2022年廣西南寧市二中高三數(shù)學(xué)第一學(xué)期期末檢測(cè)試題含解析_第1頁
2022年廣西南寧市二中高三數(shù)學(xué)第一學(xué)期期末檢測(cè)試題含解析_第2頁
2022年廣西南寧市二中高三數(shù)學(xué)第一學(xué)期期末檢測(cè)試題含解析_第3頁
2022年廣西南寧市二中高三數(shù)學(xué)第一學(xué)期期末檢測(cè)試題含解析_第4頁
2022年廣西南寧市二中高三數(shù)學(xué)第一學(xué)期期末檢測(cè)試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知等比數(shù)列的前項(xiàng)和為,若,且公比為2,則與的關(guān)系正確的是()A. B.C. D.2.若不等式對(duì)恒成立,則實(shí)數(shù)的取值范圍是()A. B. C. D.3.在中,為邊上的中線,為的中點(diǎn),且,,則()A. B. C. D.4.設(shè)函數(shù)的定義域?yàn)?,命題:,的否定是()A., B.,C., D.,5.已知雙曲線的左、右焦點(diǎn)分別為,過作一條直線與雙曲線右支交于兩點(diǎn),坐標(biāo)原點(diǎn)為,若,則該雙曲線的離心率為()A. B. C. D.6.已知復(fù)數(shù),(為虛數(shù)單位),若為純虛數(shù),則()A. B.2 C. D.7.我們熟悉的卡通形象“哆啦A夢(mèng)”的長寬比為.在東方文化中通常稱這個(gè)比例為“白銀比例”,該比例在設(shè)計(jì)和建筑領(lǐng)域有著廣泛的應(yīng)用.已知某電波塔自下而上依次建有第一展望臺(tái)和第二展望臺(tái),塔頂?shù)剿椎母叨扰c第二展望臺(tái)到塔底的高度之比,第二展望臺(tái)到塔底的高度與第一展望臺(tái)到塔底的高度之比皆等于“白銀比例”,若兩展望臺(tái)間高度差為100米,則下列選項(xiàng)中與該塔的實(shí)際高度最接近的是()A.400米 B.480米C.520米 D.600米8.已知,,,則()A. B.C. D.9.復(fù)數(shù)的()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.某幾何體的三視圖如圖所示,若側(cè)視圖和俯視圖均是邊長為的等邊三角形,則該幾何體的體積為A. B. C. D.11.已知的值域?yàn)?,?dāng)正數(shù)a,b滿足時(shí),則的最小值為()A. B.5 C. D.912.已知雙曲線的左,右焦點(diǎn)分別為,O為坐標(biāo)原點(diǎn),P為雙曲線在第一象限上的點(diǎn),直線PO,分別交雙曲線C的左,右支于另一點(diǎn),且,則雙曲線的離心率為()A. B.3 C.2 D.二、填空題:本題共4小題,每小題5分,共20分。13.?dāng)?shù)學(xué)家狄里克雷對(duì)數(shù)論,數(shù)學(xué)分析和數(shù)學(xué)物理有突出貢獻(xiàn),是解析數(shù)論的創(chuàng)始人之一.函數(shù),稱為狄里克雷函數(shù).則關(guān)于有以下結(jié)論:①的值域?yàn)?②;③;④其中正確的結(jié)論是_______(寫出所有正確的結(jié)論的序號(hào))14.在的展開式中,的系數(shù)等于__.15.一次考試后,某班全班50個(gè)人數(shù)學(xué)成績(jī)的平均分為正數(shù),若把當(dāng)成一個(gè)同學(xué)的分?jǐn)?shù),與原來的50個(gè)分?jǐn)?shù)一起,算出這51個(gè)分?jǐn)?shù)的平均值為,則_________.16.已知,則展開式中的系數(shù)為__三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)的內(nèi)角,,的對(duì)邊分別為,,,已知的面積為.(1)求;(2)若,,求的周長.18.(12分)已知點(diǎn),若點(diǎn)滿足.(Ⅰ)求點(diǎn)的軌跡方程;(Ⅱ)過點(diǎn)的直線與(Ⅰ)中曲線相交于兩點(diǎn),為坐標(biāo)原點(diǎn),求△面積的最大值及此時(shí)直線的方程.19.(12分)如圖,三棱柱ABC-A1B1C1中,側(cè)面BCC1B1是菱形,AC=BC=2,∠CBB1=,點(diǎn)A在平面BCC1B1上的投影為棱BB1的中點(diǎn)E.(1)求證:四邊形ACC1A1為矩形;(2)求二面角E-B1C-A1的平面角的余弦值.20.(12分)已知(1)若,且函數(shù)在區(qū)間上單調(diào)遞增,求實(shí)數(shù)a的范圍;(2)若函數(shù)有兩個(gè)極值點(diǎn),且存在滿足,令函數(shù),試判斷零點(diǎn)的個(gè)數(shù)并證明.21.(12分)已知中心在原點(diǎn)的橢圓的左焦點(diǎn)為,與軸正半軸交點(diǎn)為,且.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)過點(diǎn)作斜率為、的兩條直線分別交于異于點(diǎn)的兩點(diǎn)、.證明:當(dāng)時(shí),直線過定點(diǎn).22.(10分)一年之計(jì)在于春,一日之計(jì)在于晨,春天是播種的季節(jié),是希望的開端.某種植戶對(duì)一塊地的個(gè)坑進(jìn)行播種,每個(gè)坑播3粒種子,每粒種子發(fā)芽的概率均為,且每粒種子是否發(fā)芽相互獨(dú)立.對(duì)每一個(gè)坑而言,如果至少有兩粒種子發(fā)芽,則不需要進(jìn)行補(bǔ)播種,否則要補(bǔ)播種.(1)當(dāng)取何值時(shí),有3個(gè)坑要補(bǔ)播種的概率最大?最大概率為多少?(2)當(dāng)時(shí),用表示要補(bǔ)播種的坑的個(gè)數(shù),求的分布列與數(shù)學(xué)期望.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】

在等比數(shù)列中,由即可表示之間的關(guān)系.【詳解】由題可知,等比數(shù)列中,且公比為2,故故選:C【點(diǎn)睛】本題考查等比數(shù)列求和公式的應(yīng)用,屬于基礎(chǔ)題.2、B【解析】

轉(zhuǎn)化為,構(gòu)造函數(shù),利用導(dǎo)數(shù)研究單調(diào)性,求函數(shù)最值,即得解.【詳解】由,可知.設(shè),則,所以函數(shù)在上單調(diào)遞增,所以.所以.故的取值范圍是.故選:B【點(diǎn)睛】本題考查了導(dǎo)數(shù)在恒成立問題中的應(yīng)用,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.3、A【解析】

根據(jù)向量的線性運(yùn)算可得,利用及,計(jì)算即可.【詳解】因?yàn)?所以,所以,故選:A【點(diǎn)睛】本題主要考查了向量的線性運(yùn)算,向量數(shù)量積的運(yùn)算,向量數(shù)量積的性質(zhì),屬于中檔題.4、D【解析】

根據(jù)命題的否定的定義,全稱命題的否定是特稱命題求解.【詳解】因?yàn)椋?,是全稱命題,所以其否定是特稱命題,即,.故選:D【點(diǎn)睛】本題主要考查命題的否定,還考查了理解辨析的能力,屬于基礎(chǔ)題.5、B【解析】

由題可知,,再結(jié)合雙曲線第一定義,可得,對(duì)有,即,解得,再對(duì),由勾股定理可得,化簡(jiǎn)即可求解【詳解】如圖,因?yàn)?,所?因?yàn)樗?在中,,即,得,則.在中,由得.故選:B【點(diǎn)睛】本題考查雙曲線的離心率求法,幾何性質(zhì)的應(yīng)用,屬于中檔題6、C【解析】

把代入,利用復(fù)數(shù)代數(shù)形式的除法運(yùn)算化簡(jiǎn),由實(shí)部為0且虛部不為0求解即可.【詳解】∵,∴,∵為純虛數(shù),∴,解得.故選C.【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的除法運(yùn)算,考查復(fù)數(shù)的基本概念,是基礎(chǔ)題.7、B【解析】

根據(jù)題意,畫出幾何關(guān)系,結(jié)合各線段比例可先求得第一展望臺(tái)和第二展望臺(tái)的距離,進(jìn)而由比例即可求得該塔的實(shí)際高度.【詳解】設(shè)第一展望臺(tái)到塔底的高度為米,塔的實(shí)際高度為米,幾何關(guān)系如下圖所示:由題意可得,解得;且滿足,故解得塔高米,即塔高約為480米.故選:B【點(diǎn)睛】本題考查了對(duì)中國文化的理解與簡(jiǎn)單應(yīng)用,屬于基礎(chǔ)題.8、C【解析】

利用二倍角公式,和同角三角函數(shù)的商數(shù)關(guān)系式,化簡(jiǎn)可得,即可求得結(jié)果.【詳解】,所以,即.故選:C.【點(diǎn)睛】本題考查三角恒等變換中二倍角公式的應(yīng)用和弦化切化簡(jiǎn)三角函數(shù),難度較易.9、C【解析】所對(duì)應(yīng)的點(diǎn)為(-1,-2)位于第三象限.【考點(diǎn)定位】本題只考查了復(fù)平面的概念,屬于簡(jiǎn)單題.10、C【解析】

由三視圖可知,該幾何體是三棱錐,底面是邊長為的等邊三角形,三棱錐的高為,所以該幾何體的體積,故選C.11、A【解析】

利用的值域?yàn)?求出m,再變形,利用1的代換,即可求出的最小值.【詳解】解:∵的值域?yàn)?∴,∴,∴,當(dāng)且僅當(dāng)時(shí)取等號(hào),∴的最小值為.故選:A.【點(diǎn)睛】本題主要考查了對(duì)數(shù)復(fù)合函數(shù)的值域運(yùn)用,同時(shí)也考查了基本不等式中“1的運(yùn)用”,屬于中檔題.12、D【解析】

本道題結(jié)合雙曲線的性質(zhì)以及余弦定理,建立關(guān)于a與c的等式,計(jì)算離心率,即可.【詳解】結(jié)合題意,繪圖,結(jié)合雙曲線性質(zhì)可以得到PO=MO,而,結(jié)合四邊形對(duì)角線平分,可得四邊形為平行四邊形,結(jié)合,故對(duì)三角形運(yùn)用余弦定理,得到,而結(jié)合,可得,,代入上式子中,得到,結(jié)合離心率滿足,即可得出,故選D.【點(diǎn)睛】本道題考查了余弦定理以及雙曲線的性質(zhì),難度偏難.二、填空題:本題共4小題,每小題5分,共20分。13、②【解析】

根據(jù)新定義,結(jié)合實(shí)數(shù)的性質(zhì)即可判斷①②③,由定義求得比小的有理數(shù)個(gè)數(shù),即可確定④.【詳解】對(duì)于①,由定義可知,當(dāng)為有理數(shù)時(shí);當(dāng)為無理數(shù)時(shí),則值域?yàn)?,所以①錯(cuò)誤;對(duì)于②,因?yàn)橛欣頂?shù)的相反數(shù)還是有理數(shù),無理數(shù)的相反數(shù)還是無理數(shù),所以滿足,所以②正確;對(duì)于③,因?yàn)?,?dāng)為無理數(shù)時(shí),可以是有理數(shù),也可以是無理數(shù),所以③錯(cuò)誤;對(duì)于④,由定義可知,所以④錯(cuò)誤;綜上可知,正確的為②.故答案為:②.【點(diǎn)睛】本題考查了新定義函數(shù)的綜合應(yīng)用,正確理解題意是解決此類問題的關(guān)鍵,屬于中檔題.14、7【解析】

由題,得,令,即可得到本題答案.【詳解】由題,得,令,得x的系數(shù).故答案為:7【點(diǎn)睛】本題主要考查二項(xiàng)式定理的應(yīng)用,屬基礎(chǔ)題.15、1【解析】

根據(jù)均值的定義計(jì)算.【詳解】由題意,∴.故答案為:1.【點(diǎn)睛】本題考查均值的概念,屬于基礎(chǔ)題.16、1.【解析】

由題意求定積分得到的值,再根據(jù)乘方的意義,排列組合數(shù)的計(jì)算公式,求出展開式中的系數(shù).【詳解】∵已知,則,

它表示4個(gè)因式的乘積.

故其中有2個(gè)因式取,一個(gè)因式取,剩下的一個(gè)因式取1,可得的項(xiàng).

故展開式中的系數(shù).

故答案為:1.【點(diǎn)睛】本題主要考查求定積分,乘方的意義,排列組合數(shù)的計(jì)算公式,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】

(1)根據(jù)三角形面積公式和正弦定理可得答案;(2)根據(jù)兩角余弦公式可得,即可求出,再根據(jù)正弦定理可得,根據(jù)余弦定理即可求出,問題得以解決.【詳解】(1)由三角形的面積公式可得,,由正弦定理可得,,;(2),,,,,則由,可得:,由,可得:,,可得:,經(jīng)檢驗(yàn)符合題意,三角形的周長.(實(shí)際上可解得,符合三邊關(guān)系).【點(diǎn)睛】本題考查了三角形的面積公式、兩角和的余弦公式、誘導(dǎo)公式,考查正弦定理,余弦定理在解三角形中的綜合應(yīng)用,考查了學(xué)生的運(yùn)算能力,考查了轉(zhuǎn)化思想,屬于中檔題.18、(Ⅰ);(Ⅱ)面積的最大值為,此時(shí)直線的方程為.【解析】

(1)根據(jù)橢圓的定義求解軌跡方程;(2)設(shè)出直線方程后,采用(表示原點(diǎn)到直線的距離)表示面積,最后利用基本不等式求解最值.【詳解】解:(Ⅰ)由定義法可得,點(diǎn)的軌跡為橢圓且,.因此橢圓的方程為.(Ⅱ)設(shè)直線的方程為與橢圓交于點(diǎn),,聯(lián)立直線與橢圓的方程消去可得,即,.面積可表示為令,則,上式可化為,當(dāng)且僅當(dāng),即時(shí)等號(hào)成立,因此面積的最大值為,此時(shí)直線的方程為.【點(diǎn)睛】常見的利用定義法求解曲線的軌跡方程問題:(1)已知點(diǎn),若點(diǎn)滿足且,則的軌跡是橢圓;(2)已知點(diǎn),若點(diǎn)滿足且,則的軌跡是雙曲線.19、(1)見解析(2)【解析】

(1)通過勾股定理得出,又,進(jìn)而可得平面,則可得到,問題得證;(2)如圖,以為原點(diǎn),,,所在直線分別為軸,軸,軸,求出平面的法向量和平面的法向量,利用空間向量的夾角公式可得答案.【詳解】(1)因?yàn)槠矫?,所以,又因?yàn)?,,,所以,因此,所以,因此平面,所以,從而,又四邊形為平行四邊形,則四邊形為矩形;(2)如圖,以為原點(diǎn),,,所在直線分別為軸,軸,軸,所以,平面的法向量,設(shè)平面的法向量,由,由,令,即,所以,,所以,所求二面角的余弦值是.【點(diǎn)睛】本題考查空間垂直關(guān)系的證明,考查向量法求二面角的大小,考查學(xué)生計(jì)算能力,是中檔題.20、(1)(2)函數(shù)有兩個(gè)零點(diǎn)和【解析】試題分析:(1)求導(dǎo)后根據(jù)函數(shù)在區(qū)間單調(diào)遞增,導(dǎo)函數(shù)大于或等于0(2)先判斷為一個(gè)零點(diǎn),然后再求導(dǎo),根據(jù),化簡(jiǎn)求得另一個(gè)零點(diǎn)。解析:(1)當(dāng)時(shí),,因?yàn)楹瘮?shù)在上單調(diào)遞增,所以當(dāng)時(shí),恒成立.[來源:學(xué)&科&網(wǎng)Z&X&X&K]函數(shù)的對(duì)稱軸為.①,即時(shí),,即,解之得,解集為空集;②,即時(shí),即,解之得,所以③,即時(shí),即,解之得,所以綜上所述,當(dāng)函數(shù)在區(qū)間上單調(diào)遞增.(2)∵有兩個(gè)極值點(diǎn),∴是方程的兩個(gè)根,且函數(shù)在區(qū)間和上單調(diào)遞增,在上單調(diào)遞減.∵∴函數(shù)也是在區(qū)間和上單調(diào)遞增,在上單調(diào)遞減∵,∴是函數(shù)的一個(gè)零點(diǎn).由題意知:∵,∴,∴∴,∴又=∵是方程的兩個(gè)根,∴,,∴∵函數(shù)圖像連續(xù),且在區(qū)間上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增∴當(dāng)時(shí),,當(dāng)時(shí),當(dāng)時(shí),∴函數(shù)有兩個(gè)零點(diǎn)和.21、(1);(2)見解析.【解析】

(1)在中,計(jì)算出的值,可得出的值,進(jìn)而可得出的值,由此可得出橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)點(diǎn)、,設(shè)直線的方程為,將該直線方程與橢圓方程聯(lián)立,列出韋達(dá)定理,根據(jù)已知條件得出,利用韋達(dá)定理和斜率公式化簡(jiǎn)得出與所滿足的關(guān)系式,代入直線的方程,即可得出直線所過定點(diǎn)的坐標(biāo).【詳解】(1)在中,,,,,,,,因此,橢圓的標(biāo)準(zhǔn)方程為;(2)由題不妨設(shè),設(shè)點(diǎn),聯(lián)立,消去化簡(jiǎn)得,且,,,,,∴代入,化簡(jiǎn)得,化簡(jiǎn)得,,,,直線,因此,直線過定點(diǎn).【點(diǎn)睛】本題考查橢圓方程的求解,同時(shí)也考查了橢圓中直線過定點(diǎn)的問題,考查計(jì)算能力,屬于中等題.22、(1)當(dāng)或時(shí),有3個(gè)坑要補(bǔ)播種的概率最大,最大概率為;(2)見解析.【解析】

(1)將有3個(gè)坑需要補(bǔ)種表

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論