版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆廣東省中山市紀念中學數(shù)學高一下期末監(jiān)測模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在數(shù)列中,,且數(shù)列是等比數(shù)列,其公比,則數(shù)列的最大項等于()A. B. C.或 D.2.在等差數(shù)列中,若,則()A. B. C. D.3.設數(shù)列是等差數(shù)列,是其前項和,且,,則下列結論中錯誤的是()A. B. C. D.與均為的最大值4.一個幾何體的三視圖如圖所示,則該幾何體的體積為()A.10 B.20 C.30 D.605.已知a,b,c為實數(shù),則下列結論正確的是()A.若ac>bc>0,則a>b B.若a>b>0,則ac>bcC.若ac2>bc2,則a>b D.若a>b,則ac2>bc26.已知函數(shù),下列結論不正確的是(
)A.函數(shù)的最小正周期為B.函數(shù)在區(qū)間內單調遞減C.函數(shù)的圖象關于軸對稱D.把函數(shù)的圖象向左平移個單位長度可得到的圖象7.已知角α終邊上一點P(-2,3),則cos(A.32 B.-32 C.8.已知,則的值為()A. B. C. D.9.如圖,各棱長均為的正三棱柱,、分別為線段、上的動點,且平面,,中點軌跡長度為,則正三棱柱的體積為()A. B. C.3 D.10.如圖,函數(shù)與坐標軸的三個交點P,Q,R滿足,,M為QR的中點,,則A的值為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知為銳角,則_______.12.函數(shù)的單調遞增區(qū)間為______.13.求的值為________.14.已知向量a=1,2,b=2,-2,c=15.對于0≤m≤4的任意m,不等式x2+mx>4x+m-3恒成立,則x的取值范圍是________________.16.若滿足約束條件則的最大值為__________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知,,且向量與的夾角為.(1)若,求;(2)若與垂直,求.18.已知函數(shù)。(1)若,求不等式的解集;(2)若,且,求的最小值。19.設數(shù)列的前項和.已知.(1)求數(shù)列的通項公式;(2)是否對一切正整數(shù),有?說明理由.20.已知函數(shù).(1)求的最小正周期.(2)求在區(qū)間上的最小值.21.已知數(shù)列{an}中,a1=1且an﹣an﹣1=3×()n﹣2(n≥2,n∈N*).(1)求數(shù)列{an}的通項公式:(2)若對任意的n∈N*,不等式1≤man≤5恒成立,求實數(shù)m的取值范圍.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】
在數(shù)列中,,,且數(shù)列是等比數(shù)列,其公比,利用等比數(shù)列的通項公式可得:.可得,利用二次函數(shù)的單調性即可得出.【詳解】在數(shù)列中,,,且數(shù)列是等比數(shù)列,其公比,.,.由或8時,,或9時,,數(shù)列的最大項等于或.故選:C.【點睛】本題考查等比數(shù)列的通項公式、累乘法、二次函數(shù)的單調性,考查推理能力與計算能力,屬于中檔題.2、B【解析】
由等差數(shù)列的性質可得,則答案易求.【詳解】在等差數(shù)列中,因為,所以.所以.故選B.【點睛】本題考查等差數(shù)列性質的應用.在等差數(shù)列中,若,則.特別地,若,則.3、C【解析】
根據(jù)等差數(shù)列的性質,結合,,分析出錯誤結論.【詳解】由于,,所以,,,所以,與均為的最大值.而,所以,所以C選項結論錯誤.故選:C.【點睛】本小題主要考查等差數(shù)列的性質,考查分析與推理能力,屬于基礎題.4、B【解析】
由三視圖可知幾何體為四棱錐,利用四棱錐體積公式可求得結果.【詳解】由三視圖可知,該幾何體為底面為長為,寬為的長方形,高為的四棱錐四棱錐體積本題正確選項:【點睛】本題考查根據(jù)三視圖求解幾何體體積的問題,關鍵是能夠通過三視圖將幾何體還原為四棱錐,從而利用棱錐體積公式來進行求解.5、C【解析】
本題可根據(jù)不等式的性質以及運用特殊值法進行代入排除即可得到正確結果.【詳解】由題意,可知:對于A中,可設,很明顯滿足,但,所以選項A不正確;對于B中,因為不知道的正負情況,所以不能直接得出,所以選項B不正確;對于C中,因為,所以,所以,所以選項C正確;對于D中,若,則不能得到,所以選項D不正確.故選:C.【點睛】本題主要考查了不等式性質的應用以及特殊值法的應用,著重考查了推理能力,屬于基礎題.6、D【解析】
利用余弦函數(shù)的性質對A、B、C三個選項逐一判斷,再利用平移“左加右減”及誘導公式得出,進而得出答案.【詳解】由題意,函數(shù)其最小正周期為,故選項A正確;函數(shù)在上為減函數(shù),故選項B正確;函數(shù)為偶函數(shù),關于軸對稱,故選項C正確把函數(shù)的圖象向左平移個單位長度可得,所以選項D不正確.故答案為D【點睛】本題主要考查了余弦函數(shù)的性質,以及誘導公式的應用,著重考查了推理與運算能力,屬于基礎題.7、A【解析】角α終邊上一點P(-2,3),所以cos(8、C【解析】
根據(jù)輔助角公式即可.【詳解】由輔助角公式得所以,選C.【點睛】本題主要考查了輔助角公式的應用:,屬于基礎題.9、D【解析】
設的中點分別為,判斷出中點的軌跡是等邊三角形的高,由此計算出正三棱柱的邊長,進而計算出正三棱柱的體積.【詳解】設的中點分別為,連接.由于平面,所以.當時,中點為平面的中心,即的中點(設為點)處.當時,此時的中點為的中點.所以點的軌跡是三角形的高.由于三角形是等邊三角形,而,所以.故正三棱柱的體積為.故選:D【點睛】本小題主要考查線面平行的有關性質,考查棱柱的體積計算,考查空間想象能力,考查分析與解決問題的能力,屬于中檔題.10、D【解析】
用周期表示出點坐標,從而又可得點坐標,再求出點坐標后利用求得,得.【詳解】記函數(shù)的周期,則,因為,∴,是中點,則,∴,解得,∴,由得,∵,∴,,,∴,故選:D.【點睛】本題考查求三角函數(shù)的解析式,掌握正弦函數(shù)的圖象與性質是解題關鍵.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
利用同角三角函數(shù)的基本關系得,再根據(jù)角度關系,利用誘導公式即可得答案.【詳解】∵且,∴;∵,∴.故答案為:.【點睛】本題考查同角三角函數(shù)的基本關系、誘導公式,考查函數(shù)與方程思想、轉化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意三角函數(shù)的符號問題.12、【解析】
令,解得的范圍即為所求的單調區(qū)間.【詳解】令,,解得:,的單調遞增區(qū)間為故答案為:【點睛】本題考查正弦型函數(shù)單調區(qū)間的求解問題,關鍵是能夠采用整體對應的方式,結合正弦函數(shù)的單調區(qū)間來進行求解.13、44.5【解析】
通過誘導公式,得出,依此類推,得出原式的值.【詳解】,,同理,,故答案為44.5.【點睛】本題主要考查了三角函數(shù)中的誘導公式的運用,得出是解題的關鍵,屬于基礎題.14、1【解析】
由兩向量共線的坐標關系計算即可.【詳解】由題可得2∵c//∴4λ-2=0故答案為1【點睛】本題主要考查向量的坐標運算,以及兩向量共線的坐標關系,屬于基礎題.15、(-∞,-1)∪(3,+∞)【解析】不等式可化為m(x-1)+x2-4x+3>0在0≤m≤4時恒成立.令f(m)=m(x-1)+x2-4x+3.則??即x<-1或x>3.故答案為(-∞,-1)∪(3,+∞)16、【解析】
作出可行域,根據(jù)目標函數(shù)的幾何意義可知當時,.【詳解】不等式組表示的可行域是以為頂點的三角形區(qū)域,如下圖所示,目標函數(shù)的最大值必在頂點處取得,易知當時,.【點睛】線性規(guī)劃問題是高考中??伎键c,主要以選擇及填空的形式出現(xiàn),基本題型為給出約束條件求目標函數(shù)的最值,主要結合方式有:截距型、斜率型、距離型等.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】
(1)根據(jù)平面向量的數(shù)量積公式計算的值;(2)根據(jù)兩向量垂直數(shù)量積為0,列方程求出cosθ的值和對應角θ的值.【詳解】(1)因為,所以(2)因為與垂直,所以即,所以又,所以【點睛】本題考查了平面向量的數(shù)量積與模長和夾角的計算問題,是基礎題.18、(1)答案不唯一,具體見解析(2)【解析】
(1)由,對分類討論,判斷與的大小,確定不等式的解集.(2)利用把用表示,代入表示為的函數(shù),利用基本不等式可求.【詳解】解:(1)因為,所以,由,得,即,當時,不等式的解集為;當時,不等式的解集為;當時,不等式的解集為;(2)因為,由已知,可得,∴,∵,∴,∴,當且僅當時取等號,所以的最小值為?!军c睛】本題考查一元二次不等式的解法,基本不等式的應用,考查分類討論的思想,運算求解能力,屬于中檔題.19、(1);(2)對一切正整數(shù),有.【解析】
(1)運用數(shù)列的遞推式,結合等差數(shù)列的定義和通項公式,可得所求;(2)對一切正整數(shù)n,有,考慮當時,,再由裂項相消求和,即可得證?!驹斀狻浚?)當時,兩式做差得,,當時,上式顯然成立,。(2)證明:當時,可得由可得即有<則當時,不等式成立。檢驗時,不等式也成立,綜上對一切正整數(shù)n,有?!军c睛】本題考查數(shù)列遞推式,考查數(shù)列求和,考查裂項法的運用,確定數(shù)列的通項是關鍵.20、(1);(2).【解析】試題分析:本題主要考查倍角公式、兩角和的正弦公式、三角函數(shù)的周期、三角函數(shù)的最值等基礎知識,考查學生的分析問題解決問題的能力、轉化能力、計算能力.(Ⅰ)先利用倍角公式將降冪,再利用兩角和的正弦公式將化簡,使之化簡成的形式,最后利用計算函數(shù)的最小正周期;(Ⅱ)將的取值范圍代入,先求出的范圍,再數(shù)形結合得到三角函數(shù)的最小值.試題解析:(Ⅰ)∵,∴的最小正周期為.(Ⅱ)∵,∴.當,即時,取得最小值.∴在區(qū)間上的最小值為.考點:倍角公式、兩角和的正弦公式、三角函數(shù)的周期、三角函數(shù)的最值.21、(1)an=3﹣2×()n﹣1(2){m|1≤m}【解析】
(1)由已知,根據(jù)遞推公式可得,,……,,所有式子累加可得;(2)在(1)得出的基礎之上解不等式可得實數(shù)的取值范圍.【詳解】(1)由已知,根據(jù)遞推公式可得an﹣an﹣1=3×()n﹣2,an﹣1﹣an﹣2=3×()n﹣3,…,a2﹣a1=3×()0,由累加法得,當n≥2時,an﹣a1=3×()0+3×()1+…+3×()n﹣2,代入a1=1得,n≥2時,an=11+2×(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024融資租賃合同書之公寓租賃合同
- 2024年度監(jiān)理工程師職責履行合同
- 2024年中介參與下的二手房買賣定金合同
- 2024年度軟件開發(fā)與維護技術服務合同
- 2024年建筑工地瓦工承包合同
- 商品房購房合同協(xié)議書
- 技術合同 技術許可合同樣本
- 2024某大學人文社科科研項目合同書
- 2024借名購房合同協(xié)議范本
- 2024年離婚協(xié)議書格式要求
- 2024-2025學年小學科學四年級下冊青島版(六三制2024)教學設計合集
- 2024版中國血脂管理指南
- 2022下半年四川省考公務員考試行測題及解析(三十二)
- 58級14班高考倒計時200天主題班會
- 快樂讀書吧《魯濱遜漂流記》整本書導讀課 教學設計-2023-2024學年語文六年級下冊統(tǒng)編版
- 互聯(lián)網(wǎng)網(wǎng)絡安全緊急應急演練方案+演練記錄(全版)
- 第四單元達標練習(單元練習)2024-2025學年統(tǒng)編版語文一年級上冊
- 三年級上冊綜合實踐活動教學設計- 美麗的校園|粵教版 26張
- TCECA-G 0304-2024 數(shù)字化碳管理平臺 總體框架
- 2024-2030年云網(wǎng)融合行業(yè)市場發(fā)展分析及發(fā)展趨勢與投資前景研究報告
- TSDPIA 03-2023 寵物貓砂生產(chǎn)質量安全管理規(guī)范
評論
0/150
提交評論