的產(chǎn)品中抽取件,故答案為1.點睛:在分層抽樣的過程中,為了保證每個個體被抽到的可能性是相同的,這就要求各層所抽取的個體數(shù)與該層所包含的個體數(shù)之比等于樣本容量與總體的個體數(shù)之比,即ni∶Ni=n∶N.16、【解析】∵,(,),當時,,,…,,并項相加,得:,

∴,又∵當時,也滿足上式,

∴數(shù)列的通項公式為,∴

,令(),則,∵當時,恒成立,∴在上是增函數(shù),

故當時,,即當時,,對任意的正整數(shù),當時,不等式恒成立,則須使,即對恒成立,即的最小值,可得,∴實數(shù)的取值范圍為,故答案為.點睛:本題考查數(shù)列的通項及前項和,涉及利用導數(shù)研究函數(shù)的單調性,考查運算求解能力,注意解題方法的積累,屬于難題通過并項相加可知當時,進而可得數(shù)列的通項公式,裂項、并項相加可知,通過求導可知是增函數(shù),進而問題轉化為,由恒成立思想,即可得結論.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2)增區(qū)間是,對稱軸為【解析】

(1)由周期求得ω,再由函數(shù)圖象上的最低點的縱坐標為﹣3求得A,則函數(shù)解析式可求;(2)直接利用復合函數(shù)的單調性求函數(shù)f(x)的單調遞增區(qū)間,再由2x求解x可得函數(shù)f(x)的對稱軸方程.【詳解】(1)因為的最小正周期為因為,,,∴.又函數(shù)圖象上的最低點縱坐標為,且∴∴.(2)由,可得可得單調遞增區(qū)間.由,得.所以函數(shù)的對稱軸方程為.【點睛】本題考查函數(shù)解析式的求法,考查y=Asin(ωx+φ)型函數(shù)的性質,是基礎題.18、(1)4(2)-12【解析】

(1)由,可得,即,再結合,且向量與的夾角為,利用數(shù)量積公式求解.(2)將利用向量的運算律展開,再利用數(shù)量積公式運算求解.【詳解】(1)因為,所以,即.因為,且向量與的夾角為,所以,所以.(2).【點睛】本題主要考查向量的數(shù)量積運算,還考查了運算求解的能力,屬于中檔題.19、(1).(2)或【解析】

(1)圓心到切線的距離等于圓的半徑,從而易得圓標準方程;(2)考慮直線斜率不存在時是否符合題意,在斜率存在時,設直線方程為,根據(jù)垂徑定理由弦長得出圓心到直線的距離,現(xiàn)由點(圓心)到直線的距離公式可求得.【詳解】(1)由于圓A與直線相切,∴,∴圓A的方程為.(2)①當直線與x軸垂直時,易知與題意相符,使.②當直線與x軸不垂直時,設直線的方程為即,連接,則,∵,∴,由,得.∴直線,故直線的方程為或.【點睛】本題考查直線與圓的位置關系,解題關鍵是垂徑定理的應用,在圓中與弦長有關的問題通常都是用垂徑定理解決.20、(1)(8,62);(2)【解析】

(1)由c-13b=acosB,利用正弦定理可得sinC-13sinB=sin【詳解】(1)∵c-1∴sinC-∴sinA即sin∵sinB≠0,∴cosA=1若ΔABC有兩解,∴bsin解得8<b<62,即b的取值范圍為((2)由(1)知,SΔABC=1∵a2=b∴(b-c)2∵B>C,∴b-c=42【點睛】解三角形時,有時可用正弦定理,有時也可用余弦定理,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論