版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
云南省宣威市二中2025屆數(shù)學(xué)高一下期末經(jīng)典試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知角的終邊上一點,且,則()A. B. C. D.2.函數(shù)的部分圖象如圖,則()()A.0 B. C. D.63.直線與圓相交于M,N兩點,若.則的取值范圍是()A. B. C. D.4.在等差數(shù)列中,若,則()A. B. C. D.5.在ΔABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,若c=2bsinC,B≤πA.π6 B.π4 C.π6.預(yù)測人口的變化趨勢有多種方法,“直接推算法”使用的公式是(),為預(yù)測人口數(shù),為初期人口數(shù),為預(yù)測期內(nèi)年增長率,為預(yù)測期間隔年數(shù).如果在某一時期有,那么在這期間人口數(shù)A.呈下降趨勢 B.呈上升趨勢 C.?dāng)[動變化 D.不變7.若變量滿足約束條件,則的最大值是()A.0 B.2 C.5 D.68.已知等差數(shù)列的公差為2,若成等比數(shù)列,則()A. B. C. D.9.若直線始終平分圓的周長,則的最小值為()A. B.5 C.2 D.1010.已知弧度數(shù)為2的圓心角所對的弦長也是2,則這個圓心角所對的弧長是()A.2 B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知角α的終邊與單位圓交于點.則___________.12.計算:__________.13.某餐廳的原料支出與銷售額(單位:萬元)之間有如下數(shù)據(jù),根據(jù)表中提供的數(shù)據(jù),用最小二乘法得出與的線性回歸方程,則表中的值為_________.245682535557514.一艘海輪從出發(fā),沿北偏東方向航行后到達(dá)海島,然后從出發(fā)沿北偏東方向航行后到達(dá)海島,如果下次直接從沿北偏東方向到達(dá),則______.15.圓上的點到直線4x+3y-12=0的距離的最小值是16.設(shè)是公差不為0的等差數(shù)列,且成等比數(shù)列,則的前10項和________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.請你幫忙設(shè)計2010年玉樹地震災(zāi)區(qū)小學(xué)的新校舍,如圖,在學(xué)校的東北力有一塊地,其中兩面是不能動的圍墻,在邊界內(nèi)是不能動的一些體育設(shè)施.現(xiàn)準(zhǔn)備在此建一棟教學(xué)樓,使樓的底面為一矩形,且靠圍墻的方向須留有5米寬的空地,問如何設(shè)計,才能使教學(xué)樓的面積最大?18.在銳角中,,,分別為內(nèi)角,,所對的邊,且滿足.(1)求角的大??;(2)若,,求的面積.19.已知四棱錐的底面為直角梯形,,,底面,且,是的中點.(1)求證:直線平面;(2)若,求二面角的正弦值.20.已知數(shù)列的前項和為,且.(Ⅰ)求數(shù)列的通項公式;(Ⅱ)令,數(shù)列的前項和為,若不等式對任意恒成立,求實數(shù)的取值范圍.21.如圖,在三棱柱中(底面為正三角形),平面,,,,是邊的中點.(1)證明:平面平面.(2)求點到平面的距離.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】
由角的終邊上一點得,根據(jù)條件解出即可【詳解】由角的終邊上一點得所以解得故選:B【點睛】本題考查的是三角函數(shù)的定義,較簡單.2、D【解析】
先利用正切函數(shù)求出A,B兩點的坐標(biāo),進(jìn)而求出與的坐標(biāo),再代入平面向量數(shù)量積的運算公式即可求解.【詳解】因為y=tan(x)=0?xkπ?x=4k+2,由圖得x=2;故A(2,0)由y=tan(x)=1?xk?x=4k+3,由圖得x=3,故B(3,1)所以(5,1),(1,1).∴()5×1+1×1=1.故選D.【點睛】本題主要考查平面向量數(shù)量積的坐標(biāo)運算,考查了利用正切函數(shù)值求角的運算,解決本題的關(guān)鍵在于求出A,B兩點的坐標(biāo),屬于基礎(chǔ)題.3、A【解析】
可通過將弦長轉(zhuǎn)化為弦心距問題,結(jié)合點到直線距離公式和勾股定理進(jìn)行求解【詳解】如圖所示,設(shè)弦中點為D,圓心C(3,2),弦心距,又,由勾股定理可得,答案選A【點睛】圓與直線的位置關(guān)系解題思路常從兩點入手:弦心距、勾股定理。處理過程中,直線需化成一般式4、B【解析】
由等差數(shù)列的性質(zhì)可得,則答案易求.【詳解】在等差數(shù)列中,因為,所以.所以.故選B.【點睛】本題考查等差數(shù)列性質(zhì)的應(yīng)用.在等差數(shù)列中,若,則.特別地,若,則.5、A【解析】
利用正弦定理可求得sinB=12【詳解】因為c=2bsinC,所以sinC=2sinBsinC,所以sinB=1【點睛】本題主要考查正弦定理的運用,難度較小.6、A【解析】
可以通過與之間的大小關(guān)系進(jìn)行判斷.【詳解】當(dāng)時,,所以,呈下降趨勢.【點睛】判斷變化率可以通過比較初始值與變化之后的數(shù)值之間的大小來判斷.7、C【解析】
由題意作出不等式組所表示的平面區(qū)域,將化為,相當(dāng)于直線的縱截距,由幾何意義可得結(jié)果.【詳解】由題意作出其平面區(qū)域,令,化為,相當(dāng)于直線的縱截距,由圖可知,,解得,,則的最大值是,故選C.【點睛】本題主要考查線性規(guī)劃中利用可行域求目標(biāo)函數(shù)的最值,屬簡單題.求目標(biāo)函數(shù)最值的一般步驟是“一畫、二移、三求”:(1)作出可行域(一定要注意是實線還是虛線);(2)找到目標(biāo)函數(shù)對應(yīng)的最優(yōu)解對應(yīng)點(在可行域內(nèi)平移變形后的目標(biāo)函數(shù),最先通過或最后通過的頂點就是最優(yōu)解);(3)將最優(yōu)解坐標(biāo)代入目標(biāo)函數(shù)求出最值.8、B【解析】
通過成等比數(shù)列,可以列出一個等式,根據(jù)等差數(shù)列的性質(zhì),可以把該等式變成關(guān)于的方程,解這個方程即可.【詳解】因為成等比數(shù)列,所以有,又因為是公差為2的等差數(shù)列,所以有,故本題選B.【點睛】本題考查了等比中項的性質(zhì),考查了等差數(shù)列的性質(zhì),考查了數(shù)學(xué)運算能力.9、B【解析】試題分析:把圓的方程化為標(biāo)準(zhǔn)方程得,所以圓心坐標(biāo)為半徑,因為直線始終平分圓的周長,所以直線過圓的圓心,把代入直線得;即,在直線上,是點與點的距離的平方,因為到直線的距離,所以的最小值為,故選B.考點:1、圓的方程及幾何性質(zhì);2、點到直線的距離公式及最值問題的應(yīng)用.【方法點晴】本題主要考查圓的方程及幾何性質(zhì)、點到直線的距離公式及最值問題的應(yīng)用,屬于難題.解決解析幾何的最值問題一般有兩種方法:一是幾何意義,特別是用圓錐曲線的定義和平面幾何的有關(guān)結(jié)論來解決,非常巧妙;二是將解析幾何中最值問題轉(zhuǎn)化為函數(shù)問題,然后根據(jù)函數(shù)的特征選用參數(shù)法、配方法、判別式法、三角函數(shù)有界法、函數(shù)單調(diào)性法以及均值不等式法,本題就是利用幾何意義,將的最小值轉(zhuǎn)化為點到直線的距離解答的.10、B【解析】
先由已知條件求出扇形的半徑為,再結(jié)合弧長公式求解即可.【詳解】解:設(shè)扇形的半徑為,由弧度數(shù)為2的圓心角所對的弦長也是2,可得,由弧長公式可得:這個圓心角所對的弧長是,故選:B.【點睛】本題考查了扇形的弧長公式,重點考查了運算能力,屬基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
直接利用三角函數(shù)的坐標(biāo)定義求解.【詳解】由題得.故答案為【點睛】本題主要考查三角函數(shù)的坐標(biāo)定義,意在考查學(xué)生對該知識的理解掌握水平,屬于基礎(chǔ)題.12、【解析】
分子分母同除以,即可求出結(jié)果.【詳解】因為.故答案為【點睛】本題主要考查“”型的極限計算,熟記常用做法即可,屬于基礎(chǔ)題型.13、60【解析】
由樣本中心過線性回歸方程,求得,,代入即可求得【詳解】由題知:,,將代入得故答案為:60【點睛】本題考查樣本中心與最小二乘法公式的關(guān)系,易錯點為將直接代入求解,屬于中檔題14、【解析】
首先根據(jù)余弦定理求出,在根據(jù)正弦定理求出,即可求出【詳解】有題知.所以.在中,,即,解得.所以,故答案為:【點睛】本題主要考查正弦定理和余弦定理的實際應(yīng)用,熟練掌握公式為解題的關(guān)鍵,屬于中檔題.15、【解析】
計算出圓心到直線的距離,減去半徑,求得圓上的點到直線的最小距離.【詳解】圓的圓心為,半徑.圓心到直線的距離為,故最小距離為.【點睛】本小題主要考查圓上的點到直線距離最小值的求法,考查點到直線距離公式,屬于基礎(chǔ)題.16、【解析】
利用等差數(shù)列的通項公式和等比數(shù)列的性質(zhì)求出公差,由此能求出【詳解】因為是公差不為0的等差數(shù)列,且成等比數(shù)列所以,即解得或(舍)所以故答案為:【點睛】本題考查等差數(shù)列前10項和的求法,解題時要認(rèn)真審題,注意等比數(shù)列的性質(zhì)合理運用.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、在線段上取點,過點分別作墻的平行線,建一個長、寬都為17米的正方形,教學(xué)樓的面積最大【解析】
可建立如圖所示的平面直角坐標(biāo)系,根據(jù)截距式寫出AB所在直線方程,然后可設(shè)G點的坐標(biāo)為,再根據(jù)題目中的要求可列出教學(xué)樓的面積的表達(dá)式,,然后利用一元二次函數(shù)求最值即可.【詳解】解:如圖建立坐標(biāo)系,可知所在直線方程為,即.設(shè),由可知.∴.由此可知,當(dāng)時,有最大值289平方米.故在線段上取點,過點分別作墻的平行線,建一個長、寬都為17米的正方形,教學(xué)樓的面積最大.【點睛】本題考查一元二次函數(shù)求最值解決實際問題,屬于中檔題18、(1);(2).【解析】
(1)利用正弦定理化簡已知的等式,根據(jù)sinA不為0,可得出sinB的值,由B為銳角,利用特殊角的三角函數(shù)值,即可求出B的度數(shù);(2)由b及cosB的值,利用余弦定理列出關(guān)于a與c的關(guān)系式,利用完全平方公式變形后,將a+c的值代入,求出ac的值,將a+c=5與ac=6聯(lián)立,并根據(jù)a大于c,求出a與c的值,再由a,b及c的值,利用余弦定理求出cosA的值,將b,c及cosA的值代入即可求出值.【詳解】(1),由正弦定理得,所以,因為三角形ABC為銳角三角形,所以.(2)由余弦定理得,,所以所以.19、(1)證明見解析;(2).【解析】
(1)取中點,連結(jié),,推導(dǎo)出,,從而平面平面,由此能證明直線平面;(2)以為原點,為軸,為軸,為軸,建立空間直角坐標(biāo)系,利用向量法能求出二面角的余弦值.【詳解】(1)證明:取中點,連結(jié),,,是的中點,,,,,平面平面,平面,直線平面.(2)解:,,底面,,是的中點,,以為原點,為軸,為軸,為軸,建立空間直角坐標(biāo)系,則,0,,,1,,,0,,,2,,,1,,,1,,,1,,,1,,,0,,設(shè)平面的法向量,,,則,取,得.設(shè)平面的法向量,,,則,取,得.設(shè)二面角的平面角為,則.二面角的余弦值為.【點睛】本題主要考查線面平行的證明,考查二面角的余弦值的求法,考查運算求解能力,屬于中檔題.20、(1)(2)【解析】試題分析:解:(1)當(dāng)時,,解得;當(dāng)時,,∴,故數(shù)列是以為首項,2為公比的等比數(shù)列,故.4分(2)由(1)得,,∴5分令,則,兩式相減得∴,7分故,8分又由(1)得,,9分不等式即為,即為對任意恒成立,10分設(shè),則,∵,∴,故實數(shù)t的取值范圍是.12分考點:等比數(shù)列點評:主要是考查了等比數(shù)列的通項
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024房屋買賣全款購房合同范本模板
- 2024年度勞動合同員工崗位及工資待遇
- 2024公立醫(yī)院與醫(yī)療設(shè)備供應(yīng)商之間的采購合同
- 2024丙丁雙方就服務(wù)器租賃及維護(hù)合同
- 2024年度醫(yī)藥產(chǎn)品研發(fā)與生產(chǎn)承包合同
- 2024年度船舶租賃合同
- 2024年度股權(quán)投資投資人與目標(biāo)公司股權(quán)轉(zhuǎn)讓合同
- 2024年修訂版:知識產(chǎn)權(quán)許可使用合同標(biāo)的規(guī)范
- 2024年度KTV裝修設(shè)計服務(wù)合同
- 賽船音樂課件教學(xué)課件
- 廣告機質(zhì)量檢測報告(共6頁)
- 8 煤礦安全監(jiān)測監(jiān)控系統(tǒng)PPT課件
- 中國 美國 日本水洗標(biāo)志對比
- 新產(chǎn)品試制流程管理辦法
- 通用橫版企業(yè)報價單模板
- 潛油泵及潛油泵加油機講義
- 物業(yè)服務(wù)公司各崗位規(guī)范用語
- 醫(yī)患溝通內(nèi)容要求記錄模板(入院、入院三日、術(shù)前、術(shù)后、出院)
- 航海學(xué)天文定位第四篇第6章天文定位
- 淺談深度教學(xué)中小學(xué)數(shù)學(xué)U型學(xué)習(xí)模式
- 物理電學(xué)暗箱專題30道
評論
0/150
提交評論