2025屆河北省教考聯(lián)盟高一下數(shù)學(xué)期末統(tǒng)考模擬試題含解析_第1頁(yè)
2025屆河北省教考聯(lián)盟高一下數(shù)學(xué)期末統(tǒng)考模擬試題含解析_第2頁(yè)
2025屆河北省教考聯(lián)盟高一下數(shù)學(xué)期末統(tǒng)考模擬試題含解析_第3頁(yè)
2025屆河北省教考聯(lián)盟高一下數(shù)學(xué)期末統(tǒng)考模擬試題含解析_第4頁(yè)
2025屆河北省教考聯(lián)盟高一下數(shù)學(xué)期末統(tǒng)考模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩10頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2025屆河北省教考聯(lián)盟高一下數(shù)學(xué)期末統(tǒng)考模擬試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知等比數(shù)列的首項(xiàng),公比,則()A. B. C. D.2.已知圓柱的上、下底面的中心分別為,,過(guò)直線的平面截該圓柱所得的截面是面積為8的正方形,則該圓柱的表面積為A. B. C. D.3.在中,角A,B,C所對(duì)的邊分別為a,b,c,若,,則是()A.純角三角形 B.等邊三角形C.直角三角形 D.等腰直角三角形4.,則的大小關(guān)系是()A.B.C.D.5.已知,,,若不等式恒成立,則t的最大值為()A.4 B.6 C.8 D.96.在中,角的對(duì)邊分別為,且,,,則的周長(zhǎng)為()A. B. C. D.7.中,角的對(duì)邊分別為,且,則角()A. B. C. D.8.已知直線:是圓的對(duì)稱(chēng)軸.過(guò)點(diǎn)作圓的一條切線,切點(diǎn)為,則()A.2 B. C.6 D.9.若一個(gè)人下半身長(zhǎng)(肚臍至足底)與全身長(zhǎng)的比近似為5-12(5-12≈0.618A.身材完美,無(wú)需改善 B.可以戴一頂合適高度的帽子C.可以穿一雙合適高度的增高鞋 D.同時(shí)穿戴同樣高度的增高鞋與帽子10.若,,則的終邊所在的象限為()A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限二、填空題:本大題共6小題,每小題5分,共30分。11.在中,角所對(duì)邊長(zhǎng)分別為,若,則的最小值為_(kāi)_________.12.已知(),則________.(用表示)13.某縣現(xiàn)有高中數(shù)學(xué)教師500人,統(tǒng)計(jì)這500人的學(xué)歷情況,得到如下餅狀圖,該縣今年計(jì)劃招聘高中數(shù)學(xué)新教師,只招聘本科生和研究生,使得招聘后該縣高中數(shù)學(xué)專(zhuān)科學(xué)歷的教師比例下降到,且研究生的比例保持不變,則該縣今年計(jì)劃招聘的研究生人數(shù)為_(kāi)______.14.已知,,,則的最小值為_(kāi)_______.15.平面⊥平面,,,,直線,則直線與的位置關(guān)系是___.16.四名學(xué)生按任意次序站成一排,則和都在邊上的概率是___________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.如圖,在梯形ABCD中,AB∥CD,AD=DC=CB=1,∠BCD=120°,四邊形BFED為矩形,平面BFED⊥平面ABCD,BF=1.(1)求證:AD⊥平面BFED;(2)點(diǎn)P在線段EF上運(yùn)動(dòng),設(shè)平面PAB與平面ADE所成銳二面角為θ,試求θ的最小值.18.已知方程,.(1)若是它的一個(gè)根,求的值;(2)若,求滿足方程的所有虛數(shù)的和.19.如圖,三棱柱,底面,且為正三角形,,,為中點(diǎn).(1)求證:直線平面;(2)求二面角的大小.20.設(shè)一元二次不等式的解集為.(Ⅰ)當(dāng)時(shí),求;(Ⅱ)當(dāng)時(shí),求的取值范圍.21.在公差不為零的等差數(shù)列中,成等比數(shù)列.(Ⅰ)求數(shù)列的通項(xiàng)公式;(Ⅱ)設(shè),設(shè)數(shù)列的前項(xiàng)和,求證.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、B【解析】

由等比數(shù)列的通項(xiàng)公式可得出.【詳解】解:由已知得,故選:B.【點(diǎn)睛】本題考查等比數(shù)列的通項(xiàng)公式的應(yīng)用,是基礎(chǔ)題.2、B【解析】分析:首先根據(jù)正方形的面積求得正方形的邊長(zhǎng),從而進(jìn)一步確定圓柱的底面圓半徑與圓柱的高,從而利用相關(guān)公式求得圓柱的表面積.詳解:根據(jù)題意,可得截面是邊長(zhǎng)為的正方形,結(jié)合圓柱的特征,可知該圓柱的底面為半徑是的圓,且高為,所以其表面積為,故選B.點(diǎn)睛:該題考查的是有關(guān)圓柱的表面積的求解問(wèn)題,在解題的過(guò)程中,需要利用題的條件確定圓柱的相關(guān)量,即圓柱的底面圓的半徑以及圓柱的高,在求圓柱的表面積的時(shí)候,一定要注意是兩個(gè)底面圓與側(cè)面積的和.3、B【解析】

利用正弦定理結(jié)合條件,得到,再由,結(jié)合余弦定理,得到,從而得到答案.【詳解】在中,由正弦定理得,而,所以得到,即,為的內(nèi)角,所以,因?yàn)?,所以,由余弦定理?為的內(nèi)角,所以,所以,為等邊三角形.故選:B.【點(diǎn)睛】本題考查正弦定理和余弦定理判斷三角形形狀,屬于簡(jiǎn)單題.4、D【解析】由題意得,,故選D.【點(diǎn)睛】本題考查函數(shù)的三角恒等變換和三角函數(shù)的圖像與性質(zhì),涉及函數(shù)與不等式思想、數(shù)形結(jié)合思想和轉(zhuǎn)化化歸思想,考查邏輯思維能力、等價(jià)轉(zhuǎn)化能力、運(yùn)算求解能力,具有一定的綜合性,屬于中檔題型.首先利用誘導(dǎo)公式和兩角和差公式將化簡(jiǎn),再利用正弦的函數(shù)圖像可得正解.5、C【解析】

因?yàn)椴坏仁胶愠闪ⅲ灾磺蟮玫淖钚≈导纯?,結(jié)合,用“1”的代換求其最小值.【詳解】因?yàn)?,,,若不等式恒成立,令y=,當(dāng)且僅當(dāng)且即時(shí),取等號(hào)所以所以故t的最大值為1.故選:C【點(diǎn)睛】本題主要考查不等式恒成立和基本不等式求最值,還考查了運(yùn)算求解的能力,屬于中檔題.6、C【解析】

根據(jù),得到,利用余弦定理,得到關(guān)于的方程,從而得到的值,得到的周長(zhǎng).【詳解】在中,由正弦定理因?yàn)?,所以因?yàn)?,,所以由余弦定理得即,解得,所以所以的周長(zhǎng)為.故選C.【點(diǎn)睛】本題考查正弦定理的角化邊,余弦定理解三角形,屬于簡(jiǎn)單題.7、B【解析】

根據(jù)題意結(jié)合正弦定理,由題,可得三角形為等邊三角形,即可得解.【詳解】由題:即,中,由正弦定理可得:,即,兩邊同時(shí)平方:,由題,所以,即,所以,即為等邊三角形,所以.故選:B【點(diǎn)睛】此題考查利用正弦定理進(jìn)行邊角互化,根據(jù)邊的關(guān)系判斷三角形的形狀,求出三角形的內(nèi)角.8、C【解析】試題分析:直線l過(guò)圓心,所以,所以切線長(zhǎng),選C.考點(diǎn):切線長(zhǎng)9、C【解析】

對(duì)每一個(gè)選項(xiàng)逐一分析研究得解.【詳解】A.103103+72B.假設(shè)她需要戴上高度為x厘米的帽子,則103175C.假設(shè)她可以穿一雙合適高度為y的增高鞋,則103+D.假設(shè)同時(shí)穿戴同樣高度z的增高鞋與帽子,則103+故選:C【點(diǎn)睛】本題主要考查學(xué)生對(duì)新定義的理解和應(yīng)用,屬于基礎(chǔ)題.10、B【解析】由一全正二正弦三正切四余弦可得的終邊所在的象限為第二象限,故選B.考點(diǎn):三角函數(shù)二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

根據(jù)余弦定理,可得,然后利用均值不等式,可得結(jié)果.【詳解】在中,,由,所以又,當(dāng)且僅當(dāng)時(shí)取等號(hào)故故的最小值為故答案為:【點(diǎn)睛】本題考查余弦定理以及均值不等式,屬基礎(chǔ)題.12、【解析】

根據(jù)同角三角函數(shù)之間的關(guān)系,結(jié)合角所在的象限,即可求解.【詳解】因?yàn)椋?,故,解得,又,,所?故填.【點(diǎn)睛】本題主要考查了同角三角函數(shù)之間的關(guān)系,三角函數(shù)在各象限的符號(hào),屬于中檔題.13、50【解析】

先計(jì)算出招聘后高中數(shù)學(xué)教師總?cè)藬?shù),然后利用比例保持不變,得到該縣今年計(jì)劃招聘的研究生人數(shù).【詳解】招聘后該縣高中數(shù)學(xué)專(zhuān)科學(xué)歷的教師比例下降到,則招聘后,該縣高中數(shù)學(xué)教師總?cè)藬?shù)為,招聘后研究生的比例保持不變,該縣今年計(jì)劃招聘的研究生人數(shù)為.【點(diǎn)睛】本題主要考查學(xué)生的閱讀理解能力和分析能力,從題目中提煉關(guān)鍵字眼“比例保持不變”是解題的關(guān)鍵.14、1【解析】

由題意整體代入可得,由基本不等式可得.【詳解】由,,,則.當(dāng)且僅當(dāng)=,即a=3且b=時(shí),取得最小值1.故答案為:1.【點(diǎn)睛】本題考查基本不等式求最值,整體法并湊出可用基本不等式的形式是解決問(wèn)題的關(guān)鍵,屬于基礎(chǔ)題.15、【解析】

利用面面垂直的性質(zhì)定理得到平面,又直線,利用線面垂直性質(zhì)定理得.【詳解】在長(zhǎng)方體中,設(shè)平面為平面,平面為平面,直線為直線,由于,,由面面垂直的性質(zhì)定理可得:平面,因?yàn)椋删€面垂直的性質(zhì)定理,可得.【點(diǎn)睛】空間中點(diǎn)、線、面的位置關(guān)系問(wèn)題,一般是利用線面平行或垂直的判定定理或性質(zhì)定理進(jìn)行求解.16、【解析】

寫(xiě)出四名學(xué)生站成一排的所有可能情況,得出和都在邊上的情況即可求得概率.【詳解】四名學(xué)生按任意次序站成一排,所有可能的情況為:,,,,共24種情況,其中和都在邊上共有,4種情況,所以和都在邊上的概率是.故答案為:【點(diǎn)睛】此題考查古典概型,根據(jù)古典概型求概率,關(guān)鍵在于準(zhǔn)確求出基本事件總數(shù)和某一事件包含的基本事件個(gè)數(shù).三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)證明見(jiàn)解析(2)θ最小值為60°【解析】

(1)在梯形ABCD中,利用勾股定理,得到AD⊥BD,再結(jié)合面面垂直的判定,證得DE⊥平面ABCD,即可證得AD⊥平面BFED;(2)以D為原點(diǎn),直線DA,DB,DE分別為x軸,y軸,z軸建立如圖所示的空間直角坐標(biāo)系,求得平面PAB與平面ADE法向量,利用向量的夾角公式,即可求解。【詳解】(1)證明:在梯形ABCD中,∵AB∥CD,AD=DC=CB=1,∠BCD=120°,∴AB=2.∴BD2=AB2+AD2-2AB·AD·cos60°=3.∴AB2=AD2+BD2,∴AD⊥BD.∵平面BFED⊥平面ABCD,平面BFED∩平面ABCD=BD,DE?平面BFED,DE⊥DB,∴DE⊥平面ABCD,∴DE⊥AD,又DE∩BD=D,∴AD⊥平面BFED.(1)由(1)知,直線AD,BD,ED兩兩垂直,故以D為原點(diǎn),直線DA,DB,DE分別為x軸,y軸,z軸建立如圖所示的空間直角坐標(biāo)系,令EP=λ(0≤λ≤),則D(0,0,0),A(1,0,0),B(0,,0),P(0,λ,1),所以=(-1,,0),=(0,λ-,1).設(shè)n1=(x,y,z)為平面PAB的法向量,由得,取y=1,則n1=(,1,-λ).因?yàn)閚2=(0,1,0)是平面ADE的一個(gè)法向量,所以cosθ===.因?yàn)?≤λ≤,所以當(dāng)λ=時(shí),cosθ有最大值,所以θ的最小值為60°.【點(diǎn)睛】本題考查了線面垂直關(guān)系的判定與證明,以及空間角的求解問(wèn)題,意在考查學(xué)生的空間想象能力和邏輯推理能力,解答中熟記線面位置關(guān)系的判定定理和性質(zhì)定理,通過(guò)嚴(yán)密推理是線面位置關(guān)系判定的關(guān)鍵,同時(shí)對(duì)于立體幾何中角的計(jì)算問(wèn)題,往往可以利用空間向量法,通過(guò)求解平面的法向量,利用向量的夾角公式求解.18、(1);(2)190.【解析】

(1)先設(shè)出的代數(shù)形式,把代入所給的方程,化簡(jiǎn)后由實(shí)部和虛部對(duì)應(yīng)相等進(jìn)行求值;(2)由方程由虛根的條件,求出的所有的取值,再由方程虛根成對(duì)出現(xiàn)的特點(diǎn),求出所有虛根之和.【詳解】解:(1)設(shè),是的一個(gè)根,,,,解得,,,(2)方程有虛根,,解得,,,2,,又虛根是成對(duì)出現(xiàn)的,所有的虛根之和為.【點(diǎn)睛】本題是復(fù)數(shù)的綜合題,考查了復(fù)數(shù)相等條件的應(yīng)用,方程有虛根的等價(jià)條件,以及方程中虛根的特點(diǎn),屬于中檔題.19、(1)證明見(jiàn)解析;(2).【解析】

(1)連交于,連,則點(diǎn)為中點(diǎn),為中點(diǎn),得,即可證明結(jié)論;(1)為正三角形,為中點(diǎn),可得,再由底面,得底面,得,可證平面,有,為的平面角,解,即可求出結(jié)論.【詳解】(1)連交于,連,三棱柱,側(cè)面為平行四邊形,所以點(diǎn)為中點(diǎn),為中點(diǎn),所以,因?yàn)槠矫?,平面,所以直線平面;(2)為正三角形,為中點(diǎn),可得,三棱柱,所以,底面,所以底面,底面,所以,又平面,所以平面,平面,所以,為的平面角,在中,,,所以,所以二面角的大小為.【點(diǎn)睛】本題考查線面平行的證明,用幾何法求二面角的平面角,做出二面角的平面角是解題的關(guān)鍵,屬于中檔題.20、(Ⅰ)(Ⅱ)【解析】

(Ⅰ)將代入得到關(guān)于的不等式,結(jié)合一元二次方程解一元二次不等式可求得集合;(Ⅱ)解集為即不等式恒成立,求解時(shí)結(jié)合與之對(duì)應(yīng)的二次函數(shù)考慮可得到需

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論