版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
湖北省宜昌市西陵區(qū)葛洲壩中學2025屆數(shù)學高一下期末調(diào)研試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.集合A={x|-2<x<2},B={x|-1<x<3}那么A∪B=()A.{x|-2<x<-1} B.{x|-1<x<2}C.{x|-2<x<1} D.{x|-2<x<3}2.角的終邊在直線上,則()A. B. C. D.3.在中,,,,是外接圓上一動點,若,則的最大值是()A.1 B. C. D.24.下列敘述中,不能稱為算法的是()A.植樹需要運苗、挖坑、栽苗、澆水這些步驟B.按順序進行下列運算:1+1=2,2+1=3,3+1=4,…,99+1=100C.從濟南到北京旅游,先坐火車,再坐飛機抵達D.3x>x+15.已知圓,圓,則圓與圓的位置關系是()A.相離 B.相交 C.外切 D.內(nèi)切6.某校高一年級有男生540人,女生360人,用分層抽樣的方法從高一年級的學生中隨機抽取25名學生進行問卷調(diào)查,則應抽取的女生人數(shù)為A.5 B.10 C.4 D.207.計算的值等于()A. B. C. D.8.若,,,,則等于()A. B. C. D.9.已知等比數(shù)列中,,且有,則()A. B. C. D.10.若函數(shù),又,,且的最小值為,則正數(shù)的值是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知直線與相互垂直,且垂足為,則的值為______.12.若Sn為等比數(shù)列an的前n項的和,8a13.直線與的交點坐標為________.14.已知數(shù)列滿足,,則_______;_______.15.設,數(shù)列滿足,,將數(shù)列的前100項從大到小排列得到數(shù)列,若,則k的值為______;16.已知數(shù)列的通項公式為,則該數(shù)列的前1025項的和___________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知向量,其中.函數(shù)的圖象過點,點與其相鄰的最高點的距離為1.(Ⅰ)求函數(shù)的單調(diào)遞減區(qū)間;(Ⅱ)計算的值;(Ⅲ)設函數(shù),試討論函數(shù)在區(qū)間[0,3]上的零點個數(shù).18.已知直線(1)若直線過點,且.求直線的方程.(2)若直線過點A(2,0),且,求直線的方程及直線,,軸圍成的三角形的面積.19.如果數(shù)列對任意的滿足:,則稱數(shù)列為“數(shù)列”.(1)已知數(shù)列是“數(shù)列”,設,求證:數(shù)列是遞增數(shù)列,并指出與的大小關系(不需要證明);(2)已知數(shù)列是首項為,公差為的等差數(shù)列,是其前項的和,若數(shù)列是“數(shù)列”,求的取值范圍;(3)已知數(shù)列是各項均為正數(shù)的“數(shù)列”,對于取相同的正整數(shù)時,比較和的大小,并說明理由.20.如圖,在三棱錐中,點,分別是,的中點,,.求證:⑴平面;⑵.21.在中,角所對的邊為.已知面積(1)若求的值;(2)若,求的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】
根據(jù)并集定義計算.【詳解】由題意A∪B={x|-2<x<3}.故選D.【點睛】本題考查集合的并集運算,屬于基礎題.2、C【解析】
先由直線的斜率得出,再利用誘導公式將分式化為弦的一次分式齊次式,并在分子分母中同時除以,利用弦化切的思想求出所求代數(shù)式的值.【詳解】角的終邊在直線上,,則,故選C.【點睛】本題考查誘導公式化簡求值,考查弦化切思想的應用,弦化切一般適用于以下兩個方面:(1)分式為角弦的次分式齊次式,在分子分母中同時除以,可以弦化切;(2)代數(shù)式為角的二次整式,先除以,轉(zhuǎn)化為角弦的二次分式其次式,然后在分子分母中同時除以,可以實現(xiàn)弦化切.3、C【解析】
以的中點為原點,建立如圖所示的平面直角坐標系,設M的坐標為,,求出點的坐標,得到,根據(jù)正弦函數(shù)的圖象和性質(zhì)即可求出答案.【詳解】以的中點O為原點,以為x軸,建立如圖所示的平面直角坐標系,則外接圓的方程為,設M的坐標為,,過點作垂直軸,,,,,,,,,,,,,,,,,,,,,,,其中,,當時,有最大值,最大值為,故選C.【點睛】本題考查了向量的坐標運算和向量的數(shù)乘運算和正弦函數(shù)的圖象和性質(zhì),以及直角三角形的問題,考查了學生的分析解決問題的能力,屬于難題.4、D【解析】
利用算法的定義來分析判斷各選項的正確與否,即可求解,得到答案.【詳解】由算法的定義可知,算法、程序是完成一件事情的可操作的步驟:可得A、B、C為算法,D沒有明確的規(guī)則和步驟,所以不是算法,故選D.【點睛】本題主要考查了算法的概念,其中解答的關鍵是理解算法的概念,由概念作出正確的判斷,著重考查了分析問題和解答問題的能力,屬于基礎題.5、C【解析】,,,,,即兩圓外切,故選.點睛:判斷圓與圓的位置關系的常見方法(1)幾何法:利用圓心距與兩半徑和與差的關系.(2)切線法:根據(jù)公切線條數(shù)確定.(3)數(shù)形結合法:直接根據(jù)圖形確定6、B【解析】
直接利用分層抽樣按照比例抽取得到答案.【詳解】設應抽取的女生人數(shù)為,則,解得.故答案選B【點睛】本題考查了分層抽樣,屬于簡單題.7、C【解析】
由三角正弦的倍角公式計算即可.【詳解】原式.故選C【點睛】本題屬于基礎題,考查三角特殊值的正弦公式的計算.8、C【解析】
利用同角三角函數(shù)的基本關系求出與,然后利用兩角差的余弦公式求出值.【詳解】,,則,,則,所以,,因此,,故選C.【點睛】本題考查利用兩角和的余弦公式求值,解決這類求值問題需要注意以下兩點:①利用同角三角平方關系求值時,要求對象角的范圍,確定所求值的正負;②利用已知角來配湊未知角,然后利用合適的公式求解.9、A【解析】,,所以選A10、D【解析】,由,得,,由,得,則,當時,取得最小值,則,解得,故選D.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
先由兩直線垂直,可求出的值,將垂足點代入直線的方程可求出的點,再將垂足點代入直線的方程可求出的值,由此可計算出的值.【詳解】,,解得,直線的方程為,即,由于點在直線上,,解得,將點的坐標代入直線的方程得,解得,因此,.故答案為:.【點睛】本題考查了由兩直線垂直求參數(shù),以及由兩直線的公共點求參數(shù),考查推理能力與計算能力,屬于基礎題.12、-7【解析】設公比為q,則8a1q=-a113、【解析】
直接聯(lián)立方程得到答案.【詳解】聯(lián)立方程解得即兩直線的交點坐標為.故答案為【點睛】本題考查了兩直線的交點,屬于簡單題.14、【解析】
令代入可求得;方程兩邊取倒數(shù),構造出等差數(shù)列,即可得答案.【詳解】令,則;∵,∴數(shù)列為等差數(shù)列,∴,∴.故答案為:;.【點睛】本題考查數(shù)列的遞推關系求通項,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意兩邊取倒數(shù),構造新等差數(shù)列的方法.15、【解析】
根據(jù)遞推公式利用數(shù)學歸納法分析出與的關系,然后考慮將的前項按要求排列,再根據(jù)項的序號計算出滿足的值即可.【詳解】由已知,a1=a,0<a<1;并且函數(shù)y=ax單調(diào)遞減;∵∴1>a2>a1∴,∴a2>a3>a1∵,且∴a2>a4>a3>a1……當為奇數(shù)時,用數(shù)學歸納法證明,當時,成立,設時,,當時,因為,結合的單調(diào)性,所以,所以即,所以時成立,所以為奇數(shù)時,;當為偶數(shù)時,用數(shù)學歸納法證明,當時,成立,設時,,當時,因為,結合的單調(diào)性,所以,所以即,所以時成立,所以為偶數(shù)時,;用數(shù)學歸納法證明:任意偶數(shù)項大于相鄰的奇數(shù)項即證:當為奇數(shù),,當時,符合,設時,,當時,因為,結合的單調(diào)性,所以,所以,所以,所以時成立,所以當為奇數(shù)時,,據(jù)此可知:,當時,若,則有,此時無解;當時,此時的下標成首項為公差為的等差數(shù)列,通項即為,若,所以,所以.故答案為:.【點睛】本題考查數(shù)列與函數(shù)的綜合應用,難度較難.(1)分析數(shù)列的單調(diào)性時,要注意到數(shù)列作為特殊的函數(shù),其定義域為;(2)證明數(shù)列的單調(diào)性可從與的關系入手分析.16、2039【解析】
根據(jù)所給分段函數(shù),依次列舉出當時的值,即可求得的值.【詳解】當時,,當時,,,共1個2.當時,,,共3個2.當時,,,共7個2.當時,,,共15個2.當時,,,共31個2.當時,,,共63個2.當時,,,共127個2.當時,,,共255個2.當時,,,共511個2.當時,,,共1個2.所以由以上可知故答案為:2039【點睛】本題考查了分段函數(shù)的應用,由所給式子列舉出各個項,即可求和,屬于中檔題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(Ⅰ),;(Ⅱ)2028;(Ⅲ)詳見解析.【解析】
(Ⅰ)由數(shù)量積的坐標運算可得f(x),由題意求得ω,再由函數(shù)f(x)的圖象過點B(2,2)列式求得.則函數(shù)解析式可求,由復合函數(shù)的單調(diào)性求得f(x)的單調(diào)遞增區(qū)間;(Ⅱ)由(Ⅰ)知,f(x)=2+sin,可得f(x)是周期為2的周期函數(shù),且f(2)=2,f(2)=2,f(3)=0,f(2)=2.得到f(2)+f(2)+f(3)+f(2)=2.進一步可得結論;(Ⅲ)g(x)=f(x)﹣m﹣2,函數(shù)g(x)在[0,3]上的零點個數(shù),即為函數(shù)y=sin的圖象與直線y=m在[0,3]上的交點個數(shù).數(shù)形結合得答案.【詳解】(Ⅰ)∵(,cos2(ωx+φ)),(,),∴f(x)cos2(ωx+)=2﹣cos2(ωx+)),∴f(x)max=2,則點B(2,2)為函數(shù)f(x)的圖象的一個最高點.∵點B與其相鄰的最高點的距離為2,∴,得ω.∵函數(shù)f(x)的圖象過點B(2,2),∴,即sin2φ=2.∵0<,∴.∴f(x)=2﹣cos2()=2+sin,由,得,.的單調(diào)遞減區(qū)間是,.(Ⅱ)由(Ⅰ)知,f(x)=2+sin,∴f(x)是周期為2的周期函數(shù),且f(2)=2,f(2)=2,f(3)=0,f(2)=2.∴f(2)+f(2)+f(3)+f(2)=2.而2027=2×502+2,∴f(2)+f(2)+…+f(2027)=2×502+2=2028;(Ⅲ)g(x)=f(x)﹣m﹣2,函數(shù)g(x)在[0,3]上的零點個數(shù),即為函數(shù)y=sin的圖象與直線y=m在[0,3]上的交點個數(shù).在同一直角坐標系內(nèi)作出兩個函數(shù)的圖象如圖:①當m>2或m<﹣2時,兩函數(shù)的圖象在[0,3]內(nèi)無公共點;②當﹣2≤m<0或m=2時,兩函數(shù)的圖象在[0,3]內(nèi)有一個共點;③當0≤m<2時,兩函數(shù)的圖象在[0,3]內(nèi)有兩個共點.綜上,當m>2或m<﹣2時,函數(shù)g(x)在[0,3]上無零點;②當﹣2≤m<0或m=2時,函數(shù)g(x)在[0,3]內(nèi)有2個零點;③當0≤m<2時,函數(shù)g(x)在[0,3]內(nèi)有2個零點.【點睛】本題考查三角函數(shù)中的恒等變換應用,考查數(shù)量積的坐標運算,體現(xiàn)了數(shù)形結合的解題思想方法,是中檔題.18、(1);(2);【解析】
(1)根據(jù)已知求得的斜率,由點斜式求出直線的方程.(2)根據(jù)已知求得的斜率,由點斜式寫出直線的方程,聯(lián)立的方程,求得兩條直線交點的坐標,再由三角形面積公式求得三角形面積.【詳解】解:(1)∵∥,∴直線的斜率是又直線過點,∴直線的方程為,即(2)∵,∴直線的斜率是又直線過點,∴直線的方程為即由得與的交點為∴直線,,軸圍成的三角形的面積是【點睛】本小題主要考查兩條直線平行、垂直時,斜率的對應關系,考查直線的點斜式方程,考查兩條直線交點坐標的求法,考查三角形的面積公式,屬于基礎題.19、(1);(2)(3),證明見解析.【解析】
(1)由新定義,結合單調(diào)性的定義可得數(shù)列是遞增數(shù)列;再根據(jù),,可得;(2)運用新定義和等差數(shù)列的求和公式,解絕對值不等式即可得到所求范圍;(3)對一切,有.運用數(shù)學歸納法證明,注意驗證成立;假設不等式成立,注意變形和運用新定義,即可得證.【詳解】(1)證明:數(shù)列是“數(shù)列”,可得,即,即,可得數(shù)列是遞增數(shù)列,.(2)數(shù)列是“數(shù)列”,可得,即,可得,即有,或,或,即或或,所以.(3)數(shù)列是各項均為正數(shù)的“數(shù)列”,對于取相同的正整數(shù)時,,運用數(shù)學歸納法證明:當時,,,顯然即.設時,.即,可得,當時,即證,即證,由,即證即證,由,,,,相加可得,則對一切,有.【點睛】本題考查新定義的理解和運用,考查數(shù)列的單調(diào)性的證明和等差數(shù)列的通項公式和求和公式,以及數(shù)學歸納法的應用,考查化簡整理的運算能力,屬于難題.20、(1)見證明;(2)見證明【解析】
(1)由中位線定理即可說明,由此證
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 建筑工程審計合同
- 2025版實習生實習期間實習單位培訓責任協(xié)議3篇
- 寫字樓電梯管理協(xié)議
- 2025個人貨車租賃合同書
- 建筑工程:車庫雨棚施工合同范本
- 家政服務伸縮縫安裝施工協(xié)議
- 2025版勞動合同補充協(xié)議范本匯編3篇
- 2024年教育培訓機構廣告合作合同范本3篇
- 自建房屋建筑設備租賃合同
- 證券投資聯(lián)合體投標協(xié)議模板
- 2024-2030年中國無糖壓縮餅干行業(yè)市場現(xiàn)狀供需分析及投資評估規(guī)劃分析研究報告
- 北京大學圖書館招考聘用高頻考題難、易錯點模擬試題(共500題)附帶答案詳解
- 壓力箱涵施工組織設計
- 安全管理三級體系
- 2024年商用密碼應用安全性評估從業(yè)人員考核試題庫-下(判斷題)
- 快樂讀書吧《愛的教育》復習小結(知識點)-統(tǒng)編版語文六年級上冊
- 2024年人教版初一生物(上冊)期末考卷及答案(各版本)
- 2024至2030年中國無糖壓縮餅干行業(yè)市場全景監(jiān)測及投資策略研究報告
- 食品安全追溯管理體系制度
- 作業(yè)治療學智慧樹知到答案2024年山東現(xiàn)代學院
- 律所之間轉(zhuǎn)委托合同范本
評論
0/150
提交評論