版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
江蘇省鎮(zhèn)江市丹徒高級(jí)中學(xué)2025屆數(shù)學(xué)高一下期末經(jīng)典試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫(huà)出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.一個(gè)圓柱的軸截面是正方形,其側(cè)面積與一個(gè)球的表面積相等,那么這個(gè)圓柱的體積與這個(gè)球的體積之比為()A.1:3 B.3:1 C.2:3 D.3:22.函數(shù),是A.最小正周期為的奇函數(shù) B.最小正周期為的偶函數(shù)C.最小正周期為的奇函數(shù) D.最小正周期為的偶函數(shù)3.《九章算術(shù)》中有這樣一個(gè)問(wèn)題:今有女子善織,日增等尺,七日織二十八尺,第二日、第五日、第八日所織之和為十五尺,問(wèn)若聘該女子做工半月(15日),一共能織布幾尺()A.75 B.85 C.105 D.1204.若一架飛機(jī)向目標(biāo)投彈,擊毀目標(biāo)的概率為,目標(biāo)未受損的概率為,則目標(biāo)受損但未被擊毀的概率為()A. B. C. D.5.已知數(shù)列的前項(xiàng)和為,若,則()A. B. C. D.6.兩數(shù)1,25的等差中項(xiàng)為()A.1 B.13 C.5 D.7.化為弧度是A. B. C. D.8.已知正方體中,、分別為,的中點(diǎn),則異面直線和所成角的余弦值為()A. B. C. D.9.已知等差數(shù)列{}的前n項(xiàng)和為,且S8=92,a5=13,則a4=A.16 B.13 C.12 D.1010.函數(shù)的最小正周期是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知向量,,則______.12.過(guò)點(diǎn)作圓的兩條切線,切點(diǎn)分別為,則=.13.如圖,在圓心角為,半徑為2的扇形AOB中任取一點(diǎn)P,則的概率為_(kāi)_______.14.黃金分割比是指將整體一分為二,較大部分與整體部分的比值等于較小部分與較大部分的比值,其比值為,約為0.618,這一數(shù)值也可以近似地用表示,則_____.15.已知角的終邊經(jīng)過(guò)點(diǎn),則______.16.在中,分別是角的對(duì)邊,,且的周長(zhǎng)為5,面積,則=______三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.已知向量,,函數(shù).(1)若,求的取值集合;(2)當(dāng)時(shí),不等式恒成立,求的取值范圍.18.某機(jī)構(gòu)通過(guò)對(duì)某企業(yè)今年的生產(chǎn)經(jīng)營(yíng)情況的調(diào)查,得到每月利潤(rùn)(單位:萬(wàn)元)與相應(yīng)月份數(shù)的部分?jǐn)?shù)據(jù)如表:14712229244241196(1)根據(jù)如表數(shù)據(jù),請(qǐng)從下列三個(gè)函數(shù)中選取一個(gè)恰當(dāng)?shù)暮瘮?shù)描述與的變化關(guān)系,并說(shuō)明理由,,,;(2)利用(1)中選擇的函數(shù),估計(jì)月利潤(rùn)最大的是第幾個(gè)月,并求出該月的利潤(rùn).19.在中,角A、B、C的對(duì)邊分別為a、b、c,面積為S,已知(Ⅰ)求證:成等差數(shù)列;(Ⅱ)若求.20.某公司為了提高職工的健身意識(shí),鼓勵(lì)大家加入健步運(yùn)動(dòng),要求200名職工每天晚上9:30上傳手機(jī)計(jì)步截圖,對(duì)于步數(shù)超過(guò)10000的予以獎(jiǎng)勵(lì).圖1為甲乙兩名職工在某一星期內(nèi)的運(yùn)動(dòng)步數(shù)統(tǒng)計(jì)圖,圖2為根據(jù)這星期內(nèi)某一天全體職工的運(yùn)動(dòng)步數(shù)做出的頻率分布直方圖.(1)在這一周內(nèi)任選兩天檢查,求甲乙兩人兩天全部獲獎(jiǎng)的概率;(2)請(qǐng)根據(jù)頻率分布直方圖,求出該天運(yùn)動(dòng)步數(shù)不少于15000的人數(shù),并估計(jì)全體職工在該天的平均步數(shù);(3)如果當(dāng)天甲的排名為第130名,乙的排名為第40名,試判斷做出的是星期幾的頻率分布直方圖.21.已知角、的頂點(diǎn)在平面直角坐標(biāo)系的原點(diǎn),始邊與軸正半軸重合,且角的終邊與單位圓(圓心在原點(diǎn),半徑為1的圓)的交點(diǎn)位于第二象限,角的終邊和單位圓的交點(diǎn)位于第三象限,若點(diǎn)的橫坐標(biāo)為,點(diǎn)的縱坐標(biāo)為.(1)求、的值;(2)若,求的值.(結(jié)果用反三角函數(shù)值表示)
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、D【解析】
設(shè)圓柱的底面半徑為,利用圓柱側(cè)面積公式與球的表面積公式建立關(guān)系式,算出球的半徑,再利用圓柱與球的體積公式加以計(jì)算,可得所求體積之比.【詳解】設(shè)圓柱的底面半徑為,軸截面正方形邊長(zhǎng),則,可得圓柱的側(cè)面積,再設(shè)與圓柱表面積相等的球半徑為,則球的表面積,解得,因此圓柱的體積為,球的體積為,因此圓柱的體積與球的體積之比為.故選:D.【點(diǎn)睛】本題主要考查了圓柱的側(cè)面積和體積公式,以及球的表面積和體積公式的應(yīng)用,其中解答中熟記公式,合理計(jì)算半徑之間的關(guān)系是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.2、A【解析】
判斷函數(shù)函數(shù),的奇偶性,求出其周期即可得到結(jié)論.【詳解】設(shè)則故函數(shù)函數(shù),是奇函數(shù),由故函數(shù),是最小正周期為的奇函數(shù).故選A.【點(diǎn)睛】本題考查正弦函數(shù)的奇偶性和周期性,屬基礎(chǔ)題.3、D【解析】設(shè)第一天織尺,第二天起每天比前一天多織尺,由已知得,,故選D.【方法點(diǎn)睛】本題主要考查等差數(shù)列的通項(xiàng)公式、等差數(shù)列的前項(xiàng)和公式,屬于中檔題.等差數(shù)列基本量的運(yùn)算是等差數(shù)列的一類(lèi)基本題型,數(shù)列中的五個(gè)基本量,一般可以“知二求三”,通過(guò)列方程組所求問(wèn)題可以迎刃而解,另外,解等差數(shù)列問(wèn)題要注意應(yīng)用等差數(shù)列的性質(zhì)()與前項(xiàng)和的關(guān)系.4、D【解析】
由已知條件利用對(duì)立事件概率計(jì)算公式直接求解.【詳解】由于一架飛機(jī)向目標(biāo)投彈,擊毀目標(biāo)的概率為,目標(biāo)未受損的概率為;所以目標(biāo)受損的概率為:;目標(biāo)受損分為擊毀和未被擊毀,它們是對(duì)立事件;所以目標(biāo)受損的概率目標(biāo)受損被擊毀的概率目標(biāo)受損未被擊毀的概率;故目標(biāo)受損但未被擊毀的概率目標(biāo)受損的概率目標(biāo)受損被擊毀的概率,即目標(biāo)受損但未被擊毀的概率;故答案選D【點(diǎn)睛】本題考查概率的求法,注意對(duì)立事件概率計(jì)算公式的合理運(yùn)用,屬于基礎(chǔ)題.5、A【解析】
再遞推一步,兩個(gè)等式相減,得到一個(gè)等式,進(jìn)行合理變形,可以得到一個(gè)等比數(shù)列,求出通項(xiàng)公式,最后求出數(shù)列的通項(xiàng)公式,最后求出,選出答案即可.【詳解】因?yàn)?,所以?dāng)時(shí),,兩式相減化簡(jiǎn)得:,而,所以數(shù)列是以為首項(xiàng),為公比的等比數(shù)列,因此有,所以,故本題選A.【點(diǎn)睛】本題考查了已知數(shù)列遞推公式求數(shù)列通項(xiàng)公式的問(wèn)題,考查了等比數(shù)列的判斷以及通項(xiàng)公式,正確的遞推和等式的合理變形是解題的關(guān)鍵.6、B【解析】
直接利用等差中項(xiàng)的公式求解.【詳解】由題得兩數(shù)1,25的等差中項(xiàng)為.故選:B【點(diǎn)睛】本題主要考查等差中項(xiàng)的求法,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平,屬于基礎(chǔ)題.7、D【解析】
由于,則.【詳解】因?yàn)?,所以,故選D.【點(diǎn)睛】本題考查角度制與弧度制的互化.8、A【解析】
連接,則,所以為所求的角.【詳解】連結(jié),,因?yàn)?、分別為,的中點(diǎn),所以,則為所求的角,設(shè)正方體棱長(zhǎng)為1,則,,,三角形AD1B為直角三角形,,選擇A【點(diǎn)睛】本題主要考查了異面直線所成的夾角;求異面直線的夾角,通常把其中一條直線平移到和另外一條直線相交即得異面直線所成的角.屬于中等題.9、D【解析】
利用等差數(shù)列前項(xiàng)和公式化簡(jiǎn)已知條件,并用等差數(shù)列的性質(zhì)轉(zhuǎn)化為的形式,由此求得的值.【詳解】依題意,,解得,故選D.【點(diǎn)睛】本小題主要考查等差數(shù)列前項(xiàng)和公式,以及等差數(shù)列的性質(zhì),解答題目過(guò)程中要注意觀察已知條件的下標(biāo).屬于基礎(chǔ)題.10、A【解析】
作出函數(shù)的圖象可得出該函數(shù)的最小正周期?!驹斀狻孔鞒龊瘮?shù)的圖象如下圖所示,由圖象可知,函數(shù)的最小正周期為,故選:A?!军c(diǎn)睛】本題考查三角函數(shù)周期的求解,一般而言,三角函數(shù)最小正周期的求解方法有如下幾種:(1)定義法:即;(2)公式法:當(dāng)時(shí),函數(shù)或的最小正周期為,函數(shù)最小正周期為;(3)圖象法。二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
求出,然后由模的平方轉(zhuǎn)化為向量的平方,利用數(shù)量積的運(yùn)算計(jì)算.【詳解】由題意得,.,.,,.故答案為:.【點(diǎn)睛】本題考查求向量的模,掌握數(shù)量積的定義與運(yùn)算律是解題基礎(chǔ).本題關(guān)鍵是用數(shù)量積的定義把模的運(yùn)算轉(zhuǎn)化為數(shù)量積的運(yùn)算.12、【解析】
如圖,連接,在直角三角形中,所以,,,故.考點(diǎn):1.直線與圓的位置關(guān)系;2.平面向量的數(shù)量積.13、【解析】
根據(jù)題意,建立坐標(biāo)系,求出圓心角扇形區(qū)域的面積,進(jìn)而設(shè),由數(shù)量積的計(jì)算公式可得滿足的區(qū)域,求出其面積,代入幾何概率的計(jì)算公式即可求解.【詳解】根據(jù)題意,建立如圖的坐標(biāo)系,則則扇形的面積為設(shè)若,則有,即;則滿足的區(qū)域?yàn)槿鐖D的陰影區(qū)域,直線與弧的交點(diǎn)為,易得的坐標(biāo)為,則陰影區(qū)域的面積為故的概率故答案為:【點(diǎn)睛】本題考查幾何概型,涉及數(shù)量積的計(jì)算,屬于綜合題.14、【解析】
代入分式利用同角三角函數(shù)的平方關(guān)系、二倍角公式及三角函數(shù)誘導(dǎo)公式化簡(jiǎn)即可.【詳解】.故答案為:2【點(diǎn)睛】本題考查同角三角函數(shù)的平方關(guān)系、二倍角公式及三角函數(shù)誘導(dǎo)公式,屬于基礎(chǔ)題.15、【解析】由題意,則.16、【解析】
令正弦定理化簡(jiǎn)已知等式,得到,代入題設(shè),求得的長(zhǎng),利用三角形的面積公式表示出的面積,代入已知等式,再將,即可求解.【詳解】在中,因?yàn)?,由正弦定理,可得,因?yàn)榈闹荛L(zhǎng)為5,即,所以,又因?yàn)椋?,所以.【點(diǎn)睛】本題主要考查了正弦定理和三角形的面積公式的應(yīng)用,其中在解有關(guān)三角形的題目時(shí),要抓住題設(shè)條件和利用某個(gè)定理的信息,合理應(yīng)用正弦定理和余弦定理求解是解答的關(guān)鍵,著重考查了運(yùn)算與求解能力,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)或;(2).【解析】
(1)由題化簡(jiǎn)得.再解方程即得解;(2)由題得在上恒成立,再求不等式右邊函數(shù)的最小值即得解.【詳解】解:(1)因?yàn)?,,所以.因?yàn)?,所以.解得或.故的取值集合為.?)由(1)可知,所以在上恒成立.因?yàn)?,所以,所以在上恒成?設(shè),則.所以.因?yàn)椋裕裕实娜≈捣秶鸀椋军c(diǎn)睛】本題主要考查三角恒等變換和解三角方程,考查三角函數(shù)最值的求法和恒成立問(wèn)題,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平和分析推理能力,屬于中檔題.18、(1),理由見(jiàn)解析;(2)第5個(gè)月,利潤(rùn)最大為245.【解析】
(1)根據(jù)題中數(shù)據(jù),即可直接判斷出結(jié)果;(2)將題中,代入,求出參數(shù),根據(jù)二次函數(shù)的性質(zhì),以及自變量的范圍,即可得出結(jié)果.【詳解】(1)由題目中的數(shù)據(jù)知,描述每月利潤(rùn)(單位:萬(wàn)元)與相應(yīng)月份數(shù)的變化關(guān)系函數(shù)不可能是常數(shù)函數(shù),也不是單調(diào)函數(shù);所以,應(yīng)選取二次函數(shù)進(jìn)行描述;(2)將,代入,解得,,∴,,,,∴,萬(wàn)元.【點(diǎn)睛】本題主要考查二次函數(shù)的應(yīng)用,熟記二次函數(shù)的性質(zhì)即可,屬于??碱}型.19、(Ⅰ)詳見(jiàn)解析;(Ⅱ)4.【解析】試題分析:(1)在三角形中處理邊角關(guān)系時(shí),一般全部轉(zhuǎn)化為角的關(guān)系,或全部轉(zhuǎn)化為邊的關(guān)系.題中若出現(xiàn)邊的一次式一般采用正弦定理,出現(xiàn)邊的二次式一般采用余弦定理,應(yīng)用正弦、余弦定理時(shí),注意公式變形的應(yīng)用,解決三角形問(wèn)題時(shí),注意角的限制范圍;(2)在三角興中,注意隱含條件(3)解決三角形問(wèn)題時(shí),根據(jù)邊角關(guān)系靈活的選用定理和公式.(4)在解決三角形的問(wèn)題中,面積公式最常用,因?yàn)楣街屑扔羞呌钟薪?,容易和正弦定理、余弦定理?lián)系起來(lái).試題解析:(Ⅰ)由正弦定理得:即2分∴即4分∵∴即∴成等差數(shù)列.6分(Ⅱ)∵∴8分又10分由(Ⅰ)得:∴12分考點(diǎn):三角函數(shù)與解三角形.20、(1),(2)80人,13.25千步,(3)星期二【解析】
(1)根據(jù)統(tǒng)計(jì)圖統(tǒng)計(jì)出甲乙兩人合格的天數(shù),再計(jì)算全部獲獎(jiǎng)概率;(2)根據(jù)頻率分布直方圖求出人數(shù)及平均步數(shù);(3)根據(jù)頻率分布直方圖計(jì)算出甲乙的步數(shù)從而判斷出星期幾.【詳解】(1)由統(tǒng)計(jì)圖可知甲乙兩人步數(shù)超過(guò)10000的有星期一、星期二、星期五、星期天設(shè)事件A為甲乙兩人兩天全部獲獎(jiǎng),則(2)由圖可知,解得所以該天運(yùn)動(dòng)步數(shù)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024網(wǎng)格員考試題庫(kù)匯編
- 初中數(shù)學(xué)總復(fù)習(xí)專題訓(xùn)練-開(kāi)放性問(wèn)題研究課件
- 《智慧園區(qū)試點(diǎn)》課件
- 2024年度天津市公共營(yíng)養(yǎng)師之二級(jí)營(yíng)養(yǎng)師全真模擬考試試卷B卷含答案
- 2025珠海明日起全市推廣新版購(gòu)房合同
- 2025關(guān)于個(gè)人車(chē)輛抵押借款的合同范本
- 2024年度四川省公共營(yíng)養(yǎng)師之二級(jí)營(yíng)養(yǎng)師能力檢測(cè)試卷B卷附答案
- 2020-2025年中國(guó)藥店市場(chǎng)運(yùn)行態(tài)勢(shì)及行業(yè)發(fā)展前景預(yù)測(cè)報(bào)告
- 2025公積金借款合同范文
- 2024-2025年中國(guó)手機(jī)連接器行業(yè)發(fā)展?jié)摿Ψ治黾巴顿Y方向研究報(bào)告
- 空氣動(dòng)力學(xué)優(yōu)化技術(shù):拓?fù)鋬?yōu)化:拓?fù)鋬?yōu)化項(xiàng)目設(shè)計(jì)與實(shí)踐
- 數(shù)據(jù)庫(kù)原理-期末考試題和答案
- 醫(yī)療健康咨詢服務(wù)合同
- (高清版)AQ 1056-2008 煤礦通風(fēng)能力核定標(biāo)準(zhǔn)
- 新材料專利申請(qǐng)與保護(hù)考核試卷
- NB-T+10131-2019水電工程水庫(kù)區(qū)工程地質(zhì)勘察規(guī)程
- 2024河南中考數(shù)學(xué)專題復(fù)習(xí)第六章 第一節(jié) 圓的基本性質(zhì) 課件
- 南京市聯(lián)合體2022-2023學(xué)年七年級(jí)上學(xué)期期末生物試題
- 熱性驚厥診斷治療與管理專家共識(shí)
- 《橋梁輕量化監(jiān)測(cè)系統(tǒng)建設(shè)規(guī)范(征求意見(jiàn)稿)》
- 現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)園建設(shè)規(guī)劃方案(2篇)
評(píng)論
0/150
提交評(píng)論