山西省忻州市忻州一中高三下第一次測試新高考數(shù)學試題及答案解析_第1頁
山西省忻州市忻州一中高三下第一次測試新高考數(shù)學試題及答案解析_第2頁
山西省忻州市忻州一中高三下第一次測試新高考數(shù)學試題及答案解析_第3頁
山西省忻州市忻州一中高三下第一次測試新高考數(shù)學試題及答案解析_第4頁
山西省忻州市忻州一中高三下第一次測試新高考數(shù)學試題及答案解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

山西省忻州市忻州一中高三下第一次測試新高考數(shù)學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知集合的所有三個元素的子集記為.記為集合中的最大元素,則()A. B. C. D.2.已知函數(shù),若對于任意的,函數(shù)在內都有兩個不同的零點,則實數(shù)的取值范圍為()A. B. C. D.3.已知,則()A.5 B. C.13 D.4.點是單位圓上不同的三點,線段與線段交于圓內一點M,若,則的最小值為()A. B. C. D.5.的圖象如圖所示,,若將的圖象向左平移個單位長度后所得圖象與的圖象重合,則可取的值的是()A. B. C. D.6.若函數(shù)的圖象如圖所示,則的解析式可能是()A. B. C. D.7.在我國傳統(tǒng)文化“五行”中,有“金、木、水、火、土”五個物質類別,在五者之間,有一種“相生”的關系,具體是:金生水、水生木、木生火、火生土、土生金.從五行中任取兩個,這二者具有相生關系的概率是()A.0.2 B.0.5 C.0.4 D.0.88.已知,,是平面內三個單位向量,若,則的最小值()A. B. C. D.59.下圖所示函數(shù)圖象經過何種變換可以得到的圖象()A.向左平移個單位 B.向右平移個單位C.向左平移個單位 D.向右平移個單位10.執(zhí)行如圖所示的程序框圖,若輸出的結果為11,則圖中的判斷條件可以為()A. B. C. D.11.做拋擲一枚骰子的試驗,當出現(xiàn)1點或2點時,就說這次試驗成功,假設骰子是質地均勻的.則在3次這樣的試驗中成功次數(shù)X的期望為()A.13 B.112.在平面直角坐標系中,已知是圓上兩個動點,且滿足,設到直線的距離之和的最大值為,若數(shù)列的前項和恒成立,則實數(shù)的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)在上的最小值和最大值分別是_____________.14.從分別寫有1,2,3,4的4張卡片中隨機抽取1張,放回后再隨機抽取1張,則抽得的第一張卡片上的數(shù)不小于第二張卡片上的數(shù)的概率為__________.15.如圖所示,點,B均在拋物線上,等腰直角的斜邊為BC,點C在x軸的正半軸上,則點B的坐標是________.16.函數(shù)的最小正周期為________;若函數(shù)在區(qū)間上單調遞增,則的最大值為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列中,,前項和為,若對任意的,均有(是常數(shù),且)成立,則稱數(shù)列為“數(shù)列”.(1)若數(shù)列為“數(shù)列”,求數(shù)列的前項和;(2)若數(shù)列為“數(shù)列”,且為整數(shù),試問:是否存在數(shù)列,使得對任意,成立?如果存在,求出這樣數(shù)列的的所有可能值,如果不存在,請說明理由.18.(12分)已知是遞增的等比數(shù)列,,且、、成等差數(shù)列.(Ⅰ)求數(shù)列的通項公式;(Ⅱ)設,,求數(shù)列的前項和.19.(12分)己知圓F1:(x+1)1+y1=r1(1≤r≤3),圓F1:(x-1)1+y1=(4-r)1.(1)證明:圓F1與圓F1有公共點,并求公共點的軌跡E的方程;(1)已知點Q(m,0)(m<0),過點E斜率為k(k≠0)的直線與(Ⅰ)中軌跡E相交于M,N兩點,記直線QM的斜率為k1,直線QN的斜率為k1,是否存在實數(shù)m使得k(k1+k1)為定值?若存在,求出m的值,若不存在,說明理由.20.(12分)已知函數(shù).(1)若在上單調遞增,求實數(shù)的取值范圍;(2)若,對,恒有成立,求實數(shù)的最小值.21.(12分)已知橢圓:(),與軸負半軸交于,離心率.(1)求橢圓的方程;(2)設直線:與橢圓交于,兩點,連接,并延長交直線于,兩點,已知,求證:直線恒過定點,并求出定點坐標.22.(10分)在平面直角坐標系中,曲線,曲線的參數(shù)方程為(為參數(shù)).以坐標原點為極點,軸的正半軸為極軸建立極坐標系.(1)求曲線、的極坐標方程;(2)在極坐標系中,射線與曲線,分別交于、兩點(異于極點),定點,求的面積

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

分類討論,分別求出最大元素為3,4,5,6的三個元素子集的個數(shù),即可得解.【詳解】集合含有個元素的子集共有,所以.在集合中:最大元素為的集合有個;最大元素為的集合有;最大元素為的集合有;最大元素為的集合有;所以.故選:.【點睛】此題考查集合相關的新定義問題,其本質在于弄清計數(shù)原理,分類討論,分別求解.2、D【解析】

將原題等價轉化為方程在內都有兩個不同的根,先求導,可判斷時,,是增函數(shù);當時,,是減函數(shù).因此,再令,求導得,結合韋達定理可知,要滿足題意,只能是存在零點,使得在有解,通過導數(shù)可判斷當時,在上是增函數(shù);當時,在上是減函數(shù);則應滿足,再結合,構造函數(shù),求導即可求解;【詳解】函數(shù)在內都有兩個不同的零點,等價于方程在內都有兩個不同的根.,所以當時,,是增函數(shù);當時,,是減函數(shù).因此.設,,若在無解,則在上是單調函數(shù),不合題意;所以在有解,且易知只能有一個解.設其解為,當時,在上是增函數(shù);當時,在上是減函數(shù).因為,方程在內有兩個不同的根,所以,且.由,即,解得.由,即,所以.因為,所以,代入,得.設,,所以在上是增函數(shù),而,由可得,得.由在上是增函數(shù),得.綜上所述,故選:D.【點睛】本題考查由函數(shù)零點個數(shù)求解參數(shù)取值范圍問題,構造函數(shù)法,導數(shù)法研究函數(shù)增減性與最值關系,轉化與化歸能力,屬于難題3、C【解析】

先化簡復數(shù),再求,最后求即可.【詳解】解:,,故選:C【點睛】考查復數(shù)的運算,是基礎題.4、D【解析】

由題意得,再利用基本不等式即可求解.【詳解】將平方得,(當且僅當時等號成立),,的最小值為,故選:D.【點睛】本題主要考查平面向量數(shù)量積的應用,考查基本不等式的應用,屬于中檔題.5、B【解析】

根據圖象求得函數(shù)的解析式,即可得出函數(shù)的解析式,然后求出變換后的函數(shù)解析式,結合題意可得出關于的等式,即可得出結果.【詳解】由圖象可得,函數(shù)的最小正周期為,,,則,,取,,則,,,可得,當時,.故選:B.【點睛】本題考查利用圖象求函數(shù)解析式,同時也考查了利用函數(shù)圖象變換求參數(shù),考查計算能力,屬于中等題.6、A【解析】

由函數(shù)性質,結合特殊值驗證,通過排除法求得結果.【詳解】對于選項B,為奇函數(shù)可判斷B錯誤;對于選項C,當時,,可判斷C錯誤;對于選項D,,可知函數(shù)在第一象限的圖象無增區(qū)間,故D錯誤;故選:A.【點睛】本題考查已知函數(shù)的圖象判斷解析式問題,通過函數(shù)性質及特殊值利用排除法是解決本題的關鍵,難度一般.7、B【解析】

利用列舉法,結合古典概型概率計算公式,計算出所求概率.【詳解】從五行中任取兩個,所有可能的方法為:金木、金水、金火、金土、木水、木火、木土、水火、水土、火土,共種,其中由相生關系的有金水、木水、木火、火土、金土,共種,所以所求的概率為.故選:B【點睛】本小題主要考查古典概型的計算,屬于基礎題.8、A【解析】

由于,且為單位向量,所以可令,,再設出單位向量的坐標,再將坐標代入中,利用兩點間的距離的幾何意義可求出結果.【詳解】解:設,,,則,從而,等號可取到.故選:A【點睛】此題考查的是平面向量的坐標、模的運算,利用整體代換,再結合距離公式求解,屬于難題.9、D【解析】

根據函數(shù)圖像得到函數(shù)的一個解析式為,再根據平移法則得到答案.【詳解】設函數(shù)解析式為,根據圖像:,,故,即,,,取,得到,函數(shù)向右平移個單位得到.故選:.【點睛】本題考查了根據函數(shù)圖像求函數(shù)解析式,三角函數(shù)平移,意在考查學生對于三角函數(shù)知識的綜合應用.10、B【解析】

根據程序框圖知當時,循環(huán)終止,此時,即可得答案.【詳解】,.運行第一次,,不成立,運行第二次,,不成立,運行第三次,,不成立,運行第四次,,不成立,運行第五次,,成立,輸出i的值為11,結束.故選:B.【點睛】本題考查補充程序框圖判斷框的條件,考查函數(shù)與方程思想、轉化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意模擬程序一步一步執(zhí)行的求解策略.11、C【解析】

每一次成功的概率為p=26=【詳解】每一次成功的概率為p=26=13故選:C.【點睛】本題考查了二項分布求數(shù)學期望,意在考查學生的計算能力和應用能力.12、B【解析】

由于到直線的距離和等于中點到此直線距離的二倍,所以只需求中點到此直線距離的最大值即可。再得到中點的軌跡是圓,再通過此圓的圓心到直線距離,半徑和中點到此直線距離的最大值的關系可以求出。再通過裂項的方法求的前項和,即可通過不等式來求解的取值范圍.【詳解】由,得,.設線段的中點,則,在圓上,到直線的距離之和等于點到該直線的距離的兩倍,點到直線距離的最大值為圓心到直線的距離與圓的半徑之和,而圓的圓心到直線的距離為,,,..故選:【點睛】本題考查了向量數(shù)量積,點到直線的距離,數(shù)列求和等知識,是一道不錯的綜合題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

求導,研究函數(shù)單調性,分析,即得解【詳解】由題意得,,令,解得,令,解得.在上遞減,在遞增.,而,故在區(qū)間上的最小值和最大值分別是.故答案為:【點睛】本題考查了導數(shù)在函數(shù)最值的求解中的應用,考查了學生綜合分析,轉化劃歸,數(shù)學運算的能力,屬于中檔題14、【解析】

基本事件總數(shù),抽得的第一張卡片上的數(shù)不小于第二張卡片上的數(shù)包含的基本事件有10種,由此能求出抽得的第一張卡片上的數(shù)不小于第二張卡片上的數(shù)的概率.【詳解】從分別寫有1,2,3,4的4張卡片中隨機抽取1張,放回后再隨機抽取1張,基本事件總數(shù),抽得的第一張卡片上的數(shù)不小于第二張卡片上的數(shù)包含的基本事件有10種,分別為:,,,,,,,,,,則抽得的第一張卡片上的數(shù)不小于第二張卡片上的數(shù)的概率為.故答案為:【點睛】本題考查古典概型概率的求法,考查運算求解能力,求解時注意辨別概率的模型.15、【解析】

設出兩點的坐標,結合拋物線方程、兩條直線垂直的條件以及兩點間的距離公式列方程,解方程求得的坐標.【詳解】設,由于在拋物線上,所以.由于三角形是等腰直角三角形,,所以.由得,化為,可得,所以,解得,則.所以.故答案為:【點睛】本題考查拋物線的方程和運用,考查方程思想和運算能力,屬于中檔題.16、【解析】

直接計算得到答案,根據題意得到,,解得答案.【詳解】,故,當時,,故,解得.故答案為:;.【點睛】本題考查了三角函數(shù)的周期和單調性,意在考查學生對于三角函數(shù)知識的綜合應用.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)存在,【解析】

由數(shù)列為“數(shù)列”可得,,,兩式相減得,又,利用等比數(shù)列通項公式即可求出,進而求出;由題意得,,,兩式相減得,,據此可得,當時,,進而可得,即數(shù)列為常數(shù)列,進而可得,結合,得到關于的不等式,再由時,且為整數(shù)即可求出符合題意的的所有值.【詳解】因為數(shù)列為“數(shù)列”,所以,故,兩式相減得,在中令,則可得,故所以,所以數(shù)列是以為首項,以為公比的等比數(shù)列,所以,因為,所以.(2)由題意得,故,兩式相減得所以,當時,又因為所以當時,所以成立,所以當時,數(shù)列是常數(shù)列,所以因為當時,成立,所以,所以在中令,因為,所以可得,所以,由時,且為整數(shù),可得,把分別代入不等式可得,,所以存在數(shù)列符合題意,的所有值為.【點睛】本題考查數(shù)列的新定義、等比數(shù)列的通項公式和數(shù)列遞推公式的運用;考查運算求解能力、邏輯推理能力和對新定義的理解能力;通過反復利用遞推公式,得到數(shù)列為常數(shù)列是求解本題的關鍵;屬于綜合型強、難度大型試題.18、(Ⅰ);(Ⅱ).【解析】

(Ⅰ)設等比數(shù)列的公比為,根據題中條件求出的值,結合等比數(shù)列的通項公式可得出數(shù)列的通項公式;(Ⅱ)求得,然后利用裂項相消法可求得.【詳解】(Ⅰ)設數(shù)列的公比為,由題意及,知.、、成等差數(shù)列成等差數(shù)列,,,即,解得或(舍去),.數(shù)列的通項公式為;(Ⅱ),.【點睛】本題考查等比數(shù)列通項的求解,同時也考查了裂項求和法,考查計算能力,屬于基礎題.19、(1)見解析,(1)存在,【解析】

(1)求出圓和圓的圓心和半徑,通過圓F1與圓F1有公共點求出的范圍,從而根據可得點的軌跡,進而求出方程;(1)過點且斜率為的直線方程為,設,,聯(lián)立直線方程和橢圓方程,根據韋達定理以及,,可得,根據其為定值,則有,進而可得結果.【詳解】(1)因為,,所以,因為圓的半徑為,圓的半徑為,又因為,所以,即,所以圓與圓有公共點,設公共點為,因此,所以點的軌跡是以,為焦點的橢圓,所以,,,即軌跡的方程為;(1)過點且斜率為的直線方程為,設,由消去得到,則,,①因為,,所以,將①式代入整理得因為,所以當時,即時,.即存在實數(shù)使得.【點睛】本題考查橢圓定理求橢圓方程,考查橢圓中的定值問題,靈活應用韋達定理進行計算是關鍵,并且觀察出取定值的條件也很重要,考查了學生分析能力和計算能力,是中檔題.20、(1)(2)【解析】

(1)求得,根據已知條件得到在恒成立,由此得到在恒成立,利用分離常數(shù)法求得的取值范圍.(2)構造函數(shù)設,利用求二階導數(shù)的方法,結合恒成立,求得的取

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論