2022年北京市西城區(qū)41中數(shù)學(xué)高三上期末聯(lián)考模擬試題含解析_第1頁
2022年北京市西城區(qū)41中數(shù)學(xué)高三上期末聯(lián)考模擬試題含解析_第2頁
2022年北京市西城區(qū)41中數(shù)學(xué)高三上期末聯(lián)考模擬試題含解析_第3頁
2022年北京市西城區(qū)41中數(shù)學(xué)高三上期末聯(lián)考模擬試題含解析_第4頁
2022年北京市西城區(qū)41中數(shù)學(xué)高三上期末聯(lián)考模擬試題含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.定義在上的奇函數(shù)滿足,若,,則()A. B.0 C.1 D.22.函數(shù)的圖象與函數(shù)的圖象的交點橫坐標(biāo)的和為()A. B. C. D.3.運行如圖所示的程序框圖,若輸出的的值為99,則判斷框中可以填()A. B. C. D.4.已知數(shù)列的通項公式為,將這個數(shù)列中的項擺放成如圖所示的數(shù)陣.記為數(shù)陣從左至右的列,從上到下的行共個數(shù)的和,則數(shù)列的前2020項和為()A. B. C. D.5.若,滿足約束條件,則的最大值是()A. B. C.13 D.6.若復(fù)數(shù),其中為虛數(shù)單位,則下列結(jié)論正確的是()A.的虛部為 B. C.的共軛復(fù)數(shù)為 D.為純虛數(shù)7.在三棱錐中,,且分別是棱,的中點,下面四個結(jié)論:①;②平面;③三棱錐的體積的最大值為;④與一定不垂直.其中所有正確命題的序號是()A.①②③ B.②③④ C.①④ D.①②④8.若兩個非零向量、滿足,且,則與夾角的余弦值為()A. B. C. D.9.如圖,平面四邊形中,,,,,現(xiàn)將沿翻折,使點移動至點,且,則三棱錐的外接球的表面積為()A. B. C. D.10.函數(shù)的圖象大致是()A. B.C. D.11.若向量,,則與共線的向量可以是()A. B. C. D.12.棱長為2的正方體內(nèi)有一個內(nèi)切球,過正方體中兩條異面直線,的中點作直線,則該直線被球面截在球內(nèi)的線段的長為()A. B. C. D.1二、填空題:本題共4小題,每小題5分,共20分。13.己知雙曲線的左、右焦點分別為,直線是雙曲線過第一、三象限的漸近線,記直線的傾斜角為,直線,,垂足為,若在雙曲線上,則雙曲線的離心率為_______14.已知實數(shù),滿足則的取值范圍是______.15.在等差數(shù)列()中,若,,則的值是______.16.已知函數(shù)若關(guān)于的不等式的解集為,則實數(shù)的所有可能值之和為_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓與拋物線有共同的焦點,且離心率為,設(shè)分別是為橢圓的上下頂點(1)求橢圓的方程;(2)過點與軸不垂直的直線與橢圓交于不同的兩點,當(dāng)弦的中點落在四邊形內(nèi)(含邊界)時,求直線的斜率的取值范圍.18.(12分)已知,均為正數(shù),且.證明:(1);(2).19.(12分)已知等差數(shù)列中,,數(shù)列的前項和.(1)求;(2)若,求的前項和.20.(12分)武漢有“九省通衢”之稱,也稱為“江城”,是國家歷史文化名城.其中著名的景點有黃鶴樓、戶部巷、東湖風(fēng)景區(qū)等等.(1)為了解“五·一”勞動節(jié)當(dāng)日江城某旅游景點游客年齡的分布情況,從年齡在22歲到52歲的游客中隨機抽取了1000人,制成了如圖的頻率分布直方圖:現(xiàn)從年齡在內(nèi)的游客中,采用分層抽樣的方法抽取10人,再從抽取的10人中隨機抽取4人,記4人中年齡在內(nèi)的人數(shù)為,求;(2)為了給游客提供更舒適的旅游體驗,該旅游景點游船中心計劃在2020年勞動節(jié)當(dāng)日投入至少1艘至多3艘型游船供游客乘坐觀光.由2010到2019這10年間的數(shù)據(jù)資料顯示每年勞動節(jié)當(dāng)日客流量(單位:萬人)都大于1.將每年勞動節(jié)當(dāng)日客流量數(shù)據(jù)分成3個區(qū)間整理得表:勞動節(jié)當(dāng)日客流量頻數(shù)(年)244以這10年的數(shù)據(jù)資料記錄的3個區(qū)間客流量的頻率作為每年客流量在該區(qū)間段發(fā)生的概率,且每年勞動節(jié)當(dāng)日客流量相互獨立.該游船中心希望投入的型游船盡可能被充分利用,但每年勞動節(jié)當(dāng)日型游船最多使用量(單位:艘)要受當(dāng)日客流量(單位:萬人)的影響,其關(guān)聯(lián)關(guān)系如下表:勞動節(jié)當(dāng)日客流量型游船最多使用量123若某艘型游船在勞動節(jié)當(dāng)日被投入且被使用,則游船中心當(dāng)日可獲得利潤3萬元;若某艘型游船勞動節(jié)當(dāng)日被投入?yún)s不被使用,則游船中心當(dāng)日虧損0.5萬元.記(單位:萬元)表示該游船中心在勞動節(jié)當(dāng)日獲得的總利潤,的數(shù)學(xué)期望越大游船中心在勞動節(jié)當(dāng)日獲得的總利潤越大,問該游船中心在2020年勞動節(jié)當(dāng)日應(yīng)投入多少艘型游船才能使其當(dāng)日獲得的總利潤最大?21.(12分)新高考,取消文理科,實行“”,成績由語文、數(shù)學(xué)、外語統(tǒng)一高考成績和自主選考的3門普通高中學(xué)業(yè)水平考試等級性考試科目成績構(gòu)成.為了解各年齡層對新高考的了解情況,隨機調(diào)查50人(把年齡在稱為中青年,年齡在稱為中老年),并把調(diào)查結(jié)果制成下表:年齡(歲)頻數(shù)515101055了解4126521(1)分別估計中青年和中老年對新高考了解的概率;(2)請根據(jù)上表完成下面列聯(lián)表,是否有95%的把握判斷對新高考的了解與年齡(中青年、中老年)有關(guān)?了解新高考不了解新高考總計中青年中老年總計附:.0.0500.0100.0013.8416.63510.828(3)若從年齡在的被調(diào)查者中隨機選取3人進(jìn)行調(diào)查,記選中的3人中了解新高考的人數(shù)為,求的分布列以及.22.(10分)如圖,四棱錐E﹣ABCD的側(cè)棱DE與四棱錐F﹣ABCD的側(cè)棱BF都與底面ABCD垂直,,//,.(1)證明://平面BCE.(2)設(shè)平面ABF與平面CDF所成的二面角為θ,求.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

首先判斷出是周期為的周期函數(shù),由此求得所求表達(dá)式的值.【詳解】由已知為奇函數(shù),得,而,所以,所以,即的周期為.由于,,,所以,,,.所以,又,所以.故選:C【點睛】本小題主要考查函數(shù)的奇偶性和周期性,屬于基礎(chǔ)題.2、B【解析】

根據(jù)兩個函數(shù)相等,求出所有交點的橫坐標(biāo),然后求和即可.【詳解】令,有,所以或.又,所以或或或,所以函數(shù)的圖象與函數(shù)的圖象交點的橫坐標(biāo)的和,故選B.【點睛】本題主要考查三角函數(shù)的圖象及給值求角,側(cè)重考查數(shù)學(xué)建模和數(shù)學(xué)運算的核心素養(yǎng).3、C【解析】

模擬執(zhí)行程序框圖,即可容易求得結(jié)果.【詳解】運行該程序:第一次,,;第二次,,;第三次,,,…;第九十八次,,;第九十九次,,,此時要輸出的值為99.此時.故選:C.【點睛】本題考查算法與程序框圖,考查推理論證能力以及化歸轉(zhuǎn)化思想,涉及判斷條件的選擇,屬基礎(chǔ)題.4、D【解析】

由題意,設(shè)每一行的和為,可得,繼而可求解,表示,裂項相消即可求解.【詳解】由題意,設(shè)每一行的和為故因此:故故選:D【點睛】本題考查了等差數(shù)列型數(shù)陣的求和,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運算的能力,屬于中檔題.5、C【解析】

由已知畫出可行域,利用目標(biāo)函數(shù)的幾何意義求最大值.【詳解】解:表示可行域內(nèi)的點到坐標(biāo)原點的距離的平方,畫出不等式組表示的可行域,如圖,由解得即點到坐標(biāo)原點的距離最大,即.故選:.【點睛】本題考查線性規(guī)劃問題,考查數(shù)形結(jié)合的數(shù)學(xué)思想以及運算求解能力,屬于基礎(chǔ)題.6、D【解析】

將復(fù)數(shù)整理為的形式,分別判斷四個選項即可得到結(jié)果.【詳解】的虛部為,錯誤;,錯誤;,錯誤;,為純虛數(shù),正確本題正確選項:【點睛】本題考查復(fù)數(shù)的模長、實部與虛部、共軛復(fù)數(shù)、復(fù)數(shù)的分類的知識,屬于基礎(chǔ)題.7、D【解析】

①通過證明平面,證得;②通過證明,證得平面;③求得三棱錐體積的最大值,由此判斷③的正確性;④利用反證法證得與一定不垂直.【詳解】設(shè)的中點為,連接,則,,又,所以平面,所以,故①正確;因為,所以平面,故②正確;當(dāng)平面與平面垂直時,最大,最大值為,故③錯誤;若與垂直,又因為,所以平面,所以,又,所以平面,所以,因為,所以顯然與不可能垂直,故④正確.故選:D【點睛】本小題主要考查空間線線垂直、線面平行、幾何體體積有關(guān)命題真假性的判斷,考查空間想象能力和邏輯推理能力,屬于中檔題.8、A【解析】

設(shè)平面向量與的夾角為,由已知條件得出,在等式兩邊平方,利用平面向量數(shù)量積的運算律可求得的值,即為所求.【詳解】設(shè)平面向量與的夾角為,,可得,在等式兩邊平方得,化簡得.故選:A.【點睛】本題考查利用平面向量的模求夾角的余弦值,考查平面向量數(shù)量積的運算性質(zhì)的應(yīng)用,考查計算能力,屬于中等題.9、C【解析】

由題意可得面,可知,因為,則面,于是.由此推出三棱錐外接球球心是的中點,進(jìn)而算出,外接球半徑為1,得出結(jié)果.【詳解】解:由,翻折后得到,又,則面,可知.又因為,則面,于是,因此三棱錐外接球球心是的中點.計算可知,則外接球半徑為1,從而外接球表面積為.故選:C.【點睛】本題主要考查簡單的幾何體、球的表面積等基礎(chǔ)知識;考查空間想象能力、推理論證能力、運算求解能力及創(chuàng)新意識,屬于中檔題.10、A【解析】

根據(jù)復(fù)合函數(shù)的單調(diào)性,同增異減以及采用排除法,可得結(jié)果.【詳解】當(dāng)時,,由在遞增,所以在遞增又是增函數(shù),所以在遞增,故排除B、C當(dāng)時,若,則所以在遞減,而是增函數(shù)所以在遞減,所以A正確,D錯誤故選:A【點睛】本題考查具體函數(shù)的大致圖象的判斷,關(guān)鍵在于對復(fù)合函數(shù)單調(diào)性的理解,記住常用的結(jié)論:增+增=增,增-減=增,減+減=減,復(fù)合函數(shù)單調(diào)性同增異減,屬中檔題.11、B【解析】

先利用向量坐標(biāo)運算求出向量,然后利用向量平行的條件判斷即可.【詳解】故選B【點睛】本題考查向量的坐標(biāo)運算和向量平行的判定,屬于基礎(chǔ)題,在解題中要注意橫坐標(biāo)與橫坐標(biāo)對應(yīng),縱坐標(biāo)與縱坐標(biāo)對應(yīng),切不可錯位.12、C【解析】

連結(jié)并延長PO,交對棱C1D1于R,則R為對棱的中點,取MN的中點H,則OH⊥MN,推導(dǎo)出OH∥RQ,且OH=RQ=,由此能求出該直線被球面截在球內(nèi)的線段的長.【詳解】如圖,MN為該直線被球面截在球內(nèi)的線段連結(jié)并延長PO,交對棱C1D1于R,則R為對棱的中點,取MN的中點H,則OH⊥MN,∴OH∥RQ,且OH=RQ=,∴MH===,∴MN=.故選:C.【點睛】本題主要考查該直線被球面截在球內(nèi)的線段的長的求法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查運算求解能力,是中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

由,則,所以點,因為,可得,點坐標(biāo)化簡為,代入雙曲線的方程求解.【詳解】設(shè),則,即,解得,則,所以,即,代入雙曲線的方程可得,所以所以解得.故答案為:【點睛】本題主要考查了直線與雙曲線的位置關(guān)系,及三角恒等變換,還考查了運算求解的能力和數(shù)形結(jié)合的思想,屬于中檔題.14、【解析】

根據(jù)約束條件畫出可行域,即可由直線的平移方法求得的取值范圍.【詳解】.由題意,畫出約束條件表示的平面區(qū)域如下圖所示,令,則如圖所示,圖中直線所示的兩個位置為的臨界位置,根據(jù)幾何關(guān)系可得與軸的兩個交點分別為,所以的取值范圍為.故答案為:【點睛】本題考查了非線性約束條件下線性規(guī)劃的簡單應(yīng)用,由數(shù)形結(jié)合法求線性目標(biāo)函數(shù)的取值范圍,屬于中檔題.15、-15【解析】

是等差數(shù)列,則有,可得的值,再由可得,計算即得.【詳解】數(shù)列是等差數(shù)列,,又,,,故.故答案為:【點睛】本題考查等差數(shù)列的性質(zhì),也可以由已知條件求出和公差,再計算.16、【解析】

由分段函數(shù)可得不滿足題意;時,,可得,即有,解方程可得,4,結(jié)合指數(shù)函數(shù)的圖象和二次函數(shù)的圖象即可得到所求和.【詳解】解:由函數(shù),可得的增區(qū)間為,,時,,,時,,當(dāng)關(guān)于的不等式的解集為,,可得不成立,時,時,不成立;,即為,可得,即有,顯然,4成立;由和的圖象可得在僅有兩個交點.綜上可得的所有值的和為1.故答案為:1.【點睛】本題考查分段函數(shù)的圖象和性質(zhì),考查不等式的解法,注意運用分類討論思想方法,考查化簡運算能力,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)或【解析】

(1)由已知條件得到方程組,解得即可;(2)由題意得直線的斜率存在,設(shè)直線方程為,聯(lián)立直線與橢圓方程,消元、列出韋達(dá)定理,由得到的范圍,設(shè)弦中點坐標(biāo)為則,所以在軸上方,只需位于內(nèi)(含邊界)就可以,即滿足,得到不等式組,解得即可;【詳解】解:(1)由已知橢圓右焦點坐標(biāo)為,離心率為,,,所以橢圓的標(biāo)準(zhǔn)方程為;(2)由題意得直線的斜率存在,設(shè)直線方程為聯(lián)立,消元整理得,,由,解得設(shè)弦中點坐標(biāo)為,所以在軸上方,只需位于內(nèi)(含邊界)就可以,即滿足,即,解得或【點睛】本題考查了橢圓的定義標(biāo)準(zhǔn)方程及其性質(zhì),直線與橢圓的綜合應(yīng)用,考查了推理能力與計算能力,屬于中檔題.18、(1)見解析(2)見解析【解析】

(1)由進(jìn)行變換,得到,兩邊開方并化簡,證得不等式成立.(2)將化為,然后利用基本不等式,證得不等式成立.【詳解】(1),兩邊加上得,即,當(dāng)且僅當(dāng)時取等號,∴.(2).當(dāng)且僅當(dāng)時取等號.【點睛】本小題主要考查利用基本不等式證明不等式成立,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.19、(1),;(2).【解析】

(1)由條件得出方程組,可求得的通項,當(dāng)時,,可得,當(dāng)時,,得出是以1為首項,2為公比的等比數(shù)列,可求得的通項;(2)由(1)可知,,分n為偶數(shù)和n為奇數(shù)分別求得.【詳解】(1)由條件知,,,當(dāng)時,,即,當(dāng)時,,是以1為首項,2為公比的等比數(shù)列,;(2)由(1)可知,,當(dāng)n為偶數(shù)時,當(dāng)n為奇數(shù)時,綜上,【點睛】本題考查等差數(shù)列和等比數(shù)列的通項的求得,以及其前n項和,注意分n為偶數(shù)和n為奇數(shù)兩種情況分別求得其數(shù)列的和,屬于中檔題.20、(1);(2)投入3艘型游船使其當(dāng)日獲得的總利潤最大【解析】

(1)首先計算出在,內(nèi)抽取的人數(shù),然后利用超幾何分布概率計算公式,計算出.(2)分別計算出投入艘游艇時,總利潤的期望值,由此確定當(dāng)日游艇投放量.【詳解】(1)年齡在內(nèi)的游客人數(shù)為150,年齡在內(nèi)的游客人數(shù)為100;若采用分層抽樣的方法抽取10人,則年齡在內(nèi)的人數(shù)為6人,年齡在內(nèi)的人數(shù)為4人.可得.(2)①當(dāng)投入1艘型游船時,因客流量總大于1,則(萬元).②當(dāng)投入2艘型游船時,若,則,此時;若,則,此時;此時的分布列如下表:2.56此時(萬元).③當(dāng)投入3艘型游船時,若,則,此時;若,則,此時;若,則,此時;此時的分布列如下表:25.59此時(萬元).由于,則該游船中心在2020年勞動節(jié)當(dāng)日應(yīng)投入3艘型游船使其當(dāng)日獲得的總利潤最大.【點睛】本小題主要考查分層抽樣,考查超幾何分布概率計算公式,考查隨機變量分布列和期望的求法,考查分析與思考問題的能力,考查分類討論的數(shù)學(xué)思想方法,屬于中檔題.21、(1);(2)見解析,有95%的把握判斷了解新高考與年齡(中青年、中老年)有關(guān)聯(lián);(3)分布列見解析,.【解析】

(1)分別求出中青年、中老年對高考了解的頻數(shù),即可求出概率;(2)根據(jù)數(shù)據(jù)列出列聯(lián)表,求出的觀測值,對照表格,即可得出結(jié)論;(3)年齡在的被調(diào)查者共

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論