2025屆云南師大附中高一下數(shù)學(xué)期末檢測試題含解析_第1頁
2025屆云南師大附中高一下數(shù)學(xué)期末檢測試題含解析_第2頁
2025屆云南師大附中高一下數(shù)學(xué)期末檢測試題含解析_第3頁
2025屆云南師大附中高一下數(shù)學(xué)期末檢測試題含解析_第4頁
2025屆云南師大附中高一下數(shù)學(xué)期末檢測試題含解析_第5頁
已閱讀5頁,還剩9頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2025屆云南師大附中高一下數(shù)學(xué)期末檢測試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號。回答非選擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知向量,則與的夾角為()A. B. C. D.2.已知,則的值為()A. B. C. D.23.某校統(tǒng)計(jì)了1000名學(xué)生的數(shù)學(xué)期末考試成績,已知這1000名學(xué)生的成績均在50分到150分之間,其頻率分布直方圖如圖所示,則這1000名學(xué)生中成績在130分以上的人數(shù)為()A.10 B.20 C.40 D.604.在的二面角內(nèi),放置一個(gè)半徑為3的球,該球切二面角的兩個(gè)半平面于A,B兩點(diǎn),那么這兩個(gè)切點(diǎn)在球面上的最短距離為()A. B. C. D.5.圓,那么與圓有相同的圓心,且經(jīng)過點(diǎn)的圓的方程是().A. B.C. D.6.在中,角的對邊分別是,若,則角的大小為()A.或 B.或 C. D.7.已知函數(shù)是奇函數(shù),將的圖像上所有點(diǎn)的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),所得圖像對應(yīng)的函數(shù)為.若的最小正周期為,且,則()A. B. C. D.8.已知函數(shù)(其中為自然對數(shù)的底數(shù)),則的大致圖象為()A. B. C. D.9.已知,,,則的最小值為()A. B. C.7 D.910.在△ABC中,A=60°,AB=2,且△ABC的面積為,則BC的長為().A. B.2 C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知,則________.12.已知,則________.13.在中,角所對的邊分別為,下列命題正確的是_____________.①總存在某個(gè)內(nèi)角,使得;②存在某鈍角,有;③若,則的最小角小于.14.已知是奇函數(shù),且,則_______.15.若直線與曲線相交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),當(dāng)?shù)拿娣e取最大值時(shí),實(shí)數(shù)m的取值____.16.在某校舉行的歌手大賽中,7位評委為某同學(xué)打出的分?jǐn)?shù)如莖葉圖所示,去掉一個(gè)最高分和一個(gè)最低分后,所剩數(shù)據(jù)的方差為______.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.四棱柱中,底面為正方形,,為中點(diǎn),且.(1)證明;(2)求點(diǎn)到平面的距離.18.在中,角所對的邊分別為,且.(1)求邊長;(2)若的面積為,求邊長.19.已知內(nèi)角的對邊分別是,若,,.(1)求;(2)求的面積.20.已知向量,,.(1)若,求的值;(2)若,,求的值.21.解方程:.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、D【解析】

先求出的模長,然后由可求出答案.【詳解】由題意,,,所以與的夾角為.故選D.【點(diǎn)睛】本題考查了兩個(gè)向量的夾角的求法,考查了向量的模長的計(jì)算,屬于基礎(chǔ)題.2、B【解析】

根據(jù)兩角和的正切公式,結(jié)合,可以求出的值,用同角的三角函數(shù)的關(guān)系式中的平方和關(guān)系把等式變成分子、分母的齊次式形式,最后代入求值即可.【詳解】..故選:B【點(diǎn)睛】本題考查了同角的三角函數(shù)關(guān)系式的應(yīng)用,考查了二倍角的正弦公式,考查了兩角和的正切公式,考查了數(shù)學(xué)運(yùn)算能力.3、C【解析】

由頻率分布直方圖求出這1000名學(xué)生中成績在130分以上的頻率,由此能求出這1000名學(xué)生中成績在130分以上的人數(shù).【詳解】由頻率分布直方圖得這1000名學(xué)生中成績在130分以上的頻率為:,則這1000名學(xué)生中成績在130分以上的人數(shù)為人.故選:.【點(diǎn)睛】本題考查頻數(shù)的求法,考查頻率分布直方圖的性質(zhì)等基礎(chǔ)知識,考查運(yùn)算求解能力,是基礎(chǔ)題.4、A【解析】

根據(jù)題意,作出截面圖,計(jì)算弧長即可.【詳解】根據(jù)題意,作出該球過球心且經(jīng)過A、B的截面圖如下所示:由題可知:則,故滿足題意的最短距離為弧長BA,在該弧所在的扇形中,弧長.故選:A.【點(diǎn)睛】本題考查弧長的計(jì)算公式,二面角的定義,屬綜合基礎(chǔ)題.5、B【解析】

圓的標(biāo)準(zhǔn)方程為,圓心,故排除、,代入點(diǎn),只有項(xiàng)經(jīng)過此點(diǎn),也可以設(shè)出要求的圓的方程:,再代入點(diǎn),可以求得圓的半徑為.故選.點(diǎn)睛:這個(gè)題目主要考查圓的標(biāo)準(zhǔn)方程,因?yàn)檫@是一道選擇題,故根據(jù)與條件中的圓的方程可以得到圓心坐標(biāo),進(jìn)而可以排除幾個(gè)選項(xiàng),如果正規(guī)方法,就可以按照已知圓心,寫出標(biāo)準(zhǔn)方程,代入已知點(diǎn)求出標(biāo)準(zhǔn)方程即可.6、B【解析】

通過給定條件直接利用正弦定理分析,注意討論多解的情況.【詳解】由正弦定理可得:,,∵,∴為銳角或鈍角,∴或.故選B.【點(diǎn)睛】本題考查解三角形中正弦定理的應(yīng)用,難度較易.出現(xiàn)多解時(shí)常借助“大邊對大角,小邊對小角”來進(jìn)行取舍.7、C【解析】

只需根據(jù)函數(shù)性質(zhì)逐步得出值即可?!驹斀狻恳?yàn)闉槠婧瘮?shù),∴;又,,又∴,故選C?!军c(diǎn)睛】本題考查函數(shù)的性質(zhì)和函數(shù)的求值問題,解題關(guān)鍵是求出函數(shù)。8、D【解析】令,,所以函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,又令,所以有兩個(gè)零點(diǎn),因?yàn)?,,所以,且?dāng)時(shí),,,當(dāng)時(shí),,,當(dāng)時(shí),,,選項(xiàng)C滿足條件.故選C.點(diǎn)睛:本題考查函數(shù)的解析式和圖象的關(guān)系、利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性;已知函數(shù)的解析式識別函數(shù)圖象是高考常見題型,往往從定義域、奇偶性(對稱性)、單調(diào)性、最值及特殊點(diǎn)的符號進(jìn)行驗(yàn)證,逐一驗(yàn)證進(jìn)行排除.9、B【解析】

根據(jù)條件可知,,,從而得出,這樣便可得出的最小值.【詳解】;,且,;;,當(dāng)且僅當(dāng)時(shí)等號成立;;的最小值為.故選:.【點(diǎn)睛】考查基本不等式在求最值中的應(yīng)用,注意應(yīng)用基本不等式所滿足的條件及等號成立的條件.10、D【解析】

利用三角形面積公式列出關(guān)系式,把,已知面積代入求出的長,再利用余弦定理即可求出的長.【詳解】∵在中,,且的面積為,

∴,

解得:,

由余弦定理得:,

則.

故選D.【點(diǎn)睛】此題考查了余弦定理,三角形面積公式,以及特殊角的三角函數(shù)值,熟練掌握余弦定理是解本題的關(guān)鍵.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

由可得,然后用正弦的和差公式展開,然后將條件代入即可求出原式的值【詳解】因?yàn)樗怨蚀鸢笧椋骸军c(diǎn)睛】本題考查的三角恒等變換,解決此類問題時(shí)要善于發(fā)現(xiàn)角之間的關(guān)系.12、【解析】

利用向量內(nèi)積的坐標(biāo)運(yùn)算以及向量模的坐標(biāo)表示,準(zhǔn)確運(yùn)算,即可求解.【詳解】由題意,向量,則,,所以.故答案為【點(diǎn)睛】本題主要考查了向量內(nèi)積的坐標(biāo)運(yùn)算,以及向量模的坐標(biāo)運(yùn)算的應(yīng)用,其中解答中熟記向量的數(shù)量積的運(yùn)算公式,準(zhǔn)確運(yùn)算是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.13、①③【解析】

①中,根據(jù)直角三角形、銳角三角形和鈍角三角形分類討論,得出必要一個(gè)角在內(nèi),即可判定;②中,利用兩角和的正切公式,化簡得到,根據(jù)鈍角三角形,即可判定;③中,利用向量的運(yùn)算,得到,由于不共線,得到,再由余弦定理,即可判定.【詳解】由題意,對于①中,在中,當(dāng),則,若為直角三角形,則必有一個(gè)角在內(nèi);若為銳角三角形,則必有一個(gè)內(nèi)角小于等于;若為鈍角三角形,也必有一個(gè)角小于內(nèi),所以總存在某個(gè)內(nèi)角,使得,所以是正確的;對于②中,在中,由,可得,由為鈍角三角形,所以,所以,所以不正確;對于③中,若,即,即,由于不共線,所以,即,由余弦定理可得,所以最小角小于,所以是正確的.綜上可得,命題正確的是①③.故答案為:①③.【點(diǎn)睛】本題以真假命題為載體,考查了正弦、余弦定理的應(yīng)用,以及向量的運(yùn)算及應(yīng)用,其中解答中熟練應(yīng)用解三角形的知識和向量的運(yùn)算進(jìn)行化簡是解答的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于中檔試題.14、【解析】

根據(jù)奇偶性定義可知,利用可求得,從而得到;利用可求得結(jié)果.【詳解】為奇函數(shù)又即,解得:本題正確結(jié)果:【點(diǎn)睛】本題考查根據(jù)函數(shù)的奇偶性求解函數(shù)值的問題,屬于基礎(chǔ)題.15、【解析】

點(diǎn)O到的距離,將的面積用表示出來,再利用均值不等式得到答案.【詳解】曲線表示圓心在原點(diǎn),半徑為1的圓的上半圓,若直線與曲線相交于A,B兩點(diǎn),則直線的斜率,則點(diǎn)O到的距離,又,當(dāng)且僅當(dāng),即時(shí),取得最大值.所以,解得舍去).故答案為.【點(diǎn)睛】本題考查了點(diǎn)到直線的距離,三角形面積,均值不等式,意在考查學(xué)生的計(jì)算能力.16、2【解析】

去掉分?jǐn)?shù)后剩余數(shù)據(jù)為22,23,24,25,26,先計(jì)算平均值,再計(jì)算方差.【詳解】去掉分?jǐn)?shù)后剩余數(shù)據(jù)為22,23,24,25,26平均值為:方差為:故答案為2【點(diǎn)睛】本題考查了方差的計(jì)算,意在考查學(xué)生的計(jì)算能力.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2).【解析】試題分析:(1)證明線線垂直,一般利用線面垂直性質(zhì)定理,即利用線面垂直進(jìn)行證明,而證明線面垂直,則利用線面垂直判定定理,即從已知的線線垂直出發(fā)給予證明,本題利用平幾知識,如等邊三角形性質(zhì)、正方形性質(zhì)得線線垂直,(2)求點(diǎn)到直線距離,一般方法利用等體積法轉(zhuǎn)化為求高.試題解析:(1)等邊中,為中點(diǎn),又,且在正方形中,(2)中,,由(1)知,等體積法可得點(diǎn)到平面的距離為.18、(1);(2).【解析】試題分析:本題主要考查正弦定理、余弦定理、特殊角的三角函數(shù)值、三角形面積公式等基礎(chǔ)知識,同時(shí)考查考生的分析問題解決問題的能力和運(yùn)算求解能力.第一問,利用正弦定理將邊換成角,消去,解出角C,再利用解出邊b的長;第二問,利用三角形面積公式,可直接解出a邊的值,再利用余弦定理解出邊c的長.試題解析:(Ⅰ)由正弦定理得,又,所以,.因?yàn)?,所以.?分(Ⅱ)因?yàn)?,,所以.?jù)余弦定理可得,所以.…12分考點(diǎn):正弦定理、余弦定理、特殊角的三角函數(shù)值、三角形面積公式.19、(1);(2).【解析】

(1)在中,由正弦定理得,再由余弦定理,列出方程,即可求解得值;(2)由(1)求得,利用三角形的面積公式,即可求解三角形的面積.【詳解】(1)在中,,,,由正弦定理得,由余弦定理得,解得或不合題意,舍去,(2)由(1)知,所以,所以的面積為.【點(diǎn)睛】本題主要考查了正弦定理、余弦定理和三角形的面積公式的應(yīng)用,其中在解有關(guān)三角形的題目時(shí),要有意識地考慮用哪個(gè)定理更合適,要抓住能夠利用某個(gè)定理的信息.一般地,如果式子中含有角的余弦或邊的二次式時(shí),要考慮用余弦定理;如果式子中含有角的正弦或邊的一次式時(shí),則考慮用正弦定理,著重考查了運(yùn)算與求解能力,屬于基礎(chǔ)題.20、(1);(2)或【解析】

(1)根據(jù)向量平行的坐標(biāo)公式得出,利用二倍角公式

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論