莆田市重點中學2025屆高一下數(shù)學期末監(jiān)測試題含解析_第1頁
莆田市重點中學2025屆高一下數(shù)學期末監(jiān)測試題含解析_第2頁
莆田市重點中學2025屆高一下數(shù)學期末監(jiān)測試題含解析_第3頁
莆田市重點中學2025屆高一下數(shù)學期末監(jiān)測試題含解析_第4頁
莆田市重點中學2025屆高一下數(shù)學期末監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

莆田市重點中學2025屆高一下數(shù)學期末監(jiān)測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.某程序框圖如圖所示,則該程序運行后輸出的值是()A. B. C. D.2.中國古代數(shù)學著作《算法統(tǒng)綜》中有這樣一個問題:“三百七十八里關,初步健步不為難,次日腳痛減一半,六朝才得到其關,要見次日行里數(shù),請公仔細算相還”.其大意為:“有一個人走378里路,第一天健步行走,從第二天起腳痛每天走的路程為前一天的一半,走了6天后到達目的地”,則該人第五天走的路程為()A.48里 B.24里 C.12里 D.6里3.在中,,則這個三角形的形狀為()A.銳角三角形 B.鈍角三角形 C.直角三角形 D.等腰三角形4.在中,若,,,則角的大小為()A.30° B.45°或135° C.60° D.135°5.已知平面向量,,,,且,則向量與向量的夾角為()A. B. C. D.6.已知集合,,則()A. B. C. D.7.已知,則的值為()A. B. C. D.8.已知四棱錐的底面是正方形,側棱長均相等,E是線段AB上的點(不含端點).設SE與BC所成的角為,SE與平面ABCD所成的角為β,二面角S-AB-C的平面角為,則()A. B. C. D.9.直線與圓的位置關系是()A.相切 B.相離C.相交但不過圓心 D.相交且過圓心10.已知表示三條不同的直線,表示兩個不同的平面,下列說法中正確的是()A.若,則 B.若,則C.若,則 D.若,則二、填空題:本大題共6小題,每小題5分,共30分。11.若函數(shù)是奇函數(shù),其中,則__________.12.英國物理學家和數(shù)學家艾薩克·牛頓(Isaacnewton,1643-1727年)曾提出了物體在常溫環(huán)境下溫度變化的冷卻模型.現(xiàn)把一杯溫水放在空氣中冷卻,假設這杯水從開始冷卻,x分鐘后物體的溫度滿足:(其中…為自然對數(shù)的底數(shù)).則從開始冷卻,經(jīng)過5分鐘時間這杯水的溫度是________(單位:℃).13.在中,,,面積為,則________.14.在行列式中,元素的代數(shù)余子式的值是________.15.在正數(shù)數(shù)列an中,a1=1,且點an,an-116.已知當時,函數(shù)(且)取得最大值,則時,的值為__________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知直線(1)若直線過點,且.求直線的方程.(2)若直線過點A(2,0),且,求直線的方程及直線,,軸圍成的三角形的面積.18.設數(shù)列滿足,,,.s(1)證明:數(shù)列是等差數(shù)列,并求數(shù)列的通項;(2)求數(shù)列的通項,并求數(shù)列的前項和;(3)若,且是單調(diào)遞增數(shù)列,求實數(shù)的取值范圍.19.某大學藝術專業(yè)400名學生參加某次測評,根據(jù)男女學生人數(shù)比例,使用分層抽樣的方法從中隨機抽取了100名學生,記錄他們的分數(shù),將數(shù)據(jù)分成7組:[20,30),[30,40),┄,[80,90],并整理得到如下頻率分布直方圖:(Ⅰ)從總體的400名學生中隨機抽取一人,估計其分數(shù)小于70的概率;(Ⅱ)已知樣本中分數(shù)小于40的學生有5人,試估計總體中分數(shù)在區(qū)間[40,50)內(nèi)的人數(shù);20.如圖所示,是正三角形,線段和都垂直于平面,設,,且為的中點.(1)求證:平面;(2)求平面與平面所成的較小二面角的大小21.某工廠共有200名工人,已知這200名工人去年完成的產(chǎn)品數(shù)都在區(qū)間(單位:萬件)內(nèi),其中每年完成14萬件及以上的工人為優(yōu)秀員工,現(xiàn)將其分成5組,第1組、第2組第3組、第4組、第5組對應的區(qū)間分別為,,,,,并繪制出如圖所示的頻率分布直方圖.(1)選取合適的抽樣方法從這200名工人中抽取容量為25的樣本,求這5組分別應抽取的人數(shù);(2)現(xiàn)從(1)中25人的樣本中的優(yōu)秀員工中隨機選取2名傳授經(jīng)驗,求選取的2名工人在同一組的概率.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】

由題意首先確定流程圖的功能,然后結合三角函數(shù)的性質(zhì)求解所要輸出的結果即開即可.【詳解】根據(jù)程序框圖知,該算法的目標是計算和式:.又因為,注意到,故:.故選:D.【點睛】識別、運行程序框圖和完善程序框圖的思路:(1)要明確程序框圖的順序結構、條件結構和循環(huán)結構.(2)要識別、運行程序框圖,理解框圖所解決的實際問題.(3)按照題目的要求完成解答并驗證.2、C【解析】

根據(jù)等比數(shù)列前項和公式列方程,求得首項的值,進而求得的值.【詳解】設第一天走,公比,所以,解得,所以.故選C.【點睛】本小題主要考查等比數(shù)列前項和的基本量計算,考查等比數(shù)列的通項公式,考查中國古典數(shù)學文化,屬于基礎題.3、B【解析】解:4、B【解析】

利用正弦定理得到答案.【詳解】在中正弦定理:或故答案選B【點睛】本題考查了正弦定理,屬于簡單題.5、B【解析】

根據(jù)可得到:,由此求得;利用向量夾角的求解方法可求得結果.【詳解】由題意知:,則設向量與向量的夾角為則本題正確選項:【點睛】本題考查向量夾角的求解,關鍵是能夠通過平方運算將模長轉變?yōu)橄蛄康臄?shù)量積,從而得到向量的位置關系.6、A【解析】

先分別求出集合,,由此能求出.【詳解】集合,,1,,或,,,.故選:.【點睛】本題考查交集的求法,考查交集定義等基礎知識,考查運算求解能力,考查函數(shù)與方程思想,是基礎題.7、B【解析】sin(π+α)?3cos(2π?α)=0,即:sinα+3cosα=0,①又∵sin2α+cos2α=1,②由①②聯(lián)立解得:cos2α=.∴cos2α=2cos2α?1=.故選B.8、C【解析】

根據(jù)題意,分別求出SE與BC所成的角、SE與平面ABCD所成的角β、二面角S-AB-C的平面角的正切值,由正四棱錐的線段大小關系即可比較大小.【詳解】四棱錐的底面是正方形,側棱長均相等,所以四棱錐為正四棱錐,(1)過作,交于,過底面中心作交于,連接,取中點,連接,如下圖(1)所示:則;(2)連接如下圖(2)所示,則;(3)連接,則,如下圖(3)所示:因為所以,而均為銳角,所以故選:C.【點睛】本題考查了異面直線夾角、直線與平面夾角、平面與平面夾角的求法,屬于中檔題.9、C【解析】圓心到直線的距離,據(jù)此可知直線與圓的位置關系為相交但不過圓心.本題選擇C選項.10、D【解析】

利用線面平行、線面垂直的判定定理與性質(zhì)依次對選項進行判斷,即可得到答案.【詳解】對于A,當時,則與不平行,故A不正確;對于B,直線與平面平行,則直線與平面內(nèi)的直線有兩種關系:平行或異面,故B不正確;對于C,若,則與不垂直,故C不正確;對于D,若兩條直線垂直于同一個平面,則這兩條直線平行,故D正確;故答案選D【點睛】本題考查空間中直線與直線、直線與平面位置關系相關定理的應用,屬于中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

定義域上的奇函數(shù),則【詳解】函數(shù)是奇函數(shù),所以,又,則所以填【點睛】定義域上的奇函數(shù),我們可以直接搭建方程,若定義域中則不能直接代指.12、45【解析】

直接利用對數(shù)的運算性質(zhì)計算即可,【詳解】.故答案為:45.【點睛】本題考查對數(shù)的運算性質(zhì),考查計算能力,屬于基礎題.13、【解析】

由已知利用三角形面積公式可求c,進而利用余弦定理可求a的值,根據(jù)正弦定理即可計算求解.【詳解】,,面積為,解得,由余弦定理可得:,所以,故答案為:【點睛】本題主要考查了三角形面積公式,余弦定理,正弦定理在解三角形中的應用,考查了計算能力和轉化思想,屬于基礎題.14、【解析】

根據(jù)余子式的定義,要求的代數(shù)余子式的值,這個元素在三階行列式中的位置是第一行第二列,那么化去第一行第二列得到的代數(shù)余子式,解出即可.【詳解】解:在行列式中,元素在第一行第二列,那么化去第一行第二列得到的代數(shù)余子式為:解這個余子式的值為,故元素的代數(shù)余子式的值是.故答案為:【點睛】考查學生會求行列式中元素的代數(shù)余子式,行列式的計算方法,屬于基礎題.15、2【解析】

在正數(shù)數(shù)列an中,由點an,an-1在直線x-2y=0上,知a【詳解】由題意,在正數(shù)數(shù)列an中,a1=1,且a可得an-2即an因為a1=1,所以數(shù)列所以Sn故答案為2n【點睛】本題主要考查了等比數(shù)列的定義,以及等比數(shù)列的前n項和公式的應用,同時涉及到數(shù)列與解析幾何的綜合運用,是一道好題.解題時要認真審題,仔細解答,注意等比數(shù)列的前n項和公式和通項公式的靈活運用,著重考查了推理與運算能力,屬于中檔試題.16、3【解析】

先將函數(shù)的解析式利用降冪公式化為,再利用輔助角公式化為,其中,由題意可知與的關系,結合誘導公式以及求出的值.【詳解】,其中,當時,函數(shù)取得最大值,則,,所以,,解得,故答案為.【點睛】本題考查三角函數(shù)最值,解題時首先應該利用降冪公式、和差角公式進行化簡,再利用輔助角公式化簡為的形式,本題中用到了與之間的關系,結合誘導公式進行求解,考查計算能力,屬于中等題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2);【解析】

(1)根據(jù)已知求得的斜率,由點斜式求出直線的方程.(2)根據(jù)已知求得的斜率,由點斜式寫出直線的方程,聯(lián)立的方程,求得兩條直線交點的坐標,再由三角形面積公式求得三角形面積.【詳解】解:(1)∵∥,∴直線的斜率是又直線過點,∴直線的方程為,即(2)∵,∴直線的斜率是又直線過點,∴直線的方程為即由得與的交點為∴直線,,軸圍成的三角形的面積是【點睛】本小題主要考查兩條直線平行、垂直時,斜率的對應關系,考查直線的點斜式方程,考查兩條直線交點坐標的求法,考查三角形的面積公式,屬于基礎題.18、(1)證明見解析,;(2),;(3).【解析】

(1)利用等差數(shù)列的定義可證明出數(shù)列是等差數(shù)列,并確定該數(shù)列的首項和公差,即可得出數(shù)列的通項;(2)利用累加法求出數(shù)列的通項,然后利用裂項法求出數(shù)列的前項和;(3)求出,然后分為正奇數(shù)和正偶數(shù)兩種情況分類討論,結合可得出實數(shù)的取值范圍.【詳解】(1),等式兩邊同時減去得,,且,所以,數(shù)列是以為首項,以為公差的等差數(shù)列,因此,;(2),,,;(3).當為正奇數(shù)時,,,由,得,可得,由于數(shù)列為單調(diào)遞減數(shù)列,;當為正偶數(shù)時,,,由,得,可得,由于數(shù)列為單調(diào)遞增數(shù)列,.因此,實數(shù)的取值范圍是.【點睛】本題考查利用等差數(shù)列的定義證明等差數(shù)列,同時也考查了累加法求通項、裂項求和法以及利用數(shù)列的單調(diào)性求參數(shù),充分利用單調(diào)性的定義來求解,考查運算求解能力,屬于中等題.19、(Ⅰ)0.4;(Ⅱ)20.【解析】

(1)首先可以根據(jù)頻率分布直方圖得出樣本中分數(shù)不小于的頻率,然后算出樣本中分數(shù)小于的頻率,最后計算出分數(shù)小于的概率;(2)首先計算出樣本中分數(shù)不小于的頻率,然后計算出分數(shù)在區(qū)間內(nèi)的人數(shù),最后計算出總體中分數(shù)在區(qū)間內(nèi)的人數(shù)?!驹斀狻浚?)根據(jù)頻率分布直方圖可知,樣本中分數(shù)不小于的頻率為,所以樣本中分數(shù)小于的頻率為.所以從總體的名學生中隨機抽取一人,其分數(shù)小于的概率估計為。(2)根據(jù)題意,樣本中分數(shù)不小于的頻率為,分數(shù)在區(qū)間內(nèi)的人數(shù)為,所以總體中分數(shù)在區(qū)間內(nèi)的人數(shù)估計為。【點睛】遇到頻率分布直方圖問題時需要注意:在頻率分布直方圖中,小矩形的高表示頻率/組距,而不是頻率;利用頻率分布直方圖求眾數(shù)、中位數(shù)和平均數(shù)時,應注意三點:①最高的小長方形底邊中點的橫坐標即是眾數(shù);②中位數(shù)左邊和右邊的小長方形的面積和是相等的;③平均數(shù)是頻率分布直方圖的“重心”,等于頻率分布直方圖中每個小長方形的面積乘以小長方形底邊中點的橫坐標之和。20、(1)見解析(2)【解析】

(1)取的中點,連接,先證即說明,再由線面平行的判定定理說明平面.(2)延長交的延長線于,連.說明為所求二面角的平面角.再計算即可.【詳解】解:(1)如圖所示,取的中點,連接.∵,∴.又,∴.∴四邊形為平行四邊形.故.∵平面,平面,∴平面.(2)延長交的延長線于,連.由,知,為的中點,又為的中點,∴.又平面,,∴平面.∴為所求二面角的平面角.在等腰直角三角形中,易求.故所求二面角的大小為.【點睛】本題考查線面平行、二面角的平面角,屬于中檔題.21、(1)第1組:2;第2組:8,;第3組:9;第4組:3;第5組:3(2)【解析】

(1)根據(jù)頻率之和為列方程,解方程求得的值.然后根據(jù)分層抽樣的計算方法,計算出每組抽取的人數(shù).(2)利用列舉

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論