版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
甘肅省武山一中2025屆高一下數(shù)學(xué)期末質(zhì)量檢測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.在公比為2的等比數(shù)列中,,則等于()A.4 B.8 C.12 D.242.意大利著名數(shù)學(xué)家斐波那契在研究兔子繁殖問題時(shí),發(fā)現(xiàn)有這樣一列數(shù):1,1,2,3,5,8,13,21,….該數(shù)列的特點(diǎn)是:前兩個(gè)數(shù)都是1,從第三個(gè)數(shù)起,每一個(gè)數(shù)都等于它前面兩個(gè)數(shù)的和,人們把這樣的一列數(shù)組成的數(shù)列稱為“斐波那契數(shù)列”,則().A.1 B.2019 C. D.3.在中,角所對的邊分邊為,已知,則此三角形的解的情況是()A.有一解 B.有兩解 C.無解 D.有解但解的個(gè)數(shù)不確定4.函數(shù)(其中)的圖象如圖所示,為了得到的圖象,只需把的圖象上所有的點(diǎn)()A.向右平移個(gè)單位長度 B.向左平移個(gè)單位長度C.向右平移個(gè)單位長度 D.向左平移個(gè)單位長度5.設(shè)向量,,則向量與的夾角為()A. B. C. D.6.如圖所示的程序框圖,若執(zhí)行的運(yùn)算是,則在空白的執(zhí)行框中,應(yīng)該填入A.B.C.D.7.三角形的三條邊長是連續(xù)的三個(gè)自然數(shù),且最大角是最小角的2倍,則該三角形的最大邊長為()A.4 B.5 C.6 D.78.若不等式對一切恒成立,則實(shí)數(shù)的最大值為()A.0 B.2 C. D.39.已知、是不重合的平面,a、b、c是兩兩互不重合的直線,則下列命題:①;②;③.其中正確命題的個(gè)數(shù)是()A.3 B.2 C.1 D.010.同時(shí)拋擲三枚硬幣,則拋擲一次時(shí)出現(xiàn)兩枚正面一枚反面的概率為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.若數(shù)據(jù)的平均數(shù)為,則____________.12.若關(guān)于x的不等式的解集是,則_________.13.在長方體中,,,,如圖,建立空間直角坐標(biāo)系,則該長方體的中心的坐標(biāo)為_________.14.______.15.已知平面向量,若,則________16.若則的最小值是__________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.已知數(shù)列滿足:,(1)求,的值;(2)求數(shù)列的通項(xiàng)公式;(3)設(shè),數(shù)列的前n項(xiàng)和,求證:18.已知向量滿足,,且向量與的夾角為.(1)求的值;(2)求.19.已知等差數(shù)列中,,.(1)求數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和.20.某校舉行漢字聽寫比賽,為了了解本次比賽成績情況,從得分不低于50分的試卷中隨機(jī)抽取100名學(xué)生的成績(得分均為整數(shù),滿分100分)進(jìn)行統(tǒng)計(jì),請根據(jù)頻率分布表中所提供的數(shù)據(jù),解答下列問題:組號分組頻數(shù)頻率第1組[50,60)50.05第2組[60,70)0.35第3組[70,80)30第4組[80,90)200.20第5組[90,100]100.10合計(jì)1001.00(Ⅰ)求的值;(Ⅱ)若從成績較好的第3、4、5組中按分層抽樣的方法抽取6人參加市漢字聽寫比賽,并從中選出2人做種子選手,求2人中至少有1人是第4組的概率.21.已知△ABC內(nèi)角A,B,C的對邊分別是a,b,c,且.(Ⅰ)求A;(Ⅱ)若,求△ABC面積的最大值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、D【解析】
由等比數(shù)列的性質(zhì)可得,可求出,則答案可求解.【詳解】等比數(shù)列的公比為2,由,即,所以舍所以故選:D【點(diǎn)睛】本題考查等比數(shù)列的性質(zhì)和通項(xiàng)公式的應(yīng)用,屬于基礎(chǔ)題.2、A【解析】
計(jì)算部分?jǐn)?shù)值,歸納得到,計(jì)算得到答案.【詳解】;;;…歸納總結(jié):故故選:【點(diǎn)睛】本題考查了數(shù)列的歸納推理,意在考查學(xué)生的推理能力.3、C【解析】由三角形正弦定理可知無解,所以三角形無解,選C.4、D【解析】
由圖象求得函數(shù)解析式的參數(shù),再利用誘導(dǎo)公式將異名函數(shù)化為同名函數(shù)根據(jù)圖象間平移方法求解.【詳解】由圖象可知,又,所以,又因?yàn)?,所以,所以,又因?yàn)?,又,所以所以又因?yàn)楣蔬xD.【點(diǎn)睛】本題考查由圖象確定函數(shù)的解析式和正弦函數(shù)和余弦函數(shù)圖象之間的平移,關(guān)鍵在于將異名函數(shù)化為同名函數(shù),屬于中檔題.5、C【解析】
由條件有,利用公式可求夾角.【詳解】,.又又向量與的夾角的范圍是向量與的夾角為.故選:C6、D【解析】試題分析:解:運(yùn)行第一次:,不成立;運(yùn)行第二次:,不成立;運(yùn)行第三次:,不成立;運(yùn)行第四次:,不成立;運(yùn)行第四次:,成立;輸出所以應(yīng)選D.考點(diǎn):循環(huán)結(jié)構(gòu).7、C【解析】
根據(jù)三角形滿足的兩個(gè)條件,設(shè)出三邊長分別為,三個(gè)角分別為,利用正弦定理列出關(guān)系式,根據(jù)二倍角的正弦函數(shù)公式化簡后,表示出,然后利用余弦定理得到,將表示出的代入,整理后得到關(guān)于的方程,求出方程的解得到的值,【詳解】解:設(shè)三角形三邊是連續(xù)的三個(gè)自然,三個(gè)角分別為,
由正弦定理可得:,
,
再由余弦定理可得:,
化簡可得:,解得:或(舍去),
∴,故三角形的三邊長分別為:,故選:C.【點(diǎn)睛】此題考查了正弦、余弦定理,以及二倍角的正弦函數(shù)公式,正弦、余弦定理很好的建立了三角形的邊角關(guān)系,熟練掌握定理是解本題的關(guān)鍵,屬于中檔題.8、C【解析】
采用參變分離法對不等式變形,然后求解變形后的函數(shù)的值域,根據(jù)參數(shù)與新函數(shù)的關(guān)系求解參數(shù)最值.【詳解】因?yàn)椴坏仁綄σ磺泻愠闪?,所以對一切,,即恒成立.令.易知在?nèi)為增函數(shù).所以當(dāng)時(shí),,所以的最大值是.故選C.【點(diǎn)睛】常見的求解參數(shù)范圍的方法:(1)分類討論法(從臨界值、特殊值出發(fā));(2)參變分離法(考慮新函數(shù)與參數(shù)的關(guān)系).9、C【解析】
由面面垂直的判定定理,可得①正確;利用列舉所有可能,即可判斷②③錯(cuò)誤.【詳解】①由面面垂直的判定定理,∵,a?β,∴α⊥β,故正確;
②,則平行,相交,異面都有可能,故不正確;
③,則與α平行,相交都有可能,故不正確.
故選:C.【點(diǎn)睛】本題主要考查線面關(guān)系的判斷,考查的空間想象能力,屬于基礎(chǔ)題.判斷線面關(guān)系問題首先要熟練掌握有關(guān)定理、推論,其次可以利用特殊位置排除錯(cuò)誤結(jié)論.10、B【解析】
根據(jù)二項(xiàng)分布的概率公式求解.【詳解】每枚硬幣正面向上的概率都等于,故恰好有兩枚正面向上的概率為:.故選B.【點(diǎn)睛】本題考查二項(xiàng)分布.本題也可根據(jù)古典概型概率計(jì)算公式求解.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
根據(jù)求平均數(shù)的公式,得到關(guān)于的方程,求得.【詳解】由題意得:,解得:,故填:.【點(diǎn)睛】本題考查求一組數(shù)據(jù)的平均數(shù),考查基本數(shù)據(jù)處理能力.12、-14【解析】
由不等式的解集求出對應(yīng)方程的實(shí)數(shù)根,利用根與系數(shù)的關(guān)系求出的值,從而可得結(jié)果.【詳解】不等式的解集是,所以對應(yīng)方程的實(shí)數(shù)根為和,且,由根與系數(shù)的關(guān)系得,解得,,故答案為.【點(diǎn)睛】本題主要考查一元二次不等式的解集與一元二次不等式的根之間的關(guān)系,以及韋達(dá)定理的應(yīng)用,屬于簡單題.13、【解析】
先求出點(diǎn)B的坐標(biāo),再求出M的坐標(biāo).【詳解】由題得B(4,6,0),,因?yàn)镸點(diǎn)是中點(diǎn),所以點(diǎn)M坐標(biāo)為.故答案為【點(diǎn)睛】本題主要考查空間坐標(biāo)的求法,意在考查學(xué)生對該知識的理解掌握水平,屬于基礎(chǔ)題.14、【解析】
,,故答案為.考點(diǎn):三角函數(shù)誘導(dǎo)公式、切割化弦思想.15、1【解析】
根據(jù)即可得出,解出即可.【詳解】∵;∴;解得,故答案為1.【點(diǎn)睛】本題主要考查向量坐標(biāo)的概念,以及平行向量的坐標(biāo)關(guān)系,屬于基礎(chǔ)題.16、【解析】
根據(jù)對數(shù)相等得到,利用基本不等式求解的最小值得到所求結(jié)果.【詳解】則,即由題意知,則,則當(dāng)且僅當(dāng),即時(shí)取等號本題正確結(jié)果:【點(diǎn)睛】本題考查基本不等式求解和的最小值問題,關(guān)鍵是能夠利用對數(shù)相等得到的關(guān)系,從而構(gòu)造出符合基本不等式的形式.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);;(2)(3)見證明;【解析】
(1)令可求得;(2)在已知等式基礎(chǔ)上,用代得另一等式,然后相減,可求得,并檢驗(yàn)一下是否適合此表達(dá)式;(3)用裂項(xiàng)相消法求和.【詳解】解:(1)由已知得,∴(2)由,①得時(shí),,②①-②得∴,也適合此式,∴().(3)由(2)得,∴∴∵,∴∴【點(diǎn)睛】本題考查由數(shù)列的通項(xiàng)公式,考查裂項(xiàng)相消法求和.求通項(xiàng)公式時(shí)的方法與已知求的方法一樣,本題就相當(dāng)于已知數(shù)列的前項(xiàng)和,要求.注意首項(xiàng)求法的區(qū)別.18、(1)4(2)-12【解析】
(1)由,可得,即,再結(jié)合,且向量與的夾角為,利用數(shù)量積公式求解.(2)將利用向量的運(yùn)算律展開,再利用數(shù)量積公式運(yùn)算求解.【詳解】(1)因?yàn)?,所以,即.因?yàn)椋蚁蛄颗c的夾角為,所以,所以.(2).【點(diǎn)睛】本題主要考查向量的數(shù)量積運(yùn)算,還考查了運(yùn)算求解的能力,屬于中檔題.19、(1)(2)【解析】
(1)先設(shè)等差數(shù)列的公差為,根據(jù)題中條件求出公差,即可得出通項(xiàng)公式;(2)根據(jù)前項(xiàng)和公式,即可求出結(jié)果.【詳解】(1)依題意,設(shè)等差數(shù)列的公差為,因?yàn)?,所以,又,所以公差,所以.?)由(1)知,,所以【點(diǎn)睛】本題主要考查等差數(shù)列,熟記等差數(shù)列的通項(xiàng)公式與前項(xiàng)和公式即可,屬于基礎(chǔ)題型.20、(1)35,0.30;(2).【解析】試題分析:(Ⅰ)直接利用頻率和等于1求出b,用樣本容量乘以頻率求a的值;(Ⅱ)由分層抽樣方法求出所抽取的6人中第三、第四、第五組的學(xué)生數(shù),利用列舉法寫出從中任意抽取2人的所有方法種數(shù),查出2人至少1人來自第四組的事件個(gè)數(shù),然后利用古典概型的概率計(jì)算公式求解.試題解析:(Ⅰ)a=100-5-30-20-10=35,b=1-0.05-0.35-0.20-0.10=0.30(Ⅱ)因?yàn)榈?、4、5組共有60名學(xué)生,所以利用分層抽樣在60名學(xué)生中抽取6名學(xué)生,每組分別為,第3組:×30=3人,第4組:×20=2人,第5組:×10=1人,所以第3、4、5組應(yīng)分別抽取3人、2人、1人設(shè)第3組的3位同學(xué)為A1、A2、A3,第4組的2位同學(xué)為B1、B2,第5組的1位同學(xué)為C1,則從6位同學(xué)中抽2位同學(xué)有15種可能,如下:(A1,A2),(A1,A3),(A1,B1),(A1,B2),(A1,C1),(A2,A3),(A2,B1),(A2,B2),(A2,C1),(A3,B1),(A3,B2),(A3,C1),(B1,B2),(B1,C1),(B2,C1).其中第4組被入選的有9種,所以其中第4組的2位同學(xué)至少有1位同學(xué)入選的概率為=點(diǎn)睛:古典概型中基本事件數(shù)的探求方法(1)列舉法.(2)樹狀圖法:適合于較為復(fù)雜的問題中的基本事件的探求.對于基本事件有“有序”與“無序”區(qū)別的題目,常采用樹狀圖法.(3)列表法:適用于多元素基本事件的求解問題,通過列表把復(fù)雜的題目簡單化、抽象的題目具體化.(4)排列組合法:適用于限制條件較多且元素?cái)?shù)目較多的題目.21、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)利用正弦定理,三角函數(shù)恒等變換,可得,結(jié)合范圍,可求的值.(Ⅱ)方法1:由余弦定理,基本不等式可得,利用三角形的面積公式即可求解;方法2:由正弦定理可得,,并將其代入可得,然后再化簡,根據(jù)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2021年機(jī)械密封行業(yè)中密控股分析報(bào)告
- 2021年化工行業(yè)分析報(bào)告
- GSM蜂窩移動(dòng)通信系統(tǒng)相關(guān)行業(yè)投資方案范本
- 室外環(huán)境清潔電器相關(guān)行業(yè)投資規(guī)劃報(bào)告
- 2024-2025學(xué)年云南省昆明市五華區(qū)紅旗小學(xué)人教版四年級上冊期中測試數(shù)學(xué)試卷-A4
- 《數(shù)字系統(tǒng)設(shè)計(jì)概述》課件
- 《數(shù)據(jù)可視化》課件
- 椅子設(shè)計(jì)報(bào)告范文大全
- 婦聯(lián)主任離職報(bào)告范文
- 《數(shù)字邏輯與EDA設(shè)計(jì)》課件-第4章
- 教育教學(xué) 形神拳 課件
- 中國吉蘭-巴雷綜合征診治指南2024解讀
- 黑龍江省齊齊哈爾市建華區(qū)等5地2024-2025學(xué)年九年級上學(xué)期10月期中數(shù)學(xué)試題(無答案)
- 輻射與防護(hù)學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 建材市場經(jīng)營管理方案
- 2024年浙江臺州玉環(huán)市國企業(yè)公開招聘33人高頻難、易錯(cuò)點(diǎn)500題模擬試題附帶答案詳解
- 肝硬化肝性腦病診療指南(2024年版)解讀
- 汽車 4S 店客戶投訴處理預(yù)案
- 數(shù)字化檔案建設(shè)實(shí)施方案
- 2024年創(chuàng)建文明校園工作制度(三篇)
- 2024租房合同范本打印租房合同
評論
0/150
提交評論