版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
湖北省武漢市部分重點中學2025屆高一下數(shù)學期末聯(lián)考模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設△ABC的內(nèi)角A、B、C所對邊分別為a、b、c,若a=3,b=,A=,則B=()A. B.或 C. D.或2.數(shù)列中,,則數(shù)列的極限值()A.等于0 B.等于1 C.等于0或1 D.不存在3.在中,角的對邊分別為,已知,則的大小是()A. B. C. D.4.漢朝時,張衡得出圓周率的平方除以16等于,如圖,網(wǎng)格紙上的小正方形的邊長為1,粗實線畫出的是某幾何體的三視圖,俯視圖中的曲線為圓,利用張衡的結論可得該幾何體的體積為()A.32 B.40 C. D.5.函數(shù),若方程恰有三個不同的解,記為,則的取值范圍是()A. B. C. D.6.記Sn為等差數(shù)列{an}的前A.a(chǎn)n=2n-5 B.a(chǎn)n=3n-107.若向量,,則()A. B. C. D.8.如圖:樣本A和B分別取自兩個不同的總體,他們的樣本平均數(shù)分別為和,樣本標準差分別為和,則()A.B.C.D.9.樣本中共有個個體,其值分別為、、、、.若該樣本的平均值為,則樣本的方差為()A. B. C. D.10.若實數(shù)x,y滿足條件,則目標函數(shù)z=2x-y的最小值()A. B.-1 C.0 D.2二、填空題:本大題共6小題,每小題5分,共30分。11.若,則函數(shù)的值域為________.12.已知為銳角,,則________.13.如圖,在中,,,,則________.14.在棱長均為2的三棱錐中,分別為上的中點,為棱上的動點,則周長的最小值為________.15.設實數(shù)滿足,則的最小值為_____16.求值:_____.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知向量.(1)求與的夾角的余弦值;(2)若向量與垂直,求的值.18.已知數(shù)列滿足,,,.(1)證明:數(shù)列是等比數(shù)列;(2)求數(shù)列的通項公式;(3)證明:.19.在中,角的對邊分別為.已知(1)若,,求的面積;(2)若的面積為,且,求的值.20.如圖所示,在中,點在邊上,,,,.(1)求的值;(2)求的面積.21.如圖,函數(shù),其中的圖象與y軸交于點.(1)求的值;(2)求函數(shù)的單調(diào)遞增區(qū)間;(3)求使的x的集合.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】
由已知利用正弦定理可求的值,利用大邊對大角可求為銳角,利用特殊角的三角函數(shù)值,即可得解.【詳解】由題意知,由正弦定理,可得==,又因為,可得B為銳角,所以.故選A.【點睛】本題主要考查了正弦定理,大邊對大角,特殊角的三角函數(shù)值在解三角形中的綜合應用,考查了計算能力和轉(zhuǎn)化思想,屬于基礎題.2、B【解析】
根據(jù)題意得到:時,,再計算即可.【詳解】因為當時,.所以.故選:B【點睛】本題主要考查數(shù)列的極限,解題時要注意公式的選取和應用,屬于中檔題.3、C【解析】∵,∴,又,∴,又為三角形的內(nèi)角,所以,故。選C。4、C【解析】
將三視圖還原,即可求組合體體積【詳解】將三視圖還原成如圖幾何體:半個圓柱和半個圓錐的組合體,底面半徑為2,高為4,則體積為,利用張衡的結論可得故選C【點睛】本題考查三視圖,正確還原,熟記圓柱圓錐的體積是關鍵,是基礎題5、D【解析】
由方程恰有三個不同的解,作出的圖象,確定,的取值范圍,得到的對稱性,利用數(shù)形結合進行求解即可.【詳解】設
作出函數(shù)的圖象如圖:由
則當
時
,,
即函數(shù)的一條對稱軸為
,要使方程恰有三個不同的解,則
,
此時
,
關于
對稱,則
當
,即
,則
則
的取值范圍是,選D.【點睛】本題主要考查了方程與函數(shù),數(shù)學結合是解決本題的關鍵,數(shù)學結合也是數(shù)學中比較重要的一種思想方法.6、A【解析】
等差數(shù)列通項公式與前n項和公式.本題還可用排除,對B,a5=5,S4=4(-7+2)【詳解】由題知,S4=4a1+【點睛】本題主要考查等差數(shù)列通項公式與前n項和公式,滲透方程思想與數(shù)學計算等素養(yǎng).利用等差數(shù)列通項公式與前n項公式即可列出關于首項與公差的方程,解出首項與公差,在適當計算即可做了判斷.7、B【解析】
根據(jù)向量的坐標運算,先由,求得,再求的坐標.【詳解】因為,所以,所以.故選:B【點睛】本題主要考查了向量的坐標運算,還考查了運算求解的能力,屬于基礎題.8、B【解析】
從圖形中可以看出樣本A的數(shù)據(jù)均不大于10,而樣本B的數(shù)據(jù)均不小于10,A中數(shù)據(jù)波動程度較大,B中數(shù)據(jù)較穩(wěn)定,由此得到結論.【詳解】∵樣本A的數(shù)據(jù)均不大于10,而樣本B的數(shù)據(jù)均不小于10,,由圖可知A中數(shù)據(jù)波動程度較大,B中數(shù)據(jù)較穩(wěn)定,.故選B.9、D【解析】
根據(jù)樣本的平均數(shù)計算出的值,再利用方差公式計算出樣本的方差.【詳解】由題意可知,,解得,因此,該樣本的方差為,故選:D.【點睛】本題考查方差與平均數(shù)的計算,靈活利用平均數(shù)與方差公式進行求解是解本題的關鍵,考查運算求解能力,屬于基礎題.10、A【解析】
線性規(guī)劃問題,首先畫出可行域,再令z=0,畫出目標函數(shù),上下平移得到z的最值?!驹斀狻靠尚杏蛉鐖D所示,當目標函數(shù)平移到A點時z取最小值,故選A【點睛】線性規(guī)劃中線性的目標函數(shù)問題,首先畫出可行域,再令z=0,畫出目標函數(shù),上下平移得到z的最值。二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
令,結合可得,本題轉(zhuǎn)化為求二次函數(shù)在的值域,求解即可.【詳解】,.令,,則,由二次函數(shù)的性質(zhì)可知,當時,;當時,.故所求值域為.【點睛】本題考查了函數(shù)的值域,利用換元法是解決本題的一個方法.12、【解析】
利用同角三角函數(shù)的基本關系求出,并利用二倍角正切公式計算出的值,再利用兩角和的正切公式求出的值.【詳解】為銳角,則,,由二倍角正切公式得,因此,,故答案為.【點睛】本題考查同角三角函數(shù)的基本關系求值、二倍角正切公式和兩角和的正切公式求值,解題的關鍵就是靈活利用這些公式進行計算,考查運算求解能力,屬于中等題.13、【解析】
先將轉(zhuǎn)化為和為基底的兩組向量,然后通過數(shù)量積即可得到答案.【詳解】,.【點睛】本題主要考查向量的基本運算,數(shù)量積運算,意在考查學生的分析能力和計算能力.14、【解析】
易證明中,且周長為,其中為定值,故只需考慮的最小值即可.【詳解】由題,棱長均為2的三棱錐,故該三棱錐的四個面均為正三角形.又因為,故.故.且分別為上的中點,故.故周長為.故只需求的最小值即可.易得當時取得最小值為.故周長的最小值為.故答案為:【點睛】本題主要考查了立體幾何中的距離最值問題,需要根據(jù)題意找到定量以及變量的最值情況即可.屬于中檔題.15、1.【解析】
由約束條件作出可行域,化目標函數(shù)為直線方程的斜截式,數(shù)形結合得到最優(yōu)解,把最優(yōu)解的坐標代入目標函數(shù)得答案.【詳解】解:由實數(shù)滿足作出可行域如圖,
由圖形可知:.
令,化為,
由圖可知,當直線過點時,直線在軸上的截距最小,有最小值為1.
故答案為:1.【點睛】本題考查簡單的線性規(guī)劃,考查了數(shù)形結合的解題思想方法,是中檔題.16、【解析】
根據(jù)同角三角函數(shù)的基本關系:,以及反三角函數(shù)即可解決?!驹斀狻坑深}意.故答案為:.【點睛】本題主要考查了同角三角函數(shù)的基本關系,同角角三角函數(shù)基本關系主要有:,.屬于基礎題。三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】
(1)分別求出,,,再代入公式求余弦值;(2)由向量互相垂直,得到數(shù)量積為0,從而構造出關于的方程,再求的值.【詳解】(1),,,∴.(2).若,則,解得.【點睛】本題考查向量數(shù)量積公式的應用及兩向量垂直求參數(shù)的值,考查基本的運算求解能力.18、(1)證明見解析;(2);(3)證明見解析.【解析】
(1)由,得,即可得到本題答案;(2)由,得,即可得到本題答案;(3)當時,滿足題意;若n是偶數(shù),由,可得;當n是奇數(shù),且時,由,可得,綜上,即可得到本題答案.【詳解】(1)因為,所以,因為,所以,所以數(shù)列是等比數(shù)列;(2)因為,所以,所以,又因為,所以,所以是以為首項,為公比的等比數(shù)列,所以,所以;(3)①當時,;②若n是偶數(shù),則,所以當n是偶數(shù)時,;③當n是奇數(shù),且時,;綜上所述,當時,.【點睛】本題主要考查利用構造法證明等比數(shù)列并求通項公式,以及數(shù)列與不等式的綜合問題.19、(1);(2).【解析】
(1)先根據(jù)計算出與,再利用余弦定理求出b邊,最后利用求出答案;(2)利用正弦定理將等式化為變得關系,再利用余弦定理化為與的關系式,再結合面積求出c的值.【詳解】解:(1)因為,所以.又,所以.因為,,且,所以,解得,所以.(2)因為,由正弦定理,得.又,所以.又,得,所以,所以.【點睛】本題考查正余弦定理解三角形,屬于基礎題.20、(1)(2)【解析】
(1)設,分別在和中利用余弦定理計算,聯(lián)立方程組,求得的值,再由余弦定理,即可求解的值;(2)由(1)的結論,計算,利用三角形的面積公式,即可求解.【詳解】(1),則,所以在中,由余弦定理得,在中,由余弦定理得,所以,解得,所以,由余弦定理得(2)由(1)求得,,所以,所以.【點睛】本題主要考查了余弦定理和三角形的面積公式的應用,其中在解有關三角形的題目時,要抓住題設條件和利用某個定理的信息,合理應用正弦定理和余弦定理列出方程是解答的關鍵,著重考查了運算與求解能力,屬于基礎題.21、(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025版安全生產(chǎn)事故調(diào)查處理合同范本3篇
- 2025版綠色節(jié)能舊房改造服務合同
- 2024年股權投資代持協(xié)議書
- 2025年度淀粉類產(chǎn)品研發(fā)生產(chǎn)與技術轉(zhuǎn)移合同2篇
- 2024水電站水電租賃服務合同與水電發(fā)電量銷售協(xié)議3篇
- 商是兩位數(shù)的筆算除法(說課稿)-2024-2025學年四年級上冊數(shù)學人教版
- 2025年小學語文四年級下冊名師教案習作:我的動物朋友
- 2024版小學教育設備采購與維護合同
- 山里放松心情的句子
- 2024年金融數(shù)據(jù)保密與反洗錢合規(guī)協(xié)議3篇
- 專項債券培訓課件
- 中央企業(yè)人工智能應用場景案例白皮書(2024年版)-中央企業(yè)人工智能協(xié)同創(chuàng)新平臺
- 江蘇省蘇州市2024-2025學年第一學期八年級歷史期末模擬卷(二)(含答案)
- 杜瓦瓶充裝操作規(guī)程(3篇)
- 安全管理體系與措施
- 校園重點防火部位消防安全管理規(guī)定(3篇)
- 甘肅蘭州生物制品研究所筆試題庫
- 醫(yī)院改擴建工程可行性研究報告(論證后)
- 雙方共同招工協(xié)議書(2篇)
- 2021-2022學年第二學期《大學生職業(yè)發(fā)展與就業(yè)指導2》學習通超星期末考試答案章節(jié)答案2024年
- 期末檢測試卷(試題)-2024-2025學年四年級上冊數(shù)學青島版
評論
0/150
提交評論