吉林省吉林市2025屆數(shù)學高一下期末考試模擬試題含解析_第1頁
吉林省吉林市2025屆數(shù)學高一下期末考試模擬試題含解析_第2頁
吉林省吉林市2025屆數(shù)學高一下期末考試模擬試題含解析_第3頁
吉林省吉林市2025屆數(shù)學高一下期末考試模擬試題含解析_第4頁
吉林省吉林市2025屆數(shù)學高一下期末考試模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

吉林省吉林市2025屆數(shù)學高一下期末考試模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知,且,則下列不等式正確的是()A. B. C. D.2.已知平面向量=(1,-3),=(4,-2),與垂直,則是()A.2 B.1 C.-2 D.-13.在直角坐標平面上,點的坐標滿足方程,點的坐標滿足方程則的取值范圍是()A. B. C. D.4.2019年是新中國成立70周年,渦陽縣某中學為慶祝新中國成立70周年,舉辦了“我和我的祖國”演講比賽,某選手的6個得分去掉一個最高分,去掉一個最低分,4個剩余分數(shù)的平均分為91.現(xiàn)場制作的6個分數(shù)的莖葉圖后來有1個數(shù)據(jù)模糊,無法辨認,在圖中以表示,則4個剩余分數(shù)的方差為()A.1 B. C.4 D.65.執(zhí)行如圖所示的程序框圖,若輸入,則輸出()A.5 B.8 C.13 D.216.若實數(shù)滿足約束條件則的最大值與最小值之和為()A. B. C. D.7.設,且,則的最小值為()A. B. C. D.8.已知m,n是兩條不同的直線,是三個不同的平面,則下列命題正確的是()A.若,,則 B.若,則C.若,,,則 D.若,,則9.演講比賽共有9位評委分別給出某選手的原始評分,評定該選手的成績時,從9個原始評分中去掉1個最高分、1個最低分,得到7個有效評分.7個有效評分與9個原始評分相比,不變的數(shù)字特征是A.中位數(shù) B.平均數(shù)C.方差 D.極差10.△ABC中,三個內角A,B,C所對應的邊分別為a,b,c,若c=,b=1,∠B=,則△ABC的形狀為()A.等腰直角三角形 B.直角三角形C.等邊三角形 D.等腰三角形或直角三角形二、填空題:本大題共6小題,每小題5分,共30分。11.等差數(shù)列中,則此數(shù)列的前項和_________.12.已知函數(shù),,則的最大值是__________.13.在數(shù)列中,,,,則_____________.14._______________.15.設函數(shù)的最小值為,則的取值范圍是___________.16.下邊程序執(zhí)行后輸出的結果是().三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知角的終邊經過點.(1)求的值;(2)求的值.18.已知函數(shù).(1)若,求函數(shù)有零點的概率;(2)若,求成立的概率.19.已知函數(shù),且,.(1)求,的值及的定義域;(2)若存在,使得成立,求實數(shù)的取值范圍.20.己知點,直線l與圓C:(x一1)2+(y一2)2=4相交于A,B兩點,且OA⊥OB.(1)若直線OA的方程為y=一3x,求直線OB被圓C截得的弦長;(2)若直線l過點(0,2),求l的方程.21.三個內角A,B,C對應的三條邊長分別是,且滿足.(1)求角的大?。唬?)若,,求.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】

通過反例可排除;根據(jù)的單調性可知正確.【詳解】當,時,,,則錯誤;當,時,,則錯誤;由單調遞增可知,當時,,則正確本題正確選項:【點睛】本題考查不等關系的判斷,解決此類問題常采用排除法,屬于基礎題.2、D【解析】

試題分析:,由與垂直可知考點:向量垂直與坐標運算3、B【解析】

由點的坐標滿足方程,可得在圓上,由坐標滿足方程,可得在圓上,則求出兩圓內公切線的斜率,利用數(shù)形結合可得結果.【詳解】點的坐標滿足方程,在圓上,在坐標滿足方程,在圓上,則作出兩圓的圖象如圖,設兩圓內公切線為與,由圖可知,設兩圓內公切線方程為,則,圓心在內公切線兩側,,可得,,化為,,即,,的取值范圍,故選B.【點睛】本題主要考查直線的斜率、直線與圓的位置關系以及數(shù)形結合思想的應用,屬于綜合題.數(shù)形結合是根據(jù)數(shù)量與圖形之間的對應關系,通過數(shù)與形的相互轉化來解決數(shù)學問題的一種重要思想方法,尤其在解決選擇題、填空題時發(fā)揮著奇特功效,大大提高了解題能力與速度.運用這種方法的關鍵是運用這種方法的關鍵是正確作出曲線圖象,充分利用數(shù)形結合的思想方法能夠使問題化難為簡,并迎刃而解.4、B【解析】

由題意得x≥3,由此能求出4個剩余數(shù)據(jù)的方差.【詳解】由題意得x≥3,則4個剩余分數(shù)的方差為:s2[(93﹣91)2+(90﹣91)2+(90﹣91)2+(91﹣91)2].故選B.【點睛】本題考查了方差的計算問題,也考查了莖葉圖的性質、平均數(shù)、方差等基礎知識,是基礎題.5、C【解析】

通過程序一步步分析得到結果,從而得到輸出結果.【詳解】開始:,執(zhí)行程序:;;;;,執(zhí)行“否”,輸出的值為13,故選C.【點睛】本題主要考查算法框圖的輸出結果,意在考查學生的分析能力及計算能力,難度不大.6、A【解析】

首先根據(jù)不等式組畫出對應的可行域,再分別計算出頂點的坐標,帶入目標函數(shù)求出相應的值,即可找到最大值和最小值.【詳解】不等式組對應的可行域如圖所示:,.,.,,.,,.故選:A【點睛】本題主要考查線性規(guī)劃,根據(jù)不等式組畫出可行域為解題的關鍵,屬于簡單題.7、D【解析】

本題首先可將轉化為,然后將其化簡為,最后利用基本不等式即可得出結果.【詳解】,當且僅當,即時成立,故選D.【點睛】本題考查利用基本不等式求最值,基本不等式公式為,考查化歸與轉化思想,是簡單題.8、C【解析】

利用線面垂直、線面平行、面面垂直的性質定理分別對選項分析選擇.【詳解】對于A,若,,則或者;故A錯誤;對于B,若,則可能在內或者平行于;故B錯誤;對于C,若,,,過分作平面于,作平面,則根據(jù)線面平行的性質定理得,,∴,根據(jù)線面平行的判定定理,可得,又,,根據(jù)線面平行的性質定理可得,又,∴;故C正確;對于D.若,,則與可能垂直,如墻角;故D錯誤;故選:C.【點睛】本題考查了面面垂直、線面平行、線面垂直的性質定理及應用,涉及空間線線平行的傳遞性,考查了空間想象能力,熟練運用定理是關鍵.9、A【解析】

可不用動筆,直接得到答案,亦可采用特殊數(shù)據(jù),特值法篩選答案.【詳解】設9位評委評分按從小到大排列為.則①原始中位數(shù)為,去掉最低分,最高分,后剩余,中位數(shù)仍為,A正確.②原始平均數(shù),后來平均數(shù)平均數(shù)受極端值影響較大,與不一定相同,B不正確③由②易知,C不正確.④原極差,后來極差可能相等可能變小,D不正確.【點睛】本題旨在考查學生對中位數(shù)、平均數(shù)、方差、極差本質的理解.10、D【解析】試題分析:在中,由正弦定理可得,因為,所以或,所以或,所以的形狀一定為等腰三角形或直角三角形,故選D.考點:正弦定理.二、填空題:本大題共6小題,每小題5分,共30分。11、180【解析】由,,可知.12、3【解析】函數(shù)在上為減函數(shù),故最大值為.13、5【解析】

利用遞推關系式依次求值,歸納出:an+6=an,再利用數(shù)列的周期性,得解.【詳解】∵a1=1,a2=5,an+2=an+1-an(n∈N*),∴a3=a2-a1=5-1=4,同理可得:a4=-1,a5=-5,a6=-4,a7=1,a8=5,…,∴an+6=an.則a2018=a6×336+2=a2=5【點睛】本題考查了遞推關系、數(shù)列的周期性,考查了推理能力與計算能力.14、2【解析】

利用裂項求和法將化簡為,再求極限即可.【詳解】令...故答案為:【點睛】本題主要考查數(shù)列求和中的列項求和,同時考查了極限的求法,屬于中檔題.15、.【解析】

確定函數(shù)的單調性,由單調性確定最小值.【詳解】由題意在上是增函數(shù),在上是減函數(shù),又,∴,,故答案為.【點睛】本題考查分段函數(shù)的單調性.由單調性確定最小值,16、15【解析】試題分析:程序執(zhí)行中的數(shù)據(jù)變化如下:,輸出考點:程序語句三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】

(1)直接利用任意角的三角函數(shù)的定義,求得的值.(2)利用誘導公式化簡所給的式子,再把代入,求得結果.【詳解】解:(1)因為角的終邊經過點由三角函數(shù)的定義可知.(2)由(1)知,.【點睛】本題主要考查任意角的三角函數(shù)的定義,誘導公式,屬于基礎題.18、(1);(2)【解析】

(1)求得有零點的條件,運用古典概率的公式,計算可得所求;(2)若,即,畫出不等式組表示的區(qū)域,計算面積可得所求.【詳解】解:(1)函數(shù)有零點的條件為,即,,可得事件的總數(shù)為,而有零點的個數(shù)為,,,,,,共7個,則函數(shù)有零點的概率為;(2)若,即,畫出的區(qū)域,可得成立的概率為.【點睛】本題考查古典概率和幾何概率的求法,考查運算能力,屬于基礎題.19、(1),,定義域;(2)【解析】

(1)由已知得,可求出、,由對數(shù)函數(shù)的定義域可得,求出的范圍,即可得到的定義域;(2)設,可得,由復合函數(shù)單調性,可得在上的單調性,從而可得時,的最大值,令,解不等式即可得到答案.【詳解】(1)由已知得,即,解得,,由得,所以,即,所以定義域為.(2),設,由時,可得,因為在上單調遞增,所以可得在上單調遞增,故當時,的最大值為,由題意,,即,即,因為,所以,即.故時,存在,使得成立.【點睛】本題考查對數(shù)函數(shù)的性質,考查復合函數(shù)單調性,考查存在性問題,考查學生的計算能力與推理能力,屬于中檔題.20、(1);(2).【解析】

(1)根據(jù)題意,求得直線OB的方程,利用點到直線的距離公式求得圓心到直線OB的距離,之后應用圓中的特殊三角形,求得弦長;(2)根據(jù)題意,可判斷直線的斜率是存在的,設出其方程,與圓的方程聯(lián)立,得到兩根和與兩根積,根據(jù)OA⊥OB,利用向量數(shù)量積等于零得到所滿足的等量關系式,求得結果.【詳解】(1)因為直線OA的方程為,,所以直線OB的方程.從而圓心到直線OB的距離為:所以直線OB被團C截得的弦長為:.(2)依題意,直線l的斜率必存在,不妨設其為k,則l的方程為,又設,.由得,所以,.從而.所以.因為,所以,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論