




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
函數(shù)全真試題專項解析-2025屆高一下數(shù)學期末考試試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.函數(shù)f(x)=sinA.1 B.2 C.3 D.22.我國古代數(shù)學典籍《九章算術(shù)》“盈不足”中有一道兩鼠穿墻問題:“今有垣厚十尺,兩鼠對穿,初日各一尺,大鼠日自倍,小鼠日自半,問幾何日相逢?”現(xiàn)用程序框圖描述,如圖所示,則輸出結(jié)果n=()A.2 B.3 C.4 D.53.在中,已知,,若點在斜邊上,,則的值為().A.6 B.12 C.24 D.484.已知向量,則與夾角的大小為()A. B. C. D.5.已知m,n是兩條不同的直線,是三個不同的平面,則下列命題正確的是()A.若,,則 B.若,則C.若,,,則 D.若,,則6.在中,已知,,則為()A.等腰直角三角形 B.等邊三角形C.銳角非等邊三角形 D.鈍角三角形7.設直線與直線的交點為,則到直線的距離最大值為()A. B. C. D.8.已知等差數(shù)列中,則()A.10 B.16 C.20 D.249.函數(shù)的周期為()A. B. C. D.10.已知方程表示焦點在y軸上的橢圓,則m的取值范圍是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知三個事件A,B,C兩兩互斥且,則P(A∪B∪C)=__________.12.已知等腰三角形底角的余弦值等于,則這個三角形頂角的正弦值為________.13.已知,,則________(用反三角函數(shù)表示)14.七位評委為某跳水運動員打出的分數(shù)的莖葉圖如圖,其中位數(shù)為_______.15.在中,角的對邊分別為,若面積,則角__________.16.古希臘數(shù)學家阿波羅尼斯在他的巨著《圓錐曲線論》中有一個著名的幾何問題:在平面上給定兩點,,動點滿足(其中和是正常數(shù),且),則的軌跡是一個圓,這個圓稱之為“阿波羅尼斯圓”,該圓的半徑為__________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.在已知數(shù)列中,,.(1)若數(shù)列中,,求證:數(shù)列是等比數(shù)列;(2)設數(shù)列、的前項和分別為、,是否存在實數(shù),使得數(shù)列為等差數(shù)列?若存在,試求出的值;若不存在,請說明理由.18.已知函數(shù)(1)求函數(shù)的最大值,以及取到最大值時所對應的的集合;(2)在上恒成立,求實數(shù)的取值范圍.19.一只紅鈴蟲的產(chǎn)卵數(shù)和溫度有關(guān),現(xiàn)收集了4組觀測數(shù)據(jù)列于下表中,根據(jù)數(shù)據(jù)作出散點圖如下:溫度20253035產(chǎn)卵數(shù)/個520100325(1)根據(jù)散點圖判斷與哪一個更適宜作為產(chǎn)卵數(shù)關(guān)于溫度的回歸方程類型?(給出判斷即可,不必說明理由)(2)根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù),建立關(guān)于的回歸方程(數(shù)字保留2位小數(shù));(3)要使得產(chǎn)卵數(shù)不超過50,則溫度控制在多少以下?(最后結(jié)果保留到整數(shù))參考數(shù)據(jù):,,,,,,,,,,5201003251.6134.615.7820.某校從高一年級學生中隨機抽取60名學生,將期中考試的物理成績(均為整數(shù))分成六段:,,,…,后得到如圖頻率分布直方圖.(1)根據(jù)頻率分布直方圖,估計眾數(shù)和中位數(shù);(2)用分層抽樣的方法從的學生中抽取一個容量為5的樣本,從這五人中任選兩人參加補考,求這兩人的分數(shù)至少一人落在的概率.21.已知關(guān)于,的方程:表示圓.(Ⅰ)求的取值范圍;(Ⅱ)若,過點作的切線,求切線方程.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】
對sin(x+π3【詳解】∵f(x)=sin∴f(x)【點睛】考查三角恒等變換、輔助角公式及余弦函數(shù)的最值.2、C【解析】開始,輸入,則,判斷,否,循環(huán),,則,判斷,否,循環(huán),則,判斷,否,循環(huán),則,判斷,是,輸出,結(jié)束.故選擇C.3、C【解析】試題分析:因為,,,所以==+==,故選C.考點:1、平面向量的加減運算;2、平面向量的數(shù)量積運算.4、D【解析】
。分別求出,,,利用即可得出答案.【詳解】設與的夾角為故選:D【點睛】本題主要考查了求向量的夾角,屬于基礎題.5、C【解析】
利用線面垂直、線面平行、面面垂直的性質(zhì)定理分別對選項分析選擇.【詳解】對于A,若,,則或者;故A錯誤;對于B,若,則可能在內(nèi)或者平行于;故B錯誤;對于C,若,,,過分作平面于,作平面,則根據(jù)線面平行的性質(zhì)定理得,,∴,根據(jù)線面平行的判定定理,可得,又,,根據(jù)線面平行的性質(zhì)定理可得,又,∴;故C正確;對于D.若,,則與可能垂直,如墻角;故D錯誤;故選:C.【點睛】本題考查了面面垂直、線面平行、線面垂直的性質(zhì)定理及應用,涉及空間線線平行的傳遞性,考查了空間想象能力,熟練運用定理是關(guān)鍵.6、A【解析】
已知第一個等式利用正弦定理化簡,再利用誘導公式及內(nèi)角和定理表示,根據(jù)兩角和與差的正弦函數(shù)公式化簡,得到A=B,第二個等式左邊前兩個因式利用積化和差公式變形,右邊利用二倍角的余弦函數(shù)公式化簡,將A+B=C,A﹣B=0代入計算求出cosC的值為0,進而確定出C為直角,即可確定出三角形形狀.【詳解】將已知等式2acosB=c,利用正弦定理化簡得:2sinAcosB=sinC,∵sinC=sin(A+B)=sinAcosB+cosAsinB,∴2sinAcosB=sinAcosB+cosAsinB,即sinAcosB﹣cosAsinB=sin(A﹣B)=0,∵A與B都為△ABC的內(nèi)角,∴A﹣B=0,即A=B,已知第二個等式變形得:sinAsinB(2﹣cosC)=(1﹣cosC)+=1﹣cosC,﹣[cos(A+B)﹣cos(A﹣B)](2﹣cosC)=1﹣cosC,∴﹣(﹣cosC﹣1)(2﹣cosC)=1﹣cosC,即(cosC+1)(2﹣cosC)=2﹣cosC,整理得:cos2C﹣2cosC=0,即cosC(cosC﹣2)=0,∴cosC=0或cosC=2(舍去),∴C=90°,則△ABC為等腰直角三角形.故選A.【點睛】此題考查了正弦定理,兩角和與差的正弦公式,二倍角的余弦函數(shù)公式,熟練掌握正弦定理是解本題的關(guān)鍵.7、A【解析】
先求出的坐標,再求出直線所過的定點,則所求距離的最大值就是的長度.【詳解】由可以得到,故,直線的方程可整理為:,故直線過定點,因為到直線的距離,當且僅當時等號成立,故,故選A.【點睛】一般地,若直線和直線相交,那么動直線()必過定點(該定點為的交點).8、C【解析】
根據(jù)等差數(shù)列性質(zhì)得到,再計算得到答案.【詳解】已知等差數(shù)列中,故答案選C【點睛】本題考查了等差數(shù)列的性質(zhì),是數(shù)列的常考題型.9、D【解析】
利用二倍角公式以及輔助角公式將函數(shù)化為,再利用三角函數(shù)的周期公式即可求解.【詳解】,函數(shù)的最小正周期為.故選:D【點睛】本題考查了二倍角的余弦公式、輔助角公式以及三角函數(shù)的最小正周期的求法,屬于基礎題.10、B【解析】
利用橢圓的性質(zhì)列出不等式求解即可.【詳解】方程1表示焦點在y軸上的橢圓,可得,解得1<m.則m的取值范圍為:(1,).故選B.【點睛】本題考查橢圓的方程及簡單性質(zhì)的應用,基本知識的考查.二、填空題:本大題共6小題,每小題5分,共30分。11、0.9【解析】
先計算,再計算【詳解】故答案為0.9【點睛】本題考查了互斥事件的概率計算,屬于基礎題型.12、【解析】
已知等腰三角形可知為銳角,利用三角形內(nèi)角和為,建立底角和頂角之間的關(guān)系,再求解三角函數(shù)值.【詳解】設此三角形的底角為,頂角為,易知為銳角,則,,所以.【點睛】給值求值的關(guān)鍵是找準角與角之間的關(guān)系,再利用已知的函數(shù)求解未知的函數(shù)值.13、【解析】∵,,∴.故答案為14、85【解析】
按照莖葉圖,將這組數(shù)據(jù)按照從小到大的順序排列,找出中間的一個數(shù)即可.【詳解】按照莖葉圖,這組數(shù)據(jù)是79,83,84,85,87,92,93.把這組數(shù)據(jù)按照從小到大的順序排列,最中間一個是85.所以中位數(shù)為85.故答案為:85【點睛】本題考查對莖葉圖的認識.考查中位數(shù),屬于基礎題.15、【解析】
根據(jù)面積公式計算出的值,然后利用反三角函數(shù)求解出的值.【詳解】因為,所以,則,則有:.【點睛】本題考查三角形的面積公式以及余弦定理的應用,難度較易.利用面積公式的時候要選擇合適的公式進行化簡,可根據(jù)所求角進行選擇.16、【解析】
設,由動點滿足(其中和是正常數(shù),且),可得,化簡整理可得.【詳解】設,由動點滿足(其中和是正常數(shù),且),所以,化簡得,即,所以該圓半徑故該圓的半徑為.【點睛】本題考查圓方程的標準形式和兩點距離公式,難點主要在于計算.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)存在,.【解析】
(1)利用等比數(shù)列的定義結(jié)合數(shù)列的遞推公式證明出為非零常數(shù),即可證明出數(shù)列為等比數(shù)列,并可求出數(shù)列的通項公式;(2)求出數(shù)列的通項公式,利用分組求和法與等比數(shù)列的求和公式分別求出數(shù)列、,設,列出關(guān)于、、的方程組,解出即可.【詳解】(1)在數(shù)列中,,,則,,且,數(shù)列是以為首項,為公比的等比數(shù)列,;(2),整理得,,,,所以,,若數(shù)列為等差數(shù)列,可設,則,即,則,解得,因此,存在實數(shù),使得數(shù)列為等差數(shù)列.【點睛】本題考查等差數(shù)列的證明、數(shù)列求和以及等差數(shù)列的存在性問題,熟悉等差數(shù)列的定義和通項公式的結(jié)構(gòu)是解題的關(guān)鍵,考查推理能力與運算求解能力,屬于中等題.18、,,;(2)【解析】
(1).此時,(2),,即,.,,且,,即的取值范圍是.19、(I)選擇更適宜作為產(chǎn)卵數(shù)關(guān)于溫度的回歸方程類型;(II);(III)要使得產(chǎn)卵數(shù)不超過50,則溫度控制在以下.【解析】
(I)由于散點圖類似指數(shù)函數(shù)的圖像,由此選擇.(II)對;兩邊取以為底底而得對數(shù),將非線性回歸的問題轉(zhuǎn)化為線性回歸的問題,利用回歸直線方程的計算公式計算出回歸直線方程,進而化簡為回歸曲線方程.(III)令,解指數(shù)不等式求得溫度的控制范圍.【詳解】(I)依散點圖可知,選擇更適宜作為產(chǎn)卵數(shù)關(guān)于溫度的回歸方程類型。(II)因為,令,所以與可看成線性回歸,,所以,所以,即,(III)由即,解得,要使得產(chǎn)卵數(shù)不超過50,則溫度控制在以下。【點睛】本小題主要考查散點圖的判斷,考查非線性回歸的求解方法,考查線性歸回直線方程的計算公式,考查了利用回歸方程進行預測.屬于中檔題.解題的關(guān)鍵點有兩個,首先是根據(jù)散點圖選擇出恰當?shù)幕貧w方程,其次是要將非線性回歸的問題,轉(zhuǎn)化為線性回歸來求解.20、(1)眾數(shù)為75,中位數(shù)為73.33;(2).【解析】
(1)由頻率分布直方圖能求出a=0.1.由此能求出眾數(shù)和中位數(shù);(2)用分層抽樣的方法從[40,60)的學生中抽取一個容量為5的樣本,從這五人中任選兩人參加補考,基本事件總數(shù),這兩人的分數(shù)至少一人落在[50,60)包含的基本事件個數(shù),由此能求出這兩人的分數(shù)至少一人落在[50,60)的概率.【詳解】(1)由頻率分布直方圖得:,
解得,
所以眾數(shù)為:,的頻率為,
的頻率為,
中位數(shù)為:.(2)用分層抽樣的方法從的學生中抽取一個容量為5的樣本,
的頻率為0.1,的頻率為0.15,
中抽到人,中抽取人,從這五人中任選兩人參加補考,
基本事件總數(shù),這兩人的分數(shù)至少一人落在包含的基本事件個數(shù),所以這兩人的分數(shù)至少一人落在的概率.【點睛】在求解有關(guān)古典概型概率的問題時,首先求出樣本空間中基本事件的總數(shù),其次求出概率事件中含有多少個基本事件,然后根據(jù)公式求得概率21、(Ⅰ);(Ⅱ)或.【解析】
(Ⅰ)根據(jù)圓的一般方程表示圓的條件,可得關(guān)于的不等式,即可求得的取值范圍.(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 共享門店合同范本
- 與人合伙做生意合同范本
- 2025年紙漿項目申請報告
- 2024福建福州市可持續(xù)發(fā)展城市有限公司招聘3人筆試參考題庫附帶答案詳解
- 2025年金剛石磨塊項目申請報告
- 2025年耐溫隔熱紙項目提案報告模板
- 2025年血液灌流吸附器項目提案報告模范
- 2025年絕緣制品項目規(guī)劃申請報告模范
- -教科版高中信息技術(shù)選修2教學設計-2.1 多媒體作品中的圖形、圖像
- 2025年熱學計量標準器具項目規(guī)劃申請報告
- 湘少版六年級英語下冊《全冊課件》
- 2024-2030年中國護眼臺燈行業(yè)市場發(fā)展趨勢與前景展望戰(zhàn)略分析報告
- 《土壤肥料學通論》課程教學大綱
- 第十四屆全國交通運輸行業(yè)職業(yè)技能競賽(公路收費及監(jiān)控員)賽項題庫-下(多選題-共3部分-2)
- 集合功能的測定(雙眼視檢查)
- 2024年農(nóng)村自建房裝修合同
- 2024年《高等教育心理學》考前輔導必背習題庫(300題)
- 2024年江蘇農(nóng)牧科技職業(yè)學院單招職業(yè)適應性測試題庫完美版
- 2024年廣西職業(yè)院校技能大賽中職組《智慧物流作業(yè)》模塊MC競賽樣題
- 人事專員簡歷模板
- 超聲心動圖診斷心肌病臨床應用指南解讀
評論
0/150
提交評論