![2025屆鷹潭市重點(diǎn)中學(xué)數(shù)學(xué)高一下期末學(xué)業(yè)水平測(cè)試試題含解析_第1頁(yè)](http://file4.renrendoc.com/view4/M00/3E/06/wKhkGGZwco6AEIGMAAIXpl5EVoA082.jpg)
![2025屆鷹潭市重點(diǎn)中學(xué)數(shù)學(xué)高一下期末學(xué)業(yè)水平測(cè)試試題含解析_第2頁(yè)](http://file4.renrendoc.com/view4/M00/3E/06/wKhkGGZwco6AEIGMAAIXpl5EVoA0822.jpg)
![2025屆鷹潭市重點(diǎn)中學(xué)數(shù)學(xué)高一下期末學(xué)業(yè)水平測(cè)試試題含解析_第3頁(yè)](http://file4.renrendoc.com/view4/M00/3E/06/wKhkGGZwco6AEIGMAAIXpl5EVoA0823.jpg)
![2025屆鷹潭市重點(diǎn)中學(xué)數(shù)學(xué)高一下期末學(xué)業(yè)水平測(cè)試試題含解析_第4頁(yè)](http://file4.renrendoc.com/view4/M00/3E/06/wKhkGGZwco6AEIGMAAIXpl5EVoA0824.jpg)
![2025屆鷹潭市重點(diǎn)中學(xué)數(shù)學(xué)高一下期末學(xué)業(yè)水平測(cè)試試題含解析_第5頁(yè)](http://file4.renrendoc.com/view4/M00/3E/06/wKhkGGZwco6AEIGMAAIXpl5EVoA0825.jpg)
版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆鷹潭市重點(diǎn)中學(xué)數(shù)學(xué)高一下期末學(xué)業(yè)水平測(cè)試試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫(xiě)在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿(mǎn)、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫(xiě)清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.為了得到函數(shù)的圖象,可以將函數(shù)的圖象()A.向左平移 B.向右平移C.向左平移 D.向右平移2.甲、乙兩名選手參加歌手大賽時(shí),5名評(píng)委打的分?jǐn)?shù)用如圖所示的莖葉圖表示,s1,s2分別表示甲、乙選手分?jǐn)?shù)的標(biāo)準(zhǔn)差,則s1與s2的關(guān)系是().A.s1>s2 B.s1=s2 C.s1<s2 D.不確定3.已知兩條直線,,兩個(gè)平面,,下面說(shuō)法正確的是()A. B. C. D.4.單位圓中,的圓心角所對(duì)的弧長(zhǎng)為()A. B. C. D.5.下列條件不能確定一個(gè)平面的是()A.兩條相交直線 B.兩條平行直線 C.直線與直線外一點(diǎn) D.共線的三點(diǎn)6.已知,,,若不等式恒成立,則t的最大值為()A.4 B.6 C.8 D.97.已知分別是的內(nèi)角的的對(duì)邊,若,則的形狀為()A.鈍角三角形 B.直角三角形 C.銳角三角形 D.等邊三角形8.已知的內(nèi)角的對(duì)邊分別為,若,則()A. B. C. D.9.與直線垂直于點(diǎn)的直線的一般方程是()A. B. C. D.10.若,則等于()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.若過(guò)點(diǎn)作圓的切線,則直線的方程為_(kāi)______________.12.下圖中的幾何體是由兩個(gè)有共同底面的圓錐組成.已知兩個(gè)圓錐的頂點(diǎn)分別為P、Q,高分別為2、1,底面半徑為1.A為底面圓周上的定點(diǎn),B為底面圓周上的動(dòng)點(diǎn)(不與A重合).下列四個(gè)結(jié)論:①三棱錐體積的最大值為;②直線PB與平面PAQ所成角的最大值為;③當(dāng)直線BQ與AP所成角最小時(shí),其正弦值為;④直線BQ與AP所成角的最大值為;其中正確的結(jié)論有___________.(寫(xiě)出所有正確結(jié)論的編號(hào))13.過(guò)點(diǎn)且與直線l:垂直的直線方程為_(kāi)_____.(請(qǐng)用一般式表示)14.設(shè)變量x、y滿(mǎn)足約束條件,則目標(biāo)函數(shù)的最大值為_(kāi)______.15.若、、這三個(gè)的數(shù)字可適當(dāng)排序后成為等差數(shù)列,也可適當(dāng)排序后成等比數(shù)列,則________________.16.在《九章算術(shù)·商功》中將四個(gè)面均為直角三角形的三棱錐稱(chēng)為鱉臑(biēnào),在如下圖所示的鱉臑中,,,,則的直角頂點(diǎn)為_(kāi)_____.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.已知不等式的解集為或.(1)求實(shí)數(shù)a,b的值;(2)解不等式.18.已知,.(1)求的值;(2)若,均為銳角,求的值.19.如圖,函數(shù),其中的圖象與y軸交于點(diǎn).(1)求的值;(2)求函數(shù)的單調(diào)遞增區(qū)間;(3)求使的x的集合.20.在中,角對(duì)應(yīng)的邊分別是,且.(1)求的周長(zhǎng);(2)求的值.21.如圖,三棱錐中,,、、、分別是、、、的中點(diǎn).(1)證明:平面;(2)證明:四邊形是菱形
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、B【解析】
利用的圖象變換規(guī)律,即可求解,得出結(jié)論.【詳解】由題意,函數(shù),,又由,故把函數(shù)的圖象上所有的點(diǎn),向右平移個(gè)單位長(zhǎng)度,可得的圖象,故選:B.【點(diǎn)睛】本題主要考查了三角函數(shù)的圖象變換規(guī)律,其中解答中熟記三角函數(shù)的圖象變換是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.2、C【解析】
先求均值,再根據(jù)標(biāo)準(zhǔn)差公式求標(biāo)準(zhǔn)差,最后比較大小.【詳解】乙選手分?jǐn)?shù)的平均數(shù)分別為所以標(biāo)準(zhǔn)差分別為因此s1<s2,選C.【點(diǎn)睛】本題考查標(biāo)準(zhǔn)差,考查基本求解能力.3、D【解析】
滿(mǎn)足每個(gè)選項(xiàng)的條件時(shí)能否找到反例推翻結(jié)論即可。【詳解】A:當(dāng)m,n中至少有一條垂直交線才滿(mǎn)足。B:很明顯m,n還可以異面直線不平行。C:只有當(dāng)m垂直交線時(shí),否則不成立。故選:D【點(diǎn)睛】此題考查直線和平面位置關(guān)系,一般通過(guò)反例排除法即可解決,屬于較易題目。4、B【解析】
將轉(zhuǎn)化為弧度,即可得出答案.【詳解】,因此,單位圓中,的圓心角所對(duì)的弧長(zhǎng)為.故選B.【點(diǎn)睛】本題考查角度與弧度的轉(zhuǎn)化,同時(shí)也考查了弧長(zhǎng)的計(jì)算,考查計(jì)算能力,屬于基礎(chǔ)題.5、D【解析】
根據(jù)確定平面的公理和推論逐一判斷即可得解.【詳解】解:對(duì)選項(xiàng):經(jīng)過(guò)兩條相交直線有且只有一個(gè)平面,故錯(cuò)誤.對(duì)選項(xiàng):經(jīng)過(guò)兩條平行直線有且只有一個(gè)平面,故錯(cuò)誤.對(duì)選項(xiàng):經(jīng)過(guò)直線與直線外一點(diǎn)有且只有一個(gè)平面,故錯(cuò)誤.對(duì)選項(xiàng):過(guò)共線的三點(diǎn),有無(wú)數(shù)個(gè)平面,故正確;故選:.【點(diǎn)睛】本題主要考查確定平面的公理及推論.解題的關(guān)鍵是要對(duì)確定平面的公理及推論理解透徹,屬于基礎(chǔ)題.6、C【解析】
因?yàn)椴坏仁胶愠闪?,所以只求得的最小值即可,結(jié)合,用“1”的代換求其最小值.【詳解】因?yàn)?,,,若不等式恒成立,令y=,當(dāng)且僅當(dāng)且即時(shí),取等號(hào)所以所以故t的最大值為1.故選:C【點(diǎn)睛】本題主要考查不等式恒成立和基本不等式求最值,還考查了運(yùn)算求解的能力,屬于中檔題.7、A【解析】
由已知結(jié)合正弦定理可得利用三角形的內(nèi)角和及誘導(dǎo)公式可得,整理可得從而有結(jié)合三角形的性質(zhì)可求【詳解】解:是的一個(gè)內(nèi)角,,由正弦定理可得,又,,即為鈍角,故選A.【點(diǎn)睛】本題主要考查了正弦定理,三角形的內(nèi)角和及誘導(dǎo)公式,兩角和的正弦公式,屬于基礎(chǔ)試題.8、B【解析】
已知兩角及一對(duì)邊,求另一邊,我們只需利用正弦定理.【詳解】在三角形中由正弦定理公式:,所以選擇B【點(diǎn)睛】本題直接屬于正弦定理的直接考查,代入公式就能求解.屬于簡(jiǎn)單題.9、A【解析】由已知可得這就是所求直線方程,故選A.10、B【解析】試題分析:,.考點(diǎn):三角恒等變形、誘導(dǎo)公式、二倍角公式、同角三角函數(shù)關(guān)系.二、填空題:本大題共6小題,每小題5分,共30分。11、或【解析】
討論斜率不存在時(shí)是否有切線,當(dāng)斜率存在時(shí),運(yùn)用點(diǎn)到直線距離等于半徑求出斜率【詳解】圓即①當(dāng)斜率不存在時(shí),為圓的切線②當(dāng)斜率存在時(shí),設(shè)切線方程為即,解得此時(shí)切線方程為,即綜上所述,則直線的方程為或【點(diǎn)睛】本題主要考查了過(guò)圓外一點(diǎn)求切線方程,在求解過(guò)程中先討論斜率不存在的情況,然后討論斜率存在的情況,利用點(diǎn)到直線距離公式求出結(jié)果,較為基礎(chǔ)。12、①③【解析】
由①可知只需求點(diǎn)A到面的最大值對(duì)于②,求直線PB與平面PAQ所成角的最大值,可轉(zhuǎn)化為到軸截面距離的最大值問(wèn)題進(jìn)行求解對(duì)于③④,可采用建系法進(jìn)行分析【詳解】選項(xiàng)①如圖所示,當(dāng)時(shí),四棱錐體積最大,選項(xiàng)②中,線PB與平面PAQ所成角最大值的正弦值為,所以選項(xiàng)③和④,如圖所示:以垂直于方向?yàn)閤軸,方向?yàn)閥軸,方向?yàn)閦軸,其中設(shè),.,設(shè)直線BQ與AP所成角為,,當(dāng)時(shí),取到最大值,,此時(shí),由于,,,所以取不到答案選①、③【點(diǎn)睛】幾何體的旋轉(zhuǎn)問(wèn)題需要結(jié)合動(dòng)態(tài)圖形和立體幾何基本知識(shí)進(jìn)行求解,需找臨界點(diǎn)是正確解題的關(guān)鍵,遇到難以把握的最值問(wèn)題,可采用建系法進(jìn)行求解.13、【解析】
與直線垂直的直線方程可設(shè)為,再將點(diǎn)的坐標(biāo)代入運(yùn)算即可得解.【詳解】解:與直線l:垂直的直線方程可設(shè)為,又該直線過(guò)點(diǎn),則,則,即點(diǎn)且與直線l:垂直的直線方程為,故答案為:.【點(diǎn)睛】本題考查了與已知直線垂直的直線方程的求法,屬基礎(chǔ)題.14、3【解析】
可通過(guò)限定條件作出對(duì)應(yīng)的平面區(qū)域圖,再根據(jù)目標(biāo)函數(shù)特點(diǎn)進(jìn)行求值【詳解】可行域如圖所示;則可化為,由圖象可知,當(dāng)過(guò)點(diǎn)時(shí),有最大值,則其最大值為:故答案為:3.【點(diǎn)睛】線性規(guī)劃問(wèn)題關(guān)鍵是能正確畫(huà)出可行域,目標(biāo)函數(shù)可由幾何意義確定具體含義(最值或斜率)15、【解析】
由,,可知,、、成等比數(shù)列,可得出,由、、或、、成等差數(shù)列,可得出關(guān)于、的方程組,解出這兩個(gè)未知數(shù)的值,即可計(jì)算出的值.【詳解】由于,,若不是等比中項(xiàng),則有或,兩個(gè)等式左邊均為正數(shù),右邊均為負(fù)數(shù),不合題意,則必為等比中項(xiàng),所以,將三個(gè)數(shù)由大到小依次排列,則有、、成等差數(shù)列或、、成等差數(shù)列.①若、、成等差數(shù)列,則,聯(lián)立,解得,此時(shí),;②若、、成等差數(shù)列,則,聯(lián)立,解得,此時(shí),.綜上所述,.故答案為:.【點(diǎn)睛】本題考查等比數(shù)列和等差數(shù)列定義的應(yīng)用,根據(jù)題意列出方程組是解題的關(guān)鍵,考查推理能力與計(jì)算能力,屬于中等題.16、【解析】
根據(jù),可得平面,進(jìn)而可得,再由,證明平面,即可得出,是的直角頂點(diǎn).【詳解】在三棱錐中,,,且,∴平面,又平面,∴,又∵,且,∴平面,又平面,∴,∴的直角頂點(diǎn)為.故答案為:.【點(diǎn)睛】本題考查了直線與直線以及直線與平面垂直的應(yīng)用問(wèn)題,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)答案不唯一,見(jiàn)解析【解析】
(1)題意說(shuō)明是方程的解,代入可得,把代入可求得原不等式的解集,從而得值;(2)因式分解后討論和6的大小可得不等式的解集.【詳解】(1)依題意,得:,解得,所以,不等式為,解得,或,所以,所以,;(2)不等式為:,即,當(dāng)時(shí),解集為當(dāng)時(shí),解集為當(dāng)時(shí),解集為【點(diǎn)睛】本題考查解一元二次不等式,考查一元二次不等式的解集與一元二次方程根的關(guān)系,在解含參數(shù)的一元二次不等式時(shí)要注意分類(lèi)討論.18、(1)(2)【解析】
(1)利用誘導(dǎo)公式可得的值,再利用兩角和的正且公式可求得的值.
(2)先判斷角的范圍,再求的值,可求得的值.【詳解】(1).,可得:(2)由,均為銳角,由(1)所以,所以所以【點(diǎn)睛】本題考查三角函數(shù)的誘導(dǎo)公式和角變換的應(yīng)用,考查知值求值和角,屬于中檔題.19、(1),(2),,(3)【解析】
(1)由函數(shù)圖像過(guò)定點(diǎn),代入運(yùn)算即可得解;(2)由三角函數(shù)的單調(diào)增區(qū)間的求法求解即可;(3)由,求解不等式即可得解.【詳解】解:(1)因?yàn)楹瘮?shù)圖象過(guò)點(diǎn),所以,即.因?yàn)?,所以.?)由(1)得,所以當(dāng),,即,時(shí),是增函數(shù),故的單調(diào)遞增區(qū)間為,.(3)由,得,所以,,即,,所以時(shí),x的集合為.【點(diǎn)睛】本題考查了利用函數(shù)圖像的性質(zhì)求解函數(shù)解析式,重點(diǎn)考查了三角函數(shù)單調(diào)區(qū)間的求法及解三角不等式,屬基礎(chǔ)題.20、(1)(2)【解析】
(1)由余弦定理求得,從而得周長(zhǎng);(2)由余弦定理求得,由平方關(guān)系得,同理得,然后由兩角差的余弦公式得結(jié)論.【詳解】解:(1)在中,,由余弦定理,得,即,∴的周長(zhǎng)為(2)由,得,由,得,于是.【點(diǎn)睛】本題考查余弦定理和兩角差的余弦公式,考查同角間的三角函數(shù)關(guān)系式,屬于基礎(chǔ)題.21、(1)證明見(jiàn)解析;(2)證明見(jiàn)解析
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 靜安區(qū)球場(chǎng)施工方案
- xx區(qū)環(huán)衛(wèi)運(yùn)輸處理服務(wù)中心項(xiàng)目可行性研究報(bào)告
- 光伏電站環(huán)境影響分析
- 廣東省惠州市惠城區(qū)第一中學(xué)2025屆中考生物適應(yīng)性模擬試題含解析
- 浙江省寧波市江北中學(xué)2025屆中考五模生物試題含解析
- 全國(guó)市級(jí)聯(lián)考湖南省邵陽(yáng)市重點(diǎn)中學(xué)2025屆中考考前最后一卷生物試卷含解析
- 四川省瀘縣2025屆中考生物全真模擬試卷含解析
- 安裝承包合同協(xié)議
- 金融借款合同集合年
- 會(huì)計(jì)外包服務(wù)合同范本正規(guī)范本
- 電力電纜工程施工組織設(shè)計(jì)
- 2024年網(wǎng)格員考試題庫(kù)完美版
- 《建筑與市政工程防水規(guī)范》解讀
- 審計(jì)合同終止協(xié)議書(shū)(2篇)
- 2024年重慶市中考數(shù)學(xué)試題B卷含答案
- 腰椎間盤(pán)突出癥護(hù)理查房
- 醫(yī)生給病人免責(zé)協(xié)議書(shū)(2篇)
- 外購(gòu)?fù)鈪f(xié)管理制度
- 人教版(2024年新教材)七年級(jí)上冊(cè)英語(yǔ)Unit 7 Happy Birthday 單元整體教學(xué)設(shè)計(jì)(5課時(shí))
- 2024變電站無(wú)人機(jī)巡檢系統(tǒng)規(guī)范第1部分:技術(shù)規(guī)范
- 機(jī)動(dòng)車(chē)商業(yè)保險(xiǎn)條款(2020版)
評(píng)論
0/150
提交評(píng)論