版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
山東省濰坊市高密市2025屆高一數(shù)學第二學期期末考試模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.圓與圓的位置關系是()A.內(nèi)切 B.外切 C.相交 D.相離2.已知直三棱柱的所有棱長都相等,為的中點,則與所成角的余弦值為()A. B. C. D.3.將函數(shù)的圖象向右平移個單位長度得到圖像,則下列判斷錯誤的是()A.函數(shù)的最小正周期是 B.圖像關于直線對稱C.函數(shù)在區(qū)間上單調(diào)遞減 D.圖像關于點對稱4.等比數(shù)列中,,,則公比()A.1 B.2 C.3 D.45.若直線與直線互相平行,則的值等于()A.0或或3 B.0或3 C.0或 D.或36.已知平面向量,滿足,,且,則與的夾角為()A. B. C. D.7.定義運算:.若不等式的解集是空集,則實數(shù)的取值范圍是()A. B.C. D.8.若直線與直線平行,則A. B. C. D.9.若某群體中的成員只用現(xiàn)金支付的概率為0.45,既用現(xiàn)金支付也用非現(xiàn)金支付的概率為0.15,則不用現(xiàn)金支付的概率為A.0.3 B.0.4 C.0.6 D.0.710.已知關于的不等式的解集為,則的值為()A.4 B.5 C.7 D.9二、填空題:本大題共6小題,每小題5分,共30分。11.正六棱柱底面邊長為10,高為15,則這個正六棱柱的體積是_____.12.某球的體積與表面積的數(shù)值相等,則球的半徑是13.關于的方程()的兩虛根為、,且,則實數(shù)的值是________.14.若,則______(用表示).15.某中學高一年級有學生1200人,高二年級有學生900人,高三年級有學生1500人,現(xiàn)按年級用分層抽樣的方法從這三個年級的學生中抽取一個容量為720的樣本進行某項研究,則應從高三年級學生中抽取_____人.16.若正四棱錐的側(cè)棱長為,側(cè)面與底面所成的角是45°,則該正四棱錐的體積是________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知夾角為,且,,求:(1);(2)與的夾角.18.已知函數(shù)的最小正周期為,且該函數(shù)圖象上的最低點的縱坐標為.(1)求函數(shù)的解析式;(2)求函數(shù)的單調(diào)遞增區(qū)間及對稱軸方程.19.如圖是某設計師設計的型飾品的平面圖,其中支架,,兩兩成,,,且.現(xiàn)設計師在支架上裝點普通珠寶,普通珠寶的價值為,且與長成正比,比例系數(shù)為(為正常數(shù));在區(qū)域(陰影區(qū)域)內(nèi)鑲嵌名貴珠寶,名貴珠寶的價值為,且與的面積成正比,比例系數(shù)為.設,.(1)求關于的函數(shù)解析式,并寫出的取值范圍;(2)求的最大值及相應的的值.20.如圖所示,在平面四邊形ABCD中,AD=1,CD=2,AC=.(1)求cos∠CAD的值;(2)若cos∠BAD=-,sin∠CBA=,求BC的長.21.已知為等差數(shù)列,且,.(1)求的通項公式;(2)若等比數(shù)列滿足,,求數(shù)列的前項和公式.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】
由兩圓的圓心距及半徑的關系求解即可得解.【詳解】解:由圓,圓,即,所以圓的圓心坐標為,圓的圓心坐標為,兩圓半徑,則圓心距,即兩圓外切,故選:B.【點睛】本題考查了兩圓的位置關系的判斷,屬基礎題.2、D【解析】
取的中點,連接,則,所以異面直線與所成角就是直線與所成角,在中,利用余弦定理,即可求解.【詳解】由題意,取的中點,連接,則,所以異面直線與所成角就是直線與所成角,設正三棱柱的各棱長為,則,設直線與所成角為,在中,由余弦定理可得,即異面直線與所成角的余弦值為,故選D.【點睛】本題主要考查了異面直線所成角的求解,其中解答中把異面直線所成的角轉(zhuǎn)化為相交直線所成的角是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.3、C【解析】
根據(jù)三角函數(shù)的圖象平移關系求出的解析式,結(jié)合函數(shù)的單調(diào)性,對稱性分別進行判斷即可.【詳解】由題意,將函數(shù)的圖象向右平移個單位長度,可得,對于,函數(shù)的最小正周期為,所以該選項是正確的;對于,令,則為最大值,函數(shù)圖象關于直線,對稱是正確的;對于中,,則,,則函數(shù)在區(qū)間上先減后增,不正確;對于中,令,則,圖象關于點對稱是正確的,故選.【點睛】本題主要考查命題的真假判斷,涉及三角函數(shù)的單調(diào)性,對稱性,求出解析式是解決本題的關鍵.4、B【解析】
將與用首項和公比表示出來,解方程組即可.【詳解】因為,且,故:,且,解得:,即,故選:B.【點睛】本題考查求解等比數(shù)列的基本量,屬基礎題.5、D【解析】
根據(jù)直線的平行關系,列方程解參數(shù)即可.【詳解】由題:直線與直線互相平行,所以,,解得:或.經(jīng)檢驗,當或時,兩條直線均平行.故選:D【點睛】此題考查根據(jù)直線平行關系求解參數(shù)的取值,需要熟記公式,注意考慮直線重合的情況.6、C【解析】
根據(jù)列方程,結(jié)合向量數(shù)量積的運算以及特殊角的三角函數(shù)值,求得與的夾角.【詳解】由于,故,所以,所以,故選C.【點睛】本小題主要考查兩個向量垂直的表示,考查向量數(shù)量積運算,考查特殊角的三角函數(shù)值,考查兩個向量夾角的求法,屬于基礎題.7、B【解析】
根據(jù)定義可得的解集是空集,即恒成立,再對分類討論可得結(jié)果.【詳解】由題意得的解集是空集,即恒成立.當時,不等式即為,不等式恒成立;當時,若不等式恒成立,則即解得.綜上可知:.故選:B【點睛】本題考查了二次不等式的恒成立問題,考查了分類討論思想,屬于基礎題.8、A【解析】由題意,直線,則,解得,故選A.9、B【解析】
分析:由公式計算可得詳解:設事件A為只用現(xiàn)金支付,事件B為只用非現(xiàn)金支付,則因為所以,故選B.點睛:本題主要考查事件的基本關系和概率的計算,屬于基礎題.10、D【解析】
將原不等式化簡后,根據(jù)不等式的解集列方程組,求得的值,進而求得的值.【詳解】由得,依題意上述不等式的解集為,故,解得(舍去),故.故選:D.【點睛】本小題主要考查類似:已知一元二次不等式解集求參數(shù),考查函數(shù)與方程的思想,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
正六棱柱是底面為正六邊形的直棱柱,利用計算可得結(jié)果.【詳解】因為正六棱柱底面邊長為10,所以其面積,所以體積.【點睛】本題考查正六棱柱的概念及其體積的計算,考查基本運算能力.12、3【解析】試題分析:,解得.考點:球的體積和表面積13、5【解析】
關于方程兩數(shù)根為與,由根與系數(shù)的關系得:,,由及與互為共軛復數(shù)可得答案.【詳解】解:與是方程的兩根由根與系數(shù)的關系得:,,由與為虛數(shù)根得:,,則,解得,經(jīng)驗證,符合要求,故答案為:.【點睛】本題考查根與系數(shù)的關系的應用.求解是要注意與為虛數(shù)根情形,否則漏解,屬于基礎題.14、【解析】
直接利用誘導公式化簡求解即可.【詳解】解:,則,故答案為:.【點睛】本題考查誘導公式的應用,三角函數(shù)化簡求值,考查計算能力,屬于基礎題.15、1.【解析】
先求得高三學生占的比例,再利用分層抽樣的定義和方法,即可求解.【詳解】由題意,高三學生占的比例為,所以應從高三年級學生中抽取的人數(shù)為.【點睛】本題主要考查了分層抽樣的定義和方法,其中解答中熟記分層抽樣的定義和抽取的方法是解答的關鍵,著重考查了運算與求解能力,屬于基礎題.16、【解析】
過棱錐頂點作,平面,則為的中點,為正方形的中心,連結(jié),設正四棱錐的底面長為,根據(jù)已知求出a=2,SO=1,再求該正四棱錐的體積.【詳解】過棱錐頂點作,平面,則為的中點,為正方形的中心,連結(jié),則為側(cè)面與底面所成角的平面角,即,設正四棱錐的底面長為,則,所以,在中,∵∴,解得,∴∴棱錐的體積.故答案為【點睛】本題主要考查空間線面角的計算,考查棱錐體積的計算,意在考查學生對這些知識的理解掌握水平,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】試題分析:(1)先求模的平方將問題轉(zhuǎn)化為向量的數(shù)量積問題.(2)根據(jù)數(shù)量積公式即可求得兩向量的夾角.(1),,所以.(2)設與的夾角為.則,因為,所以.考點:1向量的數(shù)量積;2向量的模長.18、(1);(2)增區(qū)間是,對稱軸為【解析】
(1)由周期求得ω,再由函數(shù)圖象上的最低點的縱坐標為﹣3求得A,則函數(shù)解析式可求;(2)直接利用復合函數(shù)的單調(diào)性求函數(shù)f(x)的單調(diào)遞增區(qū)間,再由2x求解x可得函數(shù)f(x)的對稱軸方程.【詳解】(1)因為的最小正周期為因為,,,∴.又函數(shù)圖象上的最低點縱坐標為,且∴∴.(2)由,可得可得單調(diào)遞增區(qū)間.由,得.所以函數(shù)的對稱軸方程為.【點睛】本題考查函數(shù)解析式的求法,考查y=Asin(ωx+φ)型函數(shù)的性質(zhì),是基礎題.19、(1)();(2),的最大值是.【解析】試題分析:(1)運用題設和實際建立函數(shù)關系并確定定義域;(2)運用基本不等式求函數(shù)的最值和取得最值的條件.試題解析:(1)因為,,,由余弦定理,,解得,由,得.又,得,解得,所以的取值范圍是.(2),,則,設,則.當且僅當即取等號,此時取等號,所以當時,的最大值是.考點:閱讀理解能力和數(shù)學建模能力、基本不等式及在解決實際問題中的靈活運用.【易錯點晴】應用題是江蘇高考每年必考的重要題型之一,也是歷屆高考失分較多的題型.解答這類問題的關鍵是提高考生的閱讀理解能力和數(shù)學建模能力,以及抽象概括能力.解答好這類問題要過:“審題、理解題意、建立數(shù)學模型、求解數(shù)學模型、作答”這五個重要環(huán)節(jié),其中審題關要求反復閱讀問題中提供的一些信息,并將其與學過的數(shù)學模型進行聯(lián)系,為建構(gòu)數(shù)學模型打下基礎,最后的作答也是必不可少的重要環(huán)節(jié)之一,應用題的解答最后一定要依據(jù)題設中提供的問題做出合理的回答,這也是失分較多一個環(huán)節(jié).20、(1)(2)【解析】試題分析:(1)利用題意結(jié)合余弦定理可
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 脾胃虛弱動畫冬病夏治
- 大叔爺爺課件教學課件
- 2024年分子篩項目投資申請報告代可行性研究報告
- 物聯(lián)網(wǎng)畢業(yè)設計論文
- 龍蝦的課件教學課件
- 牙體牙髓病常用藥物
- 2.1.2碳酸鈉和碳酸氫鈉 課件高一上學期化學人教版(2019)必修第一冊
- 糖尿病胰島素注射治療
- 新公司企業(yè)規(guī)劃
- 合唱團說課稿
- 2024新教材高中政治 第二單元 經(jīng)濟發(fā)展與社會進步 第三課 我國的經(jīng)濟發(fā)展 3.1 堅持新發(fā)展理念教學設計 部編版必修2
- 13《貓 》 第一課時 公開課一等獎創(chuàng)新教案
- JGJ46-2005施工現(xiàn)場臨時用電安全技術(shù)規(guī)范專題理論考試試題
- 風電場道路及風機基礎工程冬季施工方案
- 難點詳解人教版九年級化學上冊第一單元走進化學世界專題訓練練習題(含答案詳解版)
- 財務管理委托代理會計服務 投標文件(技術(shù)方案)
- 2024年全國高考Ⅰ卷英語試題及答案
- 期刊編輯的學術(shù)期刊編輯規(guī)范考核試卷
- T-CCSAS014-2022《化工企業(yè)承包商安全管理指南》
- 語文園地四 寫話 學寫留言條(教學設計)統(tǒng)編版語文二年級上冊
- 電梯安全總監(jiān)和安全員的任命文件
評論
0/150
提交評論