版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
杭州第十三中學(xué)2025屆高一下數(shù)學(xué)期末教學(xué)質(zhì)量檢測試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知是兩條不同的直線,是兩個不同的平面,則下列命題正確的是A.,則B.,則C.,則D.,則2.已知數(shù)列的前項和為,且,,則()A.127 B.129 C.255 D.2573.已知點在直線上,若存在滿足該條件的使得不等式成立,則實數(shù)的取值范圍是()A. B. C. D.4.下列函數(shù)的最小值為的是()A. B.C. D.5.已知函數(shù),函數(shù)的最小值等于()A. B. C.5 D.96.設(shè)集合,,若,則的取值范圍是()A. B. C. D.7.設(shè)向量,,則向量與的夾角為()A. B. C. D.8.過點且與直線垂直的直線方程是()A. B. C. D.9.辦公室裝修一新,放些植物花草可以清除異味,公司提供綠蘿、文竹、碧玉、蘆薈4種植物供員工選擇,每個員工任意選擇2種,則員工甲和乙選擇的植物全不同的概率為:A. B. C. D.10.(卷號)2397643038875648(題號)2398229448728576(題文)已知直線、,平面、,給出下列命題:①若,,且,則;②若,,且,則;③若,,且,則;④若,,且,則.其中正確的命題是()A.①② B.③④ C.①④ D.②③二、填空題:本大題共6小題,每小題5分,共30分。11.若,且,則=_______.12.在等差數(shù)列中,已知,,則________.13.設(shè)數(shù)列的前n項和為,關(guān)于數(shù)列,有下列三個命題:(1)若既是等差數(shù)列又是等比數(shù)列,則;(2)若,則是等差數(shù)列:(3)若,則是等比數(shù)列這些命題中,真命題的序號是__________________________.14.已知直線過點,且在兩坐標(biāo)軸上的截距相等,則此直線的方程為_____________.15.若實數(shù)滿足,,則__________.16.已知某中學(xué)高三學(xué)生共有800人參加了數(shù)學(xué)與英語水平測試,現(xiàn)學(xué)校決定利用隨機數(shù)表法從中抽取100人的成績進行統(tǒng)計,先將800人按001,002,…,800進行編號.如果從第8行第7列的數(shù)開始從左向右讀,(下面是隨機數(shù)表的第7行至第9行)844217533157245506887704744767217633502683925316591692753562982150717512867363015807443913263321134278641607825207443815則最先抽取的2個人的編號依次為_____.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.在△中,,,且.(Ⅰ)求的值;(Ⅱ)求的大?。?8.高二數(shù)學(xué)期中測試中,為了了解學(xué)生的考試情況,從中抽取了個學(xué)生的成績(滿分為100分)進行統(tǒng)計.按照[50,60),[60,70),[70,80),[80,90),[90,100]的分組作出頻率分布直方圖,并作出樣本分?jǐn)?shù)的莖葉圖(圖中僅列出得分在[50,60),[90,100]的數(shù)據(jù)).(1)求樣本容量和頻率分布直方圖中的值;(2)在選取的樣本中,從成績是80分以上(含80分)的同學(xué)中隨機抽取3名參加志愿者活動,所抽取的3名同學(xué)中至少有一名成績在[90,100]內(nèi)的概率..19.已知函數(shù)(1)求函數(shù)的最小正周期;(2)若,且,求的值.20.如圖,在中,角,,的對邊分別為,,,且.(1)求的大?。唬?)若,為外一點,,,求四邊形面積的最大值.21.已知函數(shù)(1)求的最小正周期;(2)求的單調(diào)增區(qū)間;(3)若求函數(shù)的值域.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】
根據(jù)空間中直線與平面的位置關(guān)系的相關(guān)定理依次判斷各個選項即可.【詳解】兩平行平面內(nèi)的直線的位置關(guān)系為:平行或異面,可知錯誤;且,此時或,可知錯誤;,,,此時或,可知錯誤;兩平行線中一條垂直于一個平面,則另一條必垂直于該平面,正確.本題正確選項:【點睛】本題考查空間中直線與平面、平面與平面位置關(guān)系的判定,考查學(xué)生對于定理的掌握程度,屬于基礎(chǔ)題.2、C【解析】
利用迭代關(guān)系,得到另一等式,相減求出,判斷數(shù)列是否為等比數(shù)列,利用等比數(shù)列求和公式可得.【詳解】因為,,所以,相減得,,,又,所以,,所以數(shù)列是等比數(shù)列,所以,故選C.【點睛】本題考查等比數(shù)列的求和,數(shù)列通項公式的求法,考查計算求解能力,屬于中檔題.3、B【解析】
根據(jù)題干得到,存在滿足該條件的使得不等式成立,即,再根據(jù)均值不等式得到最小值為9,再由二次不等式的解法得到結(jié)果.【詳解】點在直線上,故得到,存在滿足該條件的使得不等式成立,即故原題轉(zhuǎn)化為故答案為:B【點睛】本題考查了“乘1法”與基本不等式的性質(zhì),考查了推理能力與計算能力,屬于中檔題.解決二元的范圍或者最值問題,常用的方法有:不等式的應(yīng)用,二元化一元的應(yīng)用,線性規(guī)劃的應(yīng)用,等.4、C【解析】分析:利用基本不等式的性質(zhì)即可判斷出正誤,注意“一正二定三相等”的使用法則.詳解:A.時顯然不滿足條件;B.其最小值大于1.D.令因此不正確.故選C.點睛:本題考查基本不等式,考查通過給變量取特殊值,舉反例來說明某個命題不正確,是一種簡單有效的方法.5、C【解析】
先將化為,由基本不等式即可求出最小值.【詳解】因為,當(dāng)且僅當(dāng),即時,取等號.故選C【點睛】本題主要考查利用基本不等式求函數(shù)的最值問題,需要先將函數(shù)化為能用基本不等式的形式,即可利用基本不等式求解,屬于基礎(chǔ)題型.6、A【解析】因為,,且,即,所以.故選A.7、C【解析】
由條件有,利用公式可求夾角.【詳解】,.又又向量與的夾角的范圍是向量與的夾角為.故選:C8、D【解析】
由已知直線方程求得直線的斜率,再根據(jù)兩直線垂直,得到所求直線的斜率,最后用點斜式寫出所求直線的方程.【詳解】已知直線的斜率為:因為兩直線垂直所以所求直線的斜率為又所求直線過點所以所求直線方程為:即:故選:D【點睛】本題主要考查了直線與直線的位置關(guān)系及直線方程的求法,還考查了運算求解的能力,屬于基礎(chǔ)題.9、A【解析】
從公司提供的4中植物中任意選擇2種,求得員工甲和乙共有種選法,再由任選2種有種,得到員工甲和乙選擇的植物全不同有種選法,利用古典概型的概率計算公式,即可求解.【詳解】由題意,從公司提供綠蘿、文竹、碧玉、蘆薈4種植物每個員工任意選擇2種,則員工甲和乙共有種不同的選法,又從公司提供綠蘿、文竹、碧玉、蘆薈4種植物中,任選2種,共有種選法,則員工甲和乙選擇的植物全不同,共有種不同的選法,所以員工甲和乙選擇的植物全不同的概率為,故選A.【點睛】本題主要考查了古典概型及其概率的計算,以及排列、組合的應(yīng)用,其中解答中認(rèn)真審題,合理利用排列、組合求得基本事件的個數(shù),利用古典概型的概率計算公式求解是解答的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于中檔試題.10、C【解析】
逐一判斷各命題的正誤,可得出結(jié)論.【詳解】對于命題①,若,,且,則,該命題正確;對于命題②,若,,且,則與平行或相交,該命題錯誤;對于命題③,若,,且,則與平行、垂直或斜交,該命題錯誤;對于命題④,若,,且,則,該命題正確.故選:C.【點睛】本題考查線面、面面位置關(guān)系有關(guān)命題真假的判斷,在判斷時,可充分利用線面、面面平行或垂直的判定與性質(zhì)定理,也可以結(jié)合幾何體模型進行判斷,考查推理能力,屬于中等題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
由的值及,可得的值,計算可得的值.【詳解】解:由,且,由,可得,故,故答案為:.【點睛】本題主要考查了同角三角函數(shù)的基本關(guān)系,熟練掌握其基本關(guān)系是解題的關(guān)鍵.12、-16【解析】
設(shè)等差數(shù)列的公差為,利用通項公式求出即可.【詳解】設(shè)等差數(shù)列的公差為,得,則.故答案為【點睛】本題考查了等差數(shù)列通項公式的應(yīng)用,屬于基礎(chǔ)題.13、(1)、(2)、(3)【解析】
利用等差數(shù)列和等比數(shù)列的定義,以及等差數(shù)列和等比數(shù)列的前項和形式,逐一判斷即可.【詳解】既是等差數(shù)列又是等比數(shù)列的數(shù)列是非零常數(shù)列,故(1)正確.等差數(shù)列的前項和是二次函數(shù)形式,且不含常數(shù),故(2)正確.等比數(shù)列的前項和是常數(shù)加上常數(shù)乘以的形式,故(3)正確.故答案為:(1),(2),(3)【點睛】本題主要考查等差數(shù)列和等比數(shù)列的定義,同時考查了等差數(shù)列和等比數(shù)列的前項和,屬于簡單題.14、或【解析】
分兩種情況考慮,第一:當(dāng)所求直線與兩坐標(biāo)軸的截距不為0時,設(shè)出該直線的方程為,把已知點坐標(biāo)代入即可求出的值,得到直線的方程;第二:當(dāng)所求直線與兩坐標(biāo)軸的截距為0時,設(shè)該直線的方程為,把已知點的坐標(biāo)代入即可求出的值,得到直線的方程,綜上,得到所有滿足題意的直線的方程.【詳解】解:①當(dāng)所求的直線與兩坐標(biāo)軸的截距不為0時,設(shè)該直線的方程為,把代入所設(shè)的方程得:,則所求直線的方程為即;②當(dāng)所求的直線與兩坐標(biāo)軸的截距為0時,設(shè)該直線的方程為,把代入所求的方程得:,則所求直線的方程為即.綜上,所求直線的方程為:或.故答案為:或【點睛】此題考查學(xué)生會根據(jù)條件設(shè)出直線的截距式方程和點斜式方程,考查了分類討論的數(shù)學(xué)思想,屬于基礎(chǔ)題.15、【解析】
由反正弦函數(shù)的定義求解.【詳解】∵,∴,,∴,∴.故答案為:.【點睛】本題考查反正弦函數(shù),解題時注意反正弦函數(shù)的取值范圍是,結(jié)合誘導(dǎo)公式求解.16、165;535【解析】
按照題設(shè)要求讀取隨機數(shù)表得到結(jié)果,注意不符合要求的數(shù)據(jù)要舍去.【詳解】讀取的第一個數(shù):滿足;讀取的第二個數(shù):不滿足;讀取的第三個數(shù):不滿足;讀取的第三個數(shù):滿足.【點睛】隨機數(shù)表的讀取規(guī)則:從指定位置開始,按照指定位數(shù)讀取,一次讀取一組,若讀取的數(shù)不符合規(guī)定(不在范圍之內(nèi)),則舍去,重新讀取.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ)【解析】
(Ⅰ)通過正弦定理易得,代入即可.(Ⅱ)三邊長知道通過余弦定理即可求得的大小.【詳解】(Ⅰ)因為,所以由正弦定理可得.因為,所以.(Ⅱ)由余弦定理.因為三角形內(nèi)角,所以.【點睛】此題考查正弦定理和余弦定理,記住公式很容易求解,屬于簡單題目.18、(1)40,0.025,0.005(2)【解析】試題分析:(Ⅰ)由樣本容量和頻數(shù)頻率的關(guān)系易得答案;(Ⅱ)由題意可知,分?jǐn)?shù)在[80,100)內(nèi)的學(xué)生有6人,分?jǐn)?shù)在[90,100]內(nèi)的學(xué)生有2人,結(jié)合古典概型概率公式和對立事件概率公式可求得至少有一名成績在[90,100]內(nèi)的概率試題解析:(1)由題意可知,樣本容量,,.……………6分(2)由題意,分?jǐn)?shù)在內(nèi)的有4人,分?jǐn)?shù)在內(nèi)的有2人,成績是分以上(含分)的學(xué)生共6人.從而抽取的名同學(xué)中得分在的學(xué)生人數(shù)的所有可能的取值為.,所以所求概率為考點:頻率分布直方圖;莖葉圖19、(1)最小正周期是(2)【解析】
(1)運用輔助角公式化簡得;(2)先計算的值為,構(gòu)造,求出的值.【詳解】(1)因為,所以,所以函數(shù)的最小正周期是.(2)因為,所以,因為,所以,所以,則【點睛】利用角的配湊法,即進行角的整體代入求值,考查整體思想的運用.20、(1)(2)【解析】
(1)由余弦定理和誘導(dǎo)公式整理,得到,求出;(2)在中,用余弦定理表示出,判斷是等腰直角三角形,再利用三角形面積公式表示出,再利用輔助角公式化簡,求出四邊形面積的最大值.【詳解】(1)在中,由,所以∵,∴,∴,又∵,∴.又∵,∴,即為.(2)在中,,,由余弦定理可得,又∵,∴為等腰直角三角形,∴,∴當(dāng)時,四邊形面積有最大值
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年美發(fā)店承包合同
- 山林轉(zhuǎn)包合同范本
- 2024年醫(yī)療器械代理銷售協(xié)議書
- 房產(chǎn)項目招商代理協(xié)議
- 消防設(shè)施維保合同
- 個人二手車轉(zhuǎn)讓協(xié)議書2024年
- 大連市貨運代理合同
- 2024年標(biāo)準(zhǔn)版離婚協(xié)議書格式
- 校園綠化合同:校園綠化養(yǎng)護承包協(xié)議
- 典型空調(diào)租賃合同
- GB/T 43005-2023給水用連續(xù)玻纖帶纏繞增強聚乙烯復(fù)合管
- 醫(yī)院公共衛(wèi)生科制度職責(zé)
- 2023學(xué)年完整公開課版盤古開天地
- 2023年福建省三明市七年級上學(xué)期數(shù)學(xué)期中試卷附答案
- 小學(xué)道德與法治三年級上冊第三單元《安全護我成長》第8課《安全記心上》說課稿
- 300MW鍋爐專業(yè)檢修規(guī)程
- 探索跨學(xué)科背景下的科技教育創(chuàng)新與探索
- 活性炭材料在電池中的應(yīng)用研究報告
- 餐飲服務(wù)員等級劃分標(biāo)準(zhǔn)
- 商貿(mào)企業(yè)安全系統(tǒng)生產(chǎn)實用標(biāo)準(zhǔn)化管理系統(tǒng)-安全系統(tǒng)生產(chǎn)責(zé)任制
- PEP小學(xué)六年級英語上冊選詞填空專題訓(xùn)練
評論
0/150
提交評論