折疊四邊形和三角形_第1頁
折疊四邊形和三角形_第2頁
折疊四邊形和三角形_第3頁
折疊四邊形和三角形_第4頁
折疊四邊形和三角形_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

(一)折疊三角形例1、如圖,小潁同學折疊一個直角三角形的紙片,使A與B重合,折痕為DE,若已知AC=10cm,BC=6cm,你能求出CE的長嗎?CABDE例2:三角形ABC是等腰三角形AB=AC=13,BC=10,將AB向AC方向對折,再將CD折疊到CA邊上,折痕CE,求三角形ACE的面積ABCDADCDCAD1E(二)、折疊四邊形例1:折疊矩形紙片,先折出折痕對角線BD,在繞點D折疊,使點A落在BD的E處,折痕DG,若AB=2,BC=1,求AG的長。DAGBCE例2:矩形ABCD如圖折疊,使點D落在BC邊上的點F處,已知AB=8,BC=10,求折痕AE的長。ABCDFE例3:矩形ABCD中,AB=6,BC=8,先把它對折,折痕為EF,展開后再沿BG折疊,使A落在EF上的A1,求第二次折痕BG的長。ABCDEFA1G正三角形AA1B例4:邊長為8和4的矩形OABC的兩邊分別在直角坐標系的X軸和Y軸上,若沿對角線AC折疊后,點B落在第四象限B1處,設B1C交X軸于點D,求(1)三角形ADC的面積,(2)點B1的坐標,(3)AB1所在的直線解析式。OCBAB1D123E引申:勾股定理的拓展訓練三1.如圖,在四邊形ABCD中,∠BAD=900,∠DBC=900

,AD=3,AB=4,BC=12,求CD;ABCD2.已知,如圖,四邊形ABCD中,AB=3cm,AD=4cm,BC=13cm,CD=12cm,且∠A=90°,求四邊形ABCD的面積。3、在等腰△ABC中,AB=AC=13cm,BC=10cm,求△ABC的面積和AC邊上的高。ABCD131310H提示:利用面積相等的關系4、已知等邊三角形ABC的邊長是6cm,(1)求高AD的長;(2)S△ABCABCD解:(1)∵△ABC是等邊三角形,AD是高在Rt△ABD中,根據勾股定理5、如圖,∠ACB=∠ABD=90°,CA=CB,∠DAB=30°,AD=8,求AC的長。解:∵∠ABD=90°,∠DAB=30°∴BD=AD=4在Rt△ABD中,根據勾股定理在Rt△ABC中,又AD=8ABCD30°8

6、如圖,在△ABC中,AB=AC,D點在CB延長線上,求證:AD2-AB2=BD·CDABCD證明:過A作AE⊥BC于EE∵AB=AC,∴BE=CE在Rt

△ADE中,AD2=AE2+DE2在Rt

△ABE中,AB2=AE2+BE2∴AD2-AB2=(AE2+DE2)-(AE2+BE

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論