版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
四川省南充市高高三第一次模擬考試新高考數(shù)學試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若復數(shù)滿足,其中為虛數(shù)單位,是的共軛復數(shù),則復數(shù)()A. B. C.4 D.52.已知復數(shù)z=(1+2i)(1+ai)(a∈R),若z∈R,則實數(shù)a=()A. B. C.2 D.﹣23.已知復數(shù)滿足:,則的共軛復數(shù)為()A. B. C. D.4.已知集合,,則的真子集個數(shù)為()A.1個 B.2個 C.3個 D.4個5.已知函數(shù)在上可導且恒成立,則下列不等式中一定成立的是()A.、B.、C.、D.、6.一場考試需要2小時,在這場考試中鐘表的時針轉(zhuǎn)過的弧度數(shù)為()A. B. C. D.7.函數(shù)的部分圖象大致為()A. B.C. D.8.某網(wǎng)店2019年全年的月收支數(shù)據(jù)如圖所示,則針對2019年這一年的收支情況,下列說法中錯誤的是()A.月收入的極差為60 B.7月份的利潤最大C.這12個月利潤的中位數(shù)與眾數(shù)均為30 D.這一年的總利潤超過400萬元9.下邊程序框圖的算法源于我國古代的中國剩余定理.把運算“正整數(shù)除以正整數(shù)所得的余數(shù)是”記為“”,例如.執(zhí)行該程序框圖,則輸出的等于()A.16 B.17 C.18 D.1910.復數(shù),是虛數(shù)單位,則下列結(jié)論正確的是A. B.的共軛復數(shù)為C.的實部與虛部之和為1 D.在復平面內(nèi)的對應(yīng)點位于第一象限11.執(zhí)行如圖所示的程序框圖,則輸出的結(jié)果為()A. B. C. D.12.雙曲線:(),左焦點到漸近線的距離為2,則雙曲線的漸近線方程為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.一個長、寬、高分別為1、2、2的長方體可以在一個圓柱形容器內(nèi)任意轉(zhuǎn)動,則容器體積的最小值為_________.14.在四棱錐中,底面為正方形,面分別是棱的中點,過的平面交棱于點,則四邊形面積為__________.15.如圖所示,點,B均在拋物線上,等腰直角的斜邊為BC,點C在x軸的正半軸上,則點B的坐標是________.16.已知關(guān)于的不等式對于任意恒成立,則實數(shù)的取值范圍為_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),.(1)若,,求實數(shù)的值.(2)若,,求正實數(shù)的取值范圍.18.(12分)已知函數(shù).(1)求不等式的解集;(2)若不等式對恒成立,求實數(shù)的取值范圍.19.(12分)設(shè)函數(shù).(1)求不等式的解集;(2)若的最小值為,且,求的最小值.20.(12分)已知函數(shù),.(1)求函數(shù)在處的切線方程;(2)當時,證明:對任意恒成立.21.(12分)設(shè)函數(shù).(1)當時,求不等式的解集;(2)若存在,使得不等式對一切恒成立,求實數(shù)的取值范圍.22.(10分)如圖,在斜三棱柱中,已知為正三角形,D,E分別是,的中點,平面平面,.(1)求證:平面;(2)求證:平面.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
根據(jù)復數(shù)的四則運算法則先求出復數(shù)z,再計算它的模長.【詳解】解:復數(shù)z=a+bi,a、b∈R;∵2z,∴2(a+bi)﹣(a﹣bi)=,即,解得a=3,b=4,∴z=3+4i,∴|z|.故選D.【點睛】本題主要考查了復數(shù)的計算問題,要求熟練掌握復數(shù)的四則運算以及復數(shù)長度的計算公式,是基礎(chǔ)題.2、D【解析】
化簡z=(1+2i)(1+ai)=,再根據(jù)z∈R求解.【詳解】因為z=(1+2i)(1+ai)=,又因為z∈R,所以,解得a=-2.故選:D【點睛】本題主要考查復數(shù)的運算及概念,還考查了運算求解的能力,屬于基礎(chǔ)題.3、B【解析】
轉(zhuǎn)化,為,利用復數(shù)的除法化簡,即得解【詳解】復數(shù)滿足:所以故選:B【點睛】本題考查了復數(shù)的除法和復數(shù)的基本概念,考查了學生概念理解,數(shù)學運算的能力,屬于基礎(chǔ)題.4、C【解析】
求出的元素,再確定其真子集個數(shù).【詳解】由,解得或,∴中有兩個元素,因此它的真子集有3個.故選:C.【點睛】本題考查集合的子集個數(shù)問題,解題時可先確定交集中集合的元素個數(shù),解題關(guān)鍵是對集合元素的認識,本題中集合都是曲線上的點集.5、A【解析】
設(shè),利用導數(shù)和題設(shè)條件,得到,得出函數(shù)在R上單調(diào)遞增,得到,進而變形即可求解.【詳解】由題意,設(shè),則,又由,所以,即函數(shù)在R上單調(diào)遞增,則,即,變形可得.故選:A.【點睛】本題主要考查了利用導數(shù)研究函數(shù)的單調(diào)性及其應(yīng)用,以及利用單調(diào)性比較大小,其中解答中根據(jù)題意合理構(gòu)造新函數(shù),利用新函數(shù)的單調(diào)性求解是解答的關(guān)鍵,著重考查了構(gòu)造思想,以及推理與計算能力,屬于中檔試題.6、B【解析】
因為時針經(jīng)過2小時相當于轉(zhuǎn)了一圈的,且按順時針轉(zhuǎn)所形成的角為負角,綜合以上即可得到本題答案.【詳解】因為時針旋轉(zhuǎn)一周為12小時,轉(zhuǎn)過的角度為,按順時針轉(zhuǎn)所形成的角為負角,所以經(jīng)過2小時,時針所轉(zhuǎn)過的弧度數(shù)為.故選:B【點睛】本題主要考查正負角的定義以及弧度制,屬于基礎(chǔ)題.7、B【解析】
圖像分析采用排除法,利用奇偶性判斷函數(shù)為奇函數(shù),再利用特值確定函數(shù)的正負情況?!驹斀狻?,故奇函數(shù),四個圖像均符合。當時,,,排除C、D當時,,,排除A。故選B?!军c睛】圖像分析采用排除法,一般可供判斷的主要有:奇偶性、周期性、單調(diào)性、及特殊值。8、D【解析】
直接根據(jù)折線圖依次判斷每個選項得到答案.【詳解】由圖可知月收入的極差為,故選項A正確;1至12月份的利潤分別為20,30,20,10,30,30,60,40,30,30,50,30,7月份的利潤最高,故選項B正確;易求得總利潤為380萬元,眾數(shù)為30,中位數(shù)為30,故選項C正確,選項D錯誤.故選:.【點睛】本題考查了折線圖,意在考查學生的理解能力和應(yīng)用能力.9、B【解析】
由已知中的程序框圖可知,該程序的功能是利用循環(huán)結(jié)構(gòu)計算并輸出變量的值,模擬程序的運行過程,代入四個選項進行驗證即可.【詳解】解:由程序框圖可知,輸出的數(shù)應(yīng)為被3除余2,被5除余2的且大于10的最小整數(shù).若輸出,則不符合題意,排除;若輸出,則,符合題意.故選:B.【點睛】本題考查了程序框圖.當循環(huán)的次數(shù)不多,或有規(guī)律時,常采用循環(huán)模擬或代入選項驗證的方法進行解答.10、D【解析】
利用復數(shù)的四則運算,求得,在根據(jù)復數(shù)的模,復數(shù)與共軛復數(shù)的概念等即可得到結(jié)論.【詳解】由題意,則,的共軛復數(shù)為,復數(shù)的實部與虛部之和為,在復平面內(nèi)對應(yīng)點位于第一象限,故選D.【點睛】復數(shù)代數(shù)形式的加減乘除運算的法則是進行復數(shù)運算的理論依據(jù),加減運算類似于多項式的合并同類項,乘法法則類似于多項式乘法法則,除法運算則先將除式寫成分式的形式,再將分母實數(shù)化,其次要熟悉復數(shù)相關(guān)基本概念,如復數(shù)的實部為、虛部為、模為、對應(yīng)點為、共軛為.11、D【解析】循環(huán)依次為直至結(jié)束循環(huán),輸出,選D.點睛:算法與流程圖的考查,側(cè)重于對流程圖循環(huán)結(jié)構(gòu)的考查.先明晰算法及流程圖的相關(guān)概念,包括選擇結(jié)構(gòu)、循環(huán)結(jié)構(gòu)、偽代碼,其次要重視循環(huán)起點條件、循環(huán)次數(shù)、循環(huán)終止條件,更要通過循環(huán)規(guī)律,明確流程圖研究的數(shù)學問題,是求和還是求項.12、B【解析】
首先求得雙曲線的一條漸近線方程,再利用左焦點到漸近線的距離為2,列方程即可求出,進而求出漸近線的方程.【詳解】設(shè)左焦點為,一條漸近線的方程為,由左焦點到漸近線的距離為2,可得,所以漸近線方程為,即為,故選:B【點睛】本題考查雙曲線的漸近線的方程,考查了點到直線的距離公式,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
一個長、寬、高分別為1、2、2的長方體可以在一個圓柱形容器內(nèi)任意轉(zhuǎn)動,則圓柱形容器的底面直徑及高的最小值均等于長方體的體對角線的長,長方體的體對角線的長為,所以容器體積的最小值為.14、【解析】
設(shè)是中點,由于分別是棱的中點,所以,所以,所以四邊形是平行四邊形.由于平面,所以,而,,所以平面,所以.由于,所以,也即,所以四邊形是矩形.而.從而.故答案為:.【點睛】本小題主要考查空間平面圖形面積的計算,考查線面垂直的判定,考查空間想象能力和邏輯推理能力,屬于中檔題.15、【解析】
設(shè)出兩點的坐標,結(jié)合拋物線方程、兩條直線垂直的條件以及兩點間的距離公式列方程,解方程求得的坐標.【詳解】設(shè),由于在拋物線上,所以.由于三角形是等腰直角三角形,,所以.由得,化為,可得,所以,解得,則.所以.故答案為:【點睛】本題考查拋物線的方程和運用,考查方程思想和運算能力,屬于中檔題.16、【解析】
先將不等式對于任意恒成立,轉(zhuǎn)化為任意恒成立,設(shè),求出在內(nèi)的最小值,即可求出的取值范圍.【詳解】解:由題可知,不等式對于任意恒成立,即,又因為,,對任意恒成立,設(shè),其中,由不等式,可得:,則,當時等號成立,又因為在內(nèi)有解,,則,即:,所以實數(shù)的取值范圍:.故答案為:.【點睛】本題考查不等式恒成立問題,利用分離參數(shù)法和構(gòu)造函數(shù),通過求新函數(shù)的最值求出參數(shù)范圍,考查轉(zhuǎn)化思想和計算能力.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)1(2)【解析】
(1)求得和,由,,得,令,令導數(shù)求得函數(shù)的單調(diào)性,利用,即可求解.(2)解法一:令,利用導數(shù)求得的單調(diào)性,轉(zhuǎn)化為,令(),利用導數(shù)得到的單調(diào)性,分類討論,即可求解.解法二:可利用導數(shù),先證明不等式,,,,令(),利用導數(shù),分類討論得出函數(shù)的單調(diào)性與最值,即可求解.【詳解】(1)由題意,得,,由,…①,得,令,則,因為,所以在單調(diào)遞增,又,所以當時,,單調(diào)遞增;當時,,單調(diào)遞減;所以,當且僅當時等號成立.故方程①有且僅有唯一解,實數(shù)的值為1.(2)解法一:令(),則,所以當時,,單調(diào)遞增;當時,,單調(diào)遞減;故.令(),則.(i)若時,,在單調(diào)遞增,所以,滿足題意.(ii)若時,,滿足題意.(iii)若時,,在單調(diào)遞減,所以.不滿足題意.綜上述:.解法二:先證明不等式,,,…(*).令,則當時,,單調(diào)遞增,當時,,單調(diào)遞減,所以,即.變形得,,所以時,,所以當時,.又由上式得,當時,,,.因此不等式(*)均成立.令(),則,(i)若時,當時,,單調(diào)遞增;當時,,單調(diào)遞減;故.(ii)若時,,在單調(diào)遞增,所以.因此,①當時,此時,,,則需由(*)知,,(當且僅當時等號成立),所以.②當時,此時,,則當時,(由(*)知);當時,(由(*)知).故對于任意,.綜上述:.【點睛】本題主要考查導數(shù)在函數(shù)中的綜合應(yīng)用,著重考查了轉(zhuǎn)化與化歸思想、分類討論、及邏輯推理能力與計算能力,對于恒成立問題,通常要構(gòu)造新函數(shù),利用導數(shù)研究函數(shù)的單調(diào)性,求出最值,進而得出相應(yīng)的含參不等式,從而求出參數(shù)的取值范圍;也可分離變量,構(gòu)造新函數(shù),直接把問題轉(zhuǎn)化為函數(shù)的最值問題.18、(1)(2)【解析】
(1)按絕對值的定義分類討論去絕對值符號后解不等式;(2)不等式轉(zhuǎn)化為,求出在上的最小值即可,利用絕對值定義分類討論去絕對值符號后可求得函數(shù)最小值.【詳解】解:(1)或或解得或或無解綜上不等式的解集為.(2)時,,即所以只需在時恒成立即可令,由解析式得在上是增函數(shù),∴當時,即【點睛】本題考查解絕對值不等式,考查不等式恒成立問題,解決絕對值不等式的問題,分類討論是常用方法.掌握分類討論思想是解題關(guān)鍵.19、(1)或(2)最小值為.【解析】
(1)討論,,三種情況,分別計算得到答案.(2)計算得到,再利用均值不等式計算得到答案.【詳解】(1)當時,由,解得;當時,由,解得;當時,由,解得.所以所求不等式的解集為或.(2)根據(jù)函數(shù)圖像知:當時,,所以.因為,由,可知,所以,當且僅當,,時,等號成立.所以的最小值為.【點睛】本題考查了解絕對值不等式,函數(shù)最值,均值不等式,意在考查學生對于不等式,函數(shù)知識的綜合應(yīng)用.20、(1)(2)見解析【解析】
(1)因為,可得,即可求得答案;(2)要證對任意恒成立,即證對任意恒成立.設(shè),,當時,,即可求得答案.【詳解】(1),,,函數(shù)在處的切線方程為.(2)要證對任意恒成立.即證對任意恒成立.設(shè),,當時,,,令,解得,當時,,函數(shù)在上單調(diào)遞減;當時,,函數(shù)在上單調(diào)遞增.,,,當時,對任意恒成立,即當時,對任意恒成立.【點睛】本題主要考查了求曲線的切線方程和求證不等式恒成立問題,解題關(guān)鍵是掌握由導數(shù)求切線方程的解法和根據(jù)導數(shù)求證不等式恒成立的方法,考查了分析能力和計算能力,屬于難題.21、(Ⅰ).(Ⅱ).【解析】
(Ⅰ)時,根據(jù)絕對值不等式的定義去掉絕對值,求不等式的解集即可;(Ⅱ)不等式的解集為,等價于,求出在的最小值即可.【詳解】(Ⅰ)當時,時,不等式化為,解得,即時,不等式化為,不等式恒成立,即時,不等式化為,解得,即綜上所述,不等式的解集為(Ⅱ)不等式的解集為對任意恒成
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024-2030年撰寫:中國無隔板超高效過濾器項目風險評估報告
- 2024-2030年全球及中國機器人磨機襯板行業(yè)發(fā)展態(tài)勢及需求前景預測報告
- 2024-2030年全球及中國可持續(xù)再生纖維行業(yè)運營動態(tài)及盈利前景預測報告
- 2024-2030年全球及中國亞硝基硫酸行業(yè)銷售渠道及需求趨勢預測報告
- 2024-2030年全球及中國GPRS調(diào)制解調(diào)器行業(yè)發(fā)展前景及投資規(guī)劃分析報告
- 2024-2030年全球與中國甲狀腺提取物行業(yè)現(xiàn)狀規(guī)模及前景動態(tài)預測報告
- 2024-2030年中國黑加侖油產(chǎn)品產(chǎn)業(yè)未來發(fā)展趨勢及投資策略分析報告
- 智能制造實踐課程設(shè)計
- 2024-2030年中國高端大米行業(yè)產(chǎn)能預測及投資規(guī)模分析報告
- 國家開放大學電大本科《小學數(shù)學教學研究》期末題庫和答案
- 預防住院患者跌倒墜床的防范措施及宣教
- GB/T 3279-2023彈簧鋼熱軋鋼板和鋼帶
- 《學習共同體-走向深度學習》讀書分享
- 大班健康《小小營養(yǎng)師》
- 產(chǎn)品4五子衍宗丸
- 吉林省運動員代表協(xié)議書
- BSCI驗廠全套程序文件
- 《人工智能與計算機基礎(chǔ)》課程考試復習題庫(含答案)
- 2023-2024學年四川省樂山市小學語文三年級期末自測試題詳細參考答案解析
- 對外漢語教學法知到章節(jié)答案智慧樹2023年西北師范大學
評論
0/150
提交評論