2025屆廣東省中山一中等七校高一下數(shù)學期末綜合測試試題含解析_第1頁
2025屆廣東省中山一中等七校高一下數(shù)學期末綜合測試試題含解析_第2頁
2025屆廣東省中山一中等七校高一下數(shù)學期末綜合測試試題含解析_第3頁
2025屆廣東省中山一中等七校高一下數(shù)學期末綜合測試試題含解析_第4頁
2025屆廣東省中山一中等七校高一下數(shù)學期末綜合測試試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2025屆廣東省中山一中等七校高一下數(shù)學期末綜合測試試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知數(shù)列滿足,,則()A.4 B.-4 C.8 D.-82.已知在中,內(nèi)角的對邊分別為,若,則等于()A. B. C. D.3.先后拋擲枚均勻的硬幣,至少出現(xiàn)一次反面的概率是()A. B. C. D.4.某市家庭煤氣的使用量和煤氣費(元)滿足關(guān)系,已知某家庭今年前三個月的煤氣費如下表:月份用氣量煤氣費一月份元二月份元三月份元若四月份該家庭使用了的煤氣,則其煤氣費為()元A. B. C. D.5.中,角所對的邊分別為,已知向量,,且共線,則的形狀是()A.等腰三角形 B.直角三角形C.等腰直角三角形 D.等腰三角形或直角三角形6.已知三棱柱()A. B. C. D.7.已知非零向量與的夾角為,且,則()A.1 B.2 C. D.8.已知橢圓C:的左右焦點為F1,F2離心率為,過F2的直線l交C與A,B兩點,若△AF1B的周長為,則C的方程為()A. B. C. D.9.連續(xù)拋擲一枚質(zhì)地均勻的硬幣10次,若前4次出現(xiàn)正面朝上,則第5次出現(xiàn)正面朝上的概率是()A. B. C. D.10.已知,且,則()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.一個圓柱和一個圓錐的底面直徑和它們的高都與某一個球的直徑相等,這時圓柱、圓錐、球的體積之比為.12.若首項為,公比為()的等比數(shù)列滿足,則的取值范圍是________.13.已知,,則________14.設(shè)向量,若,,則.15.已知函數(shù),該函數(shù)零點的個數(shù)為_____________16.已知角的終邊經(jīng)過點,若,則______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù).(1)求的值;(2)設(shè),求的值.18.如圖所示,是邊長為的正三角形,點四等分線段.(Ⅰ)求的值;(Ⅱ)若點是線段上一點,且,求實數(shù)的值.19.的內(nèi)角的對邊分別為,已知.(1)求角;(2)若,求的面積.20.如圖,在三棱柱中,側(cè)面是邊長為2的正方形,點是棱的中點.(1)證明:平面.(2)若三棱錐的體積為4,求點到平面的距離.21.在數(shù)列中,,,且滿足,.(1)求數(shù)列的通項公式;(2)設(shè),,求數(shù)列的前項和.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】

根據(jù)遞推公式,逐步計算,即可求出結(jié)果.【詳解】因為數(shù)列滿足,,所以,,.故選C【點睛】本題主要考查由遞推公式求數(shù)列中的項,逐步代入即可,屬于基礎(chǔ)題型.2、A【解析】

由題意變形,運用余弦定理,可得cosB,再由同角的平方關(guān)系,可得所求值.【詳解】2b2﹣2a2=ac+2c2,可得a2+c2﹣b2ac,則cosB,可得B<π,即有sinB.故選A.【點睛】本題考查余弦定理的運用,考查同角的平方關(guān)系,以及運算能力,屬于中檔題.3、D【解析】

先求得全是正面的概率,用減去這個概率求得至少出現(xiàn)一次反面的概率.【詳解】基本事件的總數(shù)為,全是正面的的事件數(shù)為,故全是正面的概率為,所以至少出現(xiàn)一次反面的概率為,故選D.【點睛】本小題主要考查古典概型概率計算,考查正難則反的思想,屬于基礎(chǔ)題.4、C【解析】由題意得:C=4,將(25,14),(35,19)代入f(x)=4+B(x﹣A),得:∴A=5,B=,故x=20時:f(20)=4+(20﹣5)=11.5.故選:C.點睛:這是函數(shù)的實際應(yīng)用題型,根據(jù)題目中的條件和已知點得到分段函數(shù)的未知量的值,首先得到函數(shù)表達式,再根據(jù)題意讓求自變量為20時的函數(shù)值,求出即可。實際應(yīng)用題型,一般是先根據(jù)題意構(gòu)建模型,列出表達式,根據(jù)條件求解問題即可。5、D【解析】

由向量共線的坐標表示得一等式,然后由正弦定理化邊為角,利用誘導(dǎo)公式得展開后代入原式化簡得,分類討論得解.【詳解】∵共線,∴,即,,,整理得,所以或,或或(舍去).∴三角形為直角三角形或等腰三角形.故選:D.【點睛】本題考查三角形形狀的判斷,考查向量共線的坐標表示,考查正弦定理,兩角和的正弦公式,考查三角函數(shù)性質(zhì).解題時不能隨便約分漏解.6、C【解析】因為直三棱柱中,AB=3,AC=4,AA1=12,AB⊥AC,所以BC=5,且BC為過底面ABC的截面圓的直徑.取BC中點D,則OD⊥底面ABC,則O在側(cè)面BCC1B1內(nèi),矩形BCC1B1的對角線長即為球直徑,所以2R==13,即R=7、B【解析】

根據(jù)條件可求出,從而對兩邊平方即可得出,解出即可.【詳解】向量與的夾角為,且;;;;或0(舍去);.故選:.【點睛】本題主要考查了向量數(shù)量積的定義及數(shù)量積的運算公式,屬于中檔題.8、A【解析】

若△AF1B的周長為4,由橢圓的定義可知,,,,,所以方程為,故選A.考點:橢圓方程及性質(zhì)9、D【解析】

拋擲一枚質(zhì)地均勻的硬幣有兩種情況,正面朝上和反面朝上的概率都是,與拋擲次數(shù)無關(guān).【詳解】解:拋擲一枚質(zhì)地均勻的硬幣,有正面朝上和反面朝上兩種可能,概率均為,與拋擲次數(shù)無關(guān).故選:D.【點睛】本題考查了概率的求法,考查了等可能事件及等可能事件的概率知識,屬基礎(chǔ)題.10、D【解析】

首先根據(jù),求得,結(jié)合角的范圍,利用平方關(guān)系,求得,利用題的條件,求得,之后將角進行配湊,使得,利用正弦的和角公式求得結(jié)果.【詳解】因為,所以,因為,所以.因為,,所以,所以,故選D.【點睛】該題考查的是有關(guān)三角函數(shù)化簡求值問題,涉及到的知識點有同角三角函數(shù)關(guān)系式,正弦函數(shù)的和角公式,在解題的過程中,注意時刻關(guān)注角的范圍.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

設(shè)球的半徑為r,則,,,所以,故答案為.考點:圓柱,圓錐,球的體積公式.點評:圓柱,圓錐,球的體積公式分別為.12、【解析】

由題意可得且,即且,,化簡可得由不等式的性質(zhì)可得的取值范圍.【詳解】解:,故有且,化簡可得且即故答案為:【點睛】本題考查數(shù)列極限以及不等式的性質(zhì),屬于中檔題.13、【解析】

直接利用反三角函數(shù)求解角的大小,即可得到答案.【詳解】因為,,根據(jù)反三角函數(shù)的性質(zhì),可得.故答案為:.【點睛】本題主要考查了三角方程的解法,以及反三角函數(shù)的應(yīng)用,屬于基礎(chǔ)題.14、【解析】

利用向量垂直數(shù)量積為零列等式可得,從而可得結(jié)果.【詳解】因為,且,所以,可得,又因為,所以,故答案為.【點睛】利用向量的位置關(guān)系求參數(shù)是出題的熱點,主要命題方式有兩個:(1)兩向量平行,利用解答;(2)兩向量垂直,利用解答.15、3【解析】

令,可得或;當時,可解得為函數(shù)一個零點;當時,可知,根據(jù)的范圍可求得零點;綜合兩種情況可得零點總個數(shù).【詳解】令,可得:或當時,或(舍)為函數(shù)的一個零點當時,,,為函數(shù)的零點綜上所述,該函數(shù)的零點個數(shù)為:個本題正確結(jié)果:【點睛】本題考查函數(shù)零點個數(shù)的求解,關(guān)鍵是能夠?qū)栴}轉(zhuǎn)化為方程根的個數(shù)的求解,涉及到余弦函數(shù)零點的求解.16、【解析】

利用三角函數(shù)的定義可求.【詳解】由三角函數(shù)的定義可得,故.故答案為:.【點睛】本題考查三角函數(shù)的定義,注意根據(jù)正弦的定義構(gòu)建關(guān)于的方程,本題屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】試題分析:(1)直接帶入求值;(2)將和直接帶入函數(shù),會得到和的值,然后根據(jù)的值.試題解析:解:(1)(2)考點:三角函數(shù)求值18、(Ⅰ)(Ⅱ)【解析】

(Ⅰ)以作為基底,表示出,然后利用數(shù)量積的運算法則計算即可求出;(Ⅱ)由平面向量數(shù)量積的運算及其運算可得:設(shè),又,所以,解得,得解.【詳解】(Ⅰ)由題意得,則(Ⅱ)因為點Q是線段上一點,所以設(shè),又,所以,故,解得,因此所求實數(shù)m的值為.【點睛】本題主要考查了平面向量的線性運算以及數(shù)量積的運算以及平面向量基本定理的應(yīng)用,屬于中檔題.19、(1);(2)【解析】

(1)首先利用正弦定理的邊角互化,可將等式化簡為,再利用,可知,最后化簡求值;(2)利用余弦定理可求得,代入求面積.【詳解】(1)由已知以及余弦定理得:所以,(2)由題知,【點睛】本題第一問考查了正弦定理,第二問考查了余弦定理和面積公式,當一個式子有邊也有角時,一般可通過正弦定理邊角互化轉(zhuǎn)化為三角函數(shù)恒等變形問題,而對于余弦定理與三角形面積的關(guān)系時,需重視的變形使用.20、(1)見解析(2)6【解析】

(1)由平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行可判定平面;(2)由三棱錐的體積為4,可知四棱錐的體積,再由三棱錐的體積公式即可求得高.【詳解】(1)證明:連接,與交于點,連接.因為側(cè)面是平行四邊形,所以點是的中點.因為點是棱的中點,所以.因為平面,平面,所以平面.(2)解:因為三棱錐的體積為4,所以三棱柱的體積為12,則四棱錐的體積為.因為側(cè)面是邊長為2的正方形,所以側(cè)面的面積為.設(shè)點到平面的距離為,則,解得.故點到平面的距離為6.【點睛】本題考查直線平行平面的判定和用三棱錐體積公式求點到平面的距離.21、(1);(2).【解析】

(1)由題意知,數(shù)列是等差數(shù)列,可設(shè)該數(shù)列的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論