初中數學學習方法知識點總結_第1頁
初中數學學習方法知識點總結_第2頁
初中數學學習方法知識點總結_第3頁
初中數學學習方法知識點總結_第4頁
初中數學學習方法知識點總結_第5頁
已閱讀5頁,還剩22頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

初中數學學習方法知識點總結

初中數學學習方法知識點總結1

二元一次方程(組)

1、二元一次方程:含有兩個未知數,并且所含未知數的項的次數都是1的方程叫做二元一次方程。

2、二元一次方程組:含有兩個未知數的兩個一次方程所組成的一組方程,叫做二元一次方程組。

3、二元一次方程組的解:二元一次方程組中各個方程的公共解,叫做這個二元一次方程組的解。

4、二元一次方程組的解法。

(1)代人消元法:解方程組的基本思路是“消元”一把“二元”變?yōu)椤耙辉?,主要步驟是,將其中一個方程中的某個未知數用含有另一個未知數的代數式表示出來,并代人另一個方程中,從而消去一個未知數,化二元一次方程組為一元一次方程,這種解方程組的方法稱為代人消元法,簡稱代人法。

(2)加減消元法:通過方程兩邊分別相加(減)消去其中一個未知數,這種解二元一次方程組的方法叫做加減消元法,簡稱加減法。

提醒大家:二元一次方程組的解法包括代人消元法和加減消元法。

平面直角坐標系

下面是對平面直角坐標系的內容學習,希望同學們很好的掌握下面的內容。

平面直角坐標系

平面直角坐標系:在平面內畫兩條互相垂直、原點重合的數軸,組成平面直角坐標系。

水平的數軸稱為x軸或橫軸,豎直的數軸稱為y軸或縱軸,兩坐標軸的交點為平面直角坐標系的原點。

平面直角坐標系的要素:

①在同一平面

②兩條數軸

③互相垂直

④原點重合

三個規(guī)定:

①正方向的規(guī)定橫軸取向右為正方向,縱軸取向上為正方向

②單位長度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數軸上必須相同。

③象限的規(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。

相信上面對平面直角坐標系知識的講解學習,同學們已經能很好的掌握了吧,希望同學們都能考試成功。

平面直角坐標系的構成

在同一個平面上互相垂直且有公共原點的兩條數軸構成平面直角坐標系,簡稱為直角坐標系。通常,兩條數軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數軸的正方向。水平的數軸叫做X軸或橫軸,鉛直的數軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱為坐標軸,它們的公共原點O稱為直角坐標系的原點。

通過上面對平面直角坐標系的`構成知識的講解學習,希望同學們對上面的內容都能很好的掌握,同學們認真學習吧。

點的坐標的性質

建立了平面直角坐標系后,對于坐標系平面內的任何一點,我們可以確定它的坐標。反過來,對于任何一個坐標,我們可以在坐標平面內確定它所表示的一個點。

對于平面內任意一點C,過點C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對應點a,b分別叫做點C的橫坐標、縱坐標,有序實數對(a,b)叫做點C的坐標。

一個點在不同的象限或坐標軸上,點的坐標不一樣。

希望上面對點的坐標的性質知識講解學習,同學們都能很好的掌握,相信同學們會在考試中取得優(yōu)異成績的。

因式分解的一般步驟

如果多項式有公因式就先提公因式,沒有公因式的多項式就考慮運用公式法;若是四項或四項以上的多項式,通常采用分組分解法,最后運用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。

注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個范圍內因式分解,應該是指在有理數范圍內因式分解,因此分解因式的結果,必須是幾個整式的積的形式。

相信上面對因式分解的一般步驟知識的內容講解學習,同學們已經能很好的掌握了吧,希望同學們會考出好成績。

因式分解

因式分解定義:把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。

因式分解要素:

①結果必須是整式

②結果必須是積的形式

③結果是等式

因式分解與整式乘法的關系:m(a+b+c)

公因式:一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。

公因式確定方法:

①系數是整數時取各項最大公約數。

②相同字母取最低次冪

③系數最大公約數與相同字母取最低次冪的積就是這個多項式各項的公因式。

提取公因式步驟:

①確定公因式。

②確定商式

③公因式與商式寫成積的形式。

分解因式注意;

①不準丟字母

②不準丟常數項注意查項數

③雙重括號化成單括號

④結果按數單字母單項式多項式順序排列

⑤相同因式寫成冪的形式

⑥首項負號放括號外

⑦括號內同類項合并。

初中數學學習方法知識點總結2

初中是一個完全不同的階段。雖然小學也一樣有數學課,然而初中數學不再是單純的計算,而是數學內容進一步拓寬、知識更一步深化,從具體發(fā)展到抽象,從文字發(fā)展到符號,由靜態(tài)發(fā)展到動態(tài)……要求學生在認知結構上發(fā)生根本變化。

一、課前預習方法的指導

初一學生往往不善于預習,也不知道預習起什么作用,預習僅是流于形式,粗略地看一遍,看不出問題和疑點。在學生預習時應要求學生做到:

一粗讀,先粗略瀏覽教材的有關內容,了解新課的重點和難點。

二細讀,對重要概念、公式、法則、定理反復閱讀、仔細體會、認真思考,注意知識的發(fā)展形成過程,對難以理解的概念作出標記,以便帶著問題去聽課。

二、聽課方法的指導

在聽課方法的指導方面要處理好“看”、“聽”、“思”、“記”的關系。

“看”就是上課要注意觀察,觀察教師的板書的過程、內容、理解老師所講的內容。

“聽”是學生直接用感官接受知識,應讓學生在聽的過程中明確:

(1)聽每節(jié)課的學習目的和學習要求;

(2)聽新知識的引入及知識的形成過程;

(3)理解教師對新課的重點、難點的剖析(尤其是預習中的疑問);

(4)聽例題解法的思路和數學思想方法的體現(xiàn);

“思”是指學生思考問題。沒有思考,就發(fā)揮不了學生的主體作用。古人說的好“學而不思則罔?!睂W生是學習的主人,在課堂上對于老師的講解,學生不僅僅只是會做,而且要經常思考;在思考方法指導時,應使學生明確:

“記”是指學生記課堂筆記。初一學生一般不會合理記筆記,通常是教師黑板上寫什么學生就抄什么,往往是用“記”代替“聽”和“思”。有的筆記雖然記得很全,但收效甚微。因此在指導學生作筆記時應要求學生:

(1)記筆記服從聽講,要結合教材來記,要掌握記錄時機;

(2)記要點、記疑問、記易錯點、記解題思路和方法、記老師所補充的內容;

(3)記小結、記課后思考題。使學生明確“記”是為“聽”和“思”服務的。記筆記有助于將知識簡化、深化、系統(tǒng)化。

三、完成作業(yè)方法的指導

初一學生課后往往容易急于完成書面作業(yè),忽視必要的鞏固、記憶、復習。以致出現(xiàn)照例題模仿、套公式解題的現(xiàn)象,造成為交作業(yè)而做作業(yè),起不到作業(yè)的鞏固、深化、理解知識的作用。為此在這個環(huán)節(jié)的學法指導上要求學生每天先瀏覽教材中所要學習的內容及筆記,回顧課堂講授的知識、方法,同時熟記公式、定理。然后獨立完成作業(yè),解題后再反思。

(1)如何將文字語言轉化為符號語言;

(2)如何將推理思考的解題過程用文字書寫表達出來;

(3)正確地由條件畫出圖形。剛開始可有意讓學生模仿、訓練,逐步使學生養(yǎng)成良好的書寫習慣,這對培養(yǎng)學生的思維能力和學生今后的學習都十分重要。

四、課后復習鞏固方法的指導

(1)適當多做題,養(yǎng)成良好的解題習慣。

要想學好數學,做一定量的題目是必需的,剛開始要從基礎題入手,以課本上的習題為準,反復練習打好基礎,再找一些課外的習題,以幫助開拓思路,提高自己的分析、解決能力,掌握一般的解題規(guī)律,熟悉掌握各種題型的解題思路。對于一些易錯題,可備有錯題集,寫出自己錯誤的解題思路和正確的解題過程,兩者一起比較找出自己的錯誤所在,以便及時更正。

(2)細心地挖掘概念和公式

很多同學對概念和公式不夠重視,這類問題反映在三個方面:

一是,對概念的理解只是停留在文字表面,對概念的特殊情況重視不夠。例如,在單項式的概念(數字和字母積的代數式是單項式)中,很多同學忽略了“單個字母或數字也是單項式”。

二是,對概念和公式一味的死記硬背,缺乏與實際題目的聯(lián)系。這樣就不能很好的將學到的知識點與解題聯(lián)系起來。

三是,一部分同學不重視對數學公式的.記憶。記憶是理解的基礎。如果你不能將公式爛熟于心,又怎能夠在題目中熟練應用呢?

建議:更細心一點(由觀察特例入手),更深入一點(了解它在題目中的常見考點),更熟練一點(無論它以什么面目出現(xiàn),我們都能夠應用自如)。

(3)總結相似的類型題目

在進入初二、初三以后,同學們會發(fā)現(xiàn),有一部分同學天天做題,可成績不升反降。其原因就是,他們天天都在做重復的工作,很多相似的題目反復做,需要解決的問題卻不能專心攻克。

建議:“總結歸納”是將題目越做越少的最好辦法。

(4)收集自己的典型錯誤和不會的題目

做題目,有兩個重要的目的:一是,將所學的知識點和技巧,在實際的題目中演練。另外一個就是,找出自己的不足,然后彌補它。這個不足,也包括兩個方面,容易犯的錯誤和完全不會的內容。但現(xiàn)實情況是,同學們只追求做題的數量,草草的應付作業(yè)了事,而不追求解決出現(xiàn)的問題,更談不上收集錯誤。建議大家收集自己的典型錯誤和不會的題目。

初中數學學習方法知識點總結3

初中數學知識點總結及解法

基本知識

數與代數A、數與式:

1、有理數

有理數:

①整數正整數/0/負整數

②分數正分數/負分數

數軸:

①畫一條水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規(guī)定直線上向右的方向為正方向,就得到數軸。

②任何一個有理數都可以用數軸上的一個點來表示。

③如果兩個數只有符號不同,那么我們稱其中一個數為另外一個數的相反數,也稱這兩個數互為相反數。在數軸上,表示互為相反數的兩個點,位于原點的兩側,并且與原點距離相等。

④數軸上兩個點表示的數,右邊的總比左邊的大。正數大于0,負數小于0,正數大于負數。

絕對值:

①在數軸上,一個數所對應的點與原點的距離叫做該數的絕對值。

②正數的絕對值是他的本身、負數的絕對值是他的相反數、0的絕對值是0。兩個負數比較大小,絕對值大的反而小。

有理數的運算:

加法:

①同號相加,取相同的符號,把絕對值相加。

②異號相加,絕對值相等時和為0;絕對值不等時,取絕對值較大的數的符號,并用較大的絕對值減去較小的絕對值。

③一個數與0相加不變。

減法:減去一個數,等于加上這個數的相反數。

乘法:

①兩數相乘,同號得正,異號得負,絕對值相乘。

②任何數與0相乘得0。

③乘積為1的兩個有理數互為倒數。

除法:

①除以一個數等于乘以一個數的倒數。

②0不能作除數。

乘方:求N個相同因數A的積的運算叫做乘方,乘方的結果叫冪,A叫底數,N叫次數。

混合順序:先算乘法,再算乘除,最后算加減,有括號要先算括號里的。

2、實數

無理數:無限不循環(huán)小數叫無理數

平方根:

①如果一個正數X的平方等于A,那么這個正數X就叫做A的算術平方根。

②如果一個數X的平方等于A,那么這個數X就叫做A的平方根。

③一個正數有2個平方根/0的平方根為0/負數沒有平方根。

④求一個數A的平方根運算,叫做開平方,其中A叫做被開方數。

立方根:

①如果一個數X的立方等于A,那么這個數X就叫做A的立方根。

②正數的立方根是正數、0的立方根是0、負數的立方根是負數。

③求一個數A的立方根的運算叫開立方,其中A叫做被開方數。

實數:

①實數分有理數和無理數。

②在實數范圍內,相反數,倒數,絕對值的意義和有理數范圍內的相反數,倒數,絕對值的意義完全一樣。

③每一個實數都可以在數軸上的一個點來表示。

3、代數式

代數式:單獨一個數或者一個字母也是代數式。

合并同類項:①所含字母相同,并且相同字母的指數也相同的項,叫做同類項。②把同類項合并成一項就叫做合并同類項。③在合并同類項時,我們把同類項的系數相加,字母和字母的指數不變。

4、整式與分式

整式:

①數與字母的乘積的代數式叫單項式,幾個單項式的和叫多項式,單項式和多項式統(tǒng)稱整式。

②一個單項式中,所有字母的指數和叫做這個單項式的次數。

③一個多項式中,次數最高的項的次數叫做這個多項式的次數。

整式運算:加減運算時,如果遇到括號先去括號,再合并同類項。

冪的運算:

①同底數冪相乘:a^ma^n=a^(m+n)

②冪的乘方:(a^m)n=a^mn

③積的乘方:(ab)^m=a^mb^m

④同底數冪相除:a^ma^n=a^(m-n)(a0)

這些公式也可以這樣用:⑤a^(m+n)=a^ma^n

⑥a^mn=(a^m)n

⑦a^mb^m=(ab)^m

⑧a^(m-n)=a^ma^n(a0)

整式的乘法:

①單項式與單項式相乘,把他們的系數,相同字母的冪分別相乘,其余字母連同他的指數不變,作為積的因式。

②單項式與多項式相乘,就是根據分配律用單項式去乘多項式的每一項,再把所得的積相加。

③多項式與多項式相乘,先用一個多項式的每一項乘另外一個多項式的每一項,再把所得的積相加。

公式兩條:平方差公式/完全平方公式

整式的除法:

①單項式相除,把系數,同底數冪分別相除后,作為商的因式;對于只在被除式里含有的字母,則連同他的指數一起作為商的一個因式。

②多項式除以單項式,先把這個多項式的每一項分別除以單項式,再把所得的商相加。

分解因式:把一個多項式化成幾個整式的積的形式,這種變化叫做把這個多項式分解因式。

方法:提公因式法、運用公式法、分組分解法、十字相乘法。

分式:①整式A除以整式B,如果除式B中含有分母,那么這個就是分式,對于任何一個分式,分母不為0。②分式的分子與分母同乘以或除以同一個不等于0的整式,分式的值不變。

分式的運算:

乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。

除法:除以一個分式等于乘以這個分式的倒數。

加減法:

①同分母分式相加減,分母不變,把分子相加減。

②異分母的分式先通分,化為同分母的分式,再加減。

分式方程:

①分母中含有未知數的方程叫分式方程。

②使方程的分母為0的解稱為原方程的增根。

方程與不等式

1、方程與方程組

一元一次方程:

①在一個方程中,只含有一個未知數,并且未知數的`指數是1,這樣的方程叫一元一次方程。

②等式兩邊同時加上或減去或乘以或除以(不為0)一個代數式,所得結果仍是等式。

解一元一次方程的步驟:去分母,移項,合并同類項,未知數系數化為1。

二元一次方程:含有兩個未知數,并且所含未知數的項的次數都是1的方程叫做二元一次方程。

二元一次方程組:兩個二元一次方程組成的方程組叫做二元一次方程組。

適合一個二元一次方程的一組未知數的值,叫做這個二元一次方程的一個解。

二元一次方程組中各個方程的公共解,叫做這個二元一次方程的解。

解二元一次方程組的方法:代入消元法/加減消元法。

一元二次方程:只有一個未知數,并且未知數的項的最高系數為2的方程

1、一元二次方程的二次函數的關系

大家已經學過二次函數(即拋物線)了,對它也有很深的了解,在圖象中表示等等,其實一元二次方程也可以用二次函數來表示,其實一元二次方程也是二次函數的一個特殊情況,就是當Y的0的時候就構成了一元二次方程了。那如果在平面直角坐標系中表示出來,一元二次方程就是二次函數中,圖象與X軸的交點。也就是該方程的解了。

2、一元二次方程的解法

大家知道,二次函數有頂點式(,),這大家要記住,很重要,因為在上面已經說過了,一元二次方程也是二次函數的一部分,所以他也有自己的一個解法,利用他可以求出所有的一元一次方程的解。

(1)配方法

利用配方,使方程變?yōu)橥耆椒焦剑谟弥苯娱_平方法去求出解。

(2)分解因式法

提取公因式,套用公式法,和十字相乘法。在解一元二次方程的時候也一樣,利用這點,把方程化為幾個乘積的形式去解。

(3)公式法

這方法也可以是在解一元二次方程的萬能方法了,方程的根X1={-b+[b2-4ac)]}/2a,X2={-b-[b2-4ac)]}/2a

3、解一元二次方程的步驟:

(1)配方法的步驟:

先把常數項移到方程的右邊,再把二次項的系數化為1,再同時加上1次項的系數的一半的平方,最后配成完全平方公式。

(2)分解因式法的步驟:

把方程右邊化為0,然后看看是否能用提取公因式,公式法(這里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化為乘積的形式。

(3)公式法

就把一元二次方程的各系數分別代入,這里二次項的系數為a,一次項的系數為b,常數項的系數為c。

4、韋達定理

利用韋達定理去了解,韋達定理就是在一元二次方程中,二根之和=,二根之積=

也可以表示為x1+x2=,x1x2=。利用韋達定理,可以求出一元二次方程中的各系數,在題目中很常用。

5、一元一次方程根的情況

利用根的判別式去了解,根的判別式可在書面上可以寫為△,讀作diaota,而△=b2-4ac,這里可以分為3種情況:

I當△0時,一元二次方程有2個不相等的實數根;

II當△=0時,一元二次方程有2個相同的實數根;

III當△0時,一元二次方程沒有實數根(在這里,學到高中就會知道,這里有2個虛數根)。

2、不等式與不等式組

不等式:

①用符號〉,=,〈號連接的式子叫不等式。

②不等式的兩邊都加上或減去同一個整式,不等號的方向不變。

③不等式的兩邊都乘以或者除以一個正數,不等號方向不變。

④不等式的兩邊都乘以或除以同一個負數,不等號方向相反。

不等式的解集:

①能使不等式成立的未知數的值,叫做不等式的解。

②一個含有未知數的不等式的所有解,組成這個不等式的解集。

③求不等式解集的過程叫做解不等式。

一元一次不等式:左右兩邊都是整式,只含有一個未知數,且未知數的最高次數是1的不等式叫一元一次不等式。

一元一次不等式組:

①關于同一個未知數的幾個一元一次不等式合在一起,就組成了一元一次不等式組。

②一元一次不等式組中各個不等式的解集的公共部分,叫做這個一元一次不等式組的解集。

③求不等式組解集的過程,叫做解不等式組。

一元一次不等式的符號方向:

在一元一次不等式中,不像等式那樣,等號是不變的,他是隨著你加或乘的運算改變。

在不等式中,如果加上同一個數(或加上一個正數),不等式符號不改向;例如:AB,A+CB+C

在不等式中,如果減去同一個數(或加上一個負數),不等式符號不改向;例如:AB,A-CB-C

在不等式中,如果乘以同一個正數,不等號不改向;例如:AB,A*CB*C(C0)

在不等式中,如果乘以同一個負數,不等號改向;例如:AB,A*C

如果不等式乘以0,那么不等號改為等號

所以在題目中,要求出乘以的數,那么就要看看題中是否出現(xiàn)一元一次不等式,如果出現(xiàn)了,那么不等式乘以的數就不等為0,否則不等式不成立。

函數

變量:因變量,自變量。

在用圖象表示變量之間的關系時,通常用水平方向的數軸上的點自變量,用豎直方向的數軸上的點表示因變量。

一次函數:

①若兩個變量X,Y間的關系式可以表示成Y=KX+B(B為常數,K不等于0)的形式,則稱Y是X的一次函數。

②當B=0時,稱Y是X的正比例函數。

一次函數的圖象:①把一個函數的自變量X與對應的因變量Y的值分別作為點的橫坐標與縱坐標,在直角坐標系內描出它的對應點,所有這些點組成的圖形叫做該函數的圖象。②正比例函數Y=KX的圖象是經過原點的一條直線。③在一次函數中,當K〈0,B〈O,則經234象限;當K〈0,B〉0時,則經124象限;當K〉0,B〈0時,則經134象限;當K〉0,B〉0時,則經123象限。④當K〉0時,Y的值隨X值的增大而增大,當X〈0時,Y的值隨X值的增大而減少。

空間與圖形

圖形的認識

1、點,線,面

點,線,面:

①圖形是由點,線,面構成的。

②面與面相交得線,線與線相交得點。

③點動成線,線動成面,面動成體。

展開與折疊:

①在棱柱中,任何相鄰的兩個面的交線叫做棱,側棱是相鄰兩個側面的交線,棱柱的所有側棱長相等,棱柱的上下底面的形狀相同,側面的形狀都是長方體。

②N棱柱就是底面圖形有N條邊的棱柱。

截一個幾何體:用一個平面去截一個圖形,截出的面叫做截面。

視圖:主視圖,左視圖,俯視圖。

多邊形:他們是由一些不在同一條直線上的線段依次首尾相連組成的封閉圖形。

弧、扇形:

①由一條弧和經過這條弧的端點的兩條半徑所組成的圖形叫扇形。

②圓可以分割成若干個扇形。

線:

①線段有兩個端點。

②將線段向一個方向無限延長就形成了射線。射線只有一個端點。

③將線段的兩端無限延長就形成了直線。直線沒有端點。

④經過兩點有且只有一條直線。

比較長短:

①兩點之間的所有連線中,線段最短。

②兩點之間線段的長度,叫做這兩點之間的距離。

角的度量與表示:

①角由兩條具有公共端點的射線組成,兩條射線的公共端點是這個角的頂點。

②一度的1/60是一分,一分的1/60是一秒。

角的比較:

①角也可以看成是由一條射線繞著他的端點旋轉而成的。

②一條射線繞著他的端點旋轉,當終邊和始邊成一條直線時,所成的角叫做平角。始邊繼續(xù)旋轉,當他又和始邊重合時,所成的角叫做周角。

③從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。

平行:

①同一平面內,不相交的兩條直線叫做平行線。

②經過直線外一點,有且只有一條直線與這條直線平行。

③如果兩條直線都與第3條直線平行,那么這兩條直線互相平行。

垂直:

①如果兩條直線相交成直角,那么這兩條直線互相垂直。

②互相垂直的兩條直線的交點叫做垂足。

③平面內,過一點有且只有一條直線與已知直線垂直。

垂直平分線:垂直和平分一條線段的直線叫垂直平分線。

垂直平分線垂直平分的一定是線段,不能是射線或直線,這根據射線和直線可以無限延長有關,再看后面的,垂直平分線是一條直線,所以在畫垂直平分線的時候,確定了2點后(關于畫法,后面會講)一定要把線段穿出2點。

垂直平分線定理:

性質定理:在垂直平分線上的點到該線段兩端點的距離相等;

判定定理:到線段2端點距離相等的點在這線段的垂直平分線上

角平分線:把一個角平分的射線叫該角的角平分線。

定義中有幾個要點要注意一下的,就是角的角平分線是一條射線,不是線段也不是直線,很多時,在題目中會出現(xiàn)直線,這是角平分線的對稱軸才會用直線的,這也涉及到軌跡的問題,一個角個角平分線就是到角兩邊距離相等的點

性質定理:角平分線上的點到該角兩邊的距離相等

判定定理:到角的兩邊距離相等的點在該角的角平分線上

正方形:一組鄰邊相等的矩形是正方形

性質:正方形具有平行四邊形、菱形、矩形的一切性質

判定:

1、對角線相等的菱形

2、鄰邊相等的矩形

基本方法

1、配方法

所謂配方,就是把一個解析式利用恒等變形的方法,把其中的某些項配成一個或幾個多項式正整數次冪的和形式。通過配方解決數學問題的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是數學中一種重要的恒等變形的方法,它的應用十分非常廣泛,在因式分解、化簡根式、解方程、證明等式和不等式、求函數的極值和解析式等方面都經常用到它。

2、因式分解法

因式分解,就是把一個多項式化成幾個整式乘積的形式。因式分解是恒等變形的基礎,它作為數學的一個有力工具、一種數學方法在代數、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,除中學課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項添項、求根分解、換元、待定系數等等。

3、換元法

換元法是數學中一個非常重要而且應用十分廣泛的解題方法。我們通常把未知數或變數稱為元,所謂換元法,就是在一個比較復雜的數學式子中,用新的變元去代替原式的一個部分或改造原來的式子,使它簡化,使問題易于解決。

4、判別式法與韋達定理

一元二次方程ax2+bx+c=0(a、b、c屬于R,a0)根的判別,△=b2-4ac,不僅用來判定根的性質,而且作為一種解題方法,在代數式變形,解方程(組),解不等式,研究函數乃至幾何、三角運算中都有非常廣泛的應用。

韋達定理除了已知一元二次方程的一個根,求另一根;已知兩個數的和與積,求這兩個數等簡單應用外,還可以求根的對稱函數,計論二次方程根的符號,解對稱方程組,以及解一些有關二次曲線的問題等

5、待定系數法

在解數學問題時,若先判斷所求的結果具有某種確定的形式,其中含有某些待定的系數,而后根據題設條件列出關于待定系數的等式,最后解出這些待定系數的值或找到這些待定系數間的某種關系,從而解答數學問題,這種解題方法稱為待定系數法。它是中學數學中常用的方法之一。

6、構造法

在解題時,我們常常會采用這樣的方法,通過對條件和結論的分析,構造輔助元素,它可以是一個圖形、一個方程(組)、一個等式、一個函數、一個等價命題等,架起一座連接條件和結論的橋梁,從而使問題得以解決,這種解題的數學方法,我們稱為構造法。運用構造法解題,可以使代數、三角、幾何等各種數學知識互相滲透,有利于問題的解決。

7、反證法

反證法是一種間接證法,它是先提出一個與命題的結論相反的假設,然后,從這個假設出發(fā),經過正確的推理,導致矛盾,從而否定相反的假設,達到肯定原命題正確的一種方法。反證法可以分為歸謬反證法(結論的反面只有一種)與窮舉反證法(結論的反面不只一種)。用反證法證明一個命題的步驟,大體上分為:(1)反設;(2)歸謬;(3)結論。

反設是反證法的基礎,為了正確地作出反設,掌握一些常用的互為否定的表述形式是有必要的,例如:是、不是;存在、不存在;平行于、不平行于;垂直于、不垂直于;等于、不等于;大(小)于、不大(小)于;都是、不都是;至少有一個、一個也沒有;至少有n個、至多有(n一1)個;至多有一個、至少有兩個;唯一、至少有兩個。

歸謬是反證法的關鍵,導出矛盾的過程沒有固定的模式,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論