天津四十二中2025屆高一數(shù)學(xué)第二學(xué)期期末考試試題含解析_第1頁
天津四十二中2025屆高一數(shù)學(xué)第二學(xué)期期末考試試題含解析_第2頁
天津四十二中2025屆高一數(shù)學(xué)第二學(xué)期期末考試試題含解析_第3頁
天津四十二中2025屆高一數(shù)學(xué)第二學(xué)期期末考試試題含解析_第4頁
天津四十二中2025屆高一數(shù)學(xué)第二學(xué)期期末考試試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

天津四十二中2025屆高一數(shù)學(xué)第二學(xué)期期末考試試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.把函數(shù)的圖象沿軸向右平移個單位,再把所得圖象上各點的縱坐標不變,橫坐標變?yōu)樵瓉淼模傻煤瘮?shù)的圖象,則的解析式為()A. B.C. D.2.已知a,,且,若對,不等式恒成立,則的最大值為()A. B. C.1 D.3.用數(shù)學(xué)歸納法證明的過程中,設(shè),從遞推到時,不等式左邊為()A. B.C. D.4.如圖是某地某月1日至15日的日平均溫度變化的折線圖,根據(jù)該折線圖,下列結(jié)論正確的是()A.這15天日平均溫度的極差為B.連續(xù)三天日平均溫度的方差最大的是7日,8日,9日三天C.由折線圖能預(yù)測16日溫度要低于D.由折線圖能預(yù)測本月溫度小于的天數(shù)少于溫度大于的天數(shù)5.已知,函數(shù)的最小值是()A.5 B.4 C.8 D.66.各項不為零的等差數(shù)列中,,數(shù)列是等比數(shù)列,且,則()A.4 B.8 C.16 D.647.如圖,各棱長均為的正三棱柱,、分別為線段、上的動點,且平面,,中點軌跡長度為,則正三棱柱的體積為()A. B. C.3 D.8.關(guān)于某設(shè)備的使用年限(單位:年)和所支出的維修費用(單位:萬元)有如下統(tǒng)計數(shù)據(jù)表:使用年限維修費用根據(jù)上表可得回歸直線方程,據(jù)此估計,該設(shè)備使用年限為年時所支出的維修費用約是()A.萬元 B.萬元 C.萬元 D.萬元9.甲、乙兩人約定晚6點到晚7點之間在某處見面,并約定甲若早到應(yīng)等乙半小時,而乙還有其他安排,若他早到則不需等待,則甲、乙兩人能見面的概率()A. B. C. D.10.對于一個給定的數(shù)列,定義:若,稱數(shù)列為數(shù)列的一階差分數(shù)列;若,稱數(shù)列為數(shù)列的二階差分數(shù)列.若數(shù)列的二階差分數(shù)列的所有項都等于,且,則()A.2018 B.1009 C.1000 D.500二、填空題:本大題共6小題,每小題5分,共30分。11.設(shè)等比數(shù)列的前項和為,若,,則的值為______.12.在數(shù)列中,,當時,.則數(shù)列的前項和是_____.13.不等式的解集為_________.14.函數(shù)的定義域為____________.15.已知函數(shù),若,則的取值圍為_________.16.如圖中,,,,M為AB邊上的動點,,D為垂足,則的最小值為______;三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知圓(1)求圓關(guān)于直線對稱的圓的標準方程;(2)過點的直線被圓截得的弦長為8,求直線的方程;(3)當取何值時,直線與圓相交的弦長最短,并求出最短弦長.18.已知圓C的圓心為(1,1),直線與圓C相切.(1)求圓C的標準方程;(2)若直線過點(2,3),且被圓C所截得的弦長為2,求直線的方程.19.如圖,在三棱柱中,為正三角形,為的中點,,,.(1)證明:平;(2)證明:平面平面.20.銳角的內(nèi)角、、所對的邊分別為、、,若.(1)求;(2)若,,求的周長.21.已知函數(shù),.(1)把表示為的形式,并寫出函數(shù)的最小正周期、值域;(2)求函數(shù)的單調(diào)遞增區(qū)間:(3)定義:對于任意實數(shù)、,設(shè),(常數(shù)),若對于任意,總存在,使得恒成立,求實數(shù)的取值范圍.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】

根據(jù)三角函數(shù)圖像變換的原則,即可得出結(jié)果.【詳解】先把函數(shù)的圖象沿軸向右平移個單位,得到;再把圖像上各點的縱坐標不變,橫坐標變?yōu)樵瓉淼?,得?故選C【點睛】本題主要考查三角函數(shù)的圖像變換問題,熟記圖像變換的原則即可,屬于常考題型.2、C【解析】

由,不等式恒成立,得,利用絕對值不等式的定理,逐步轉(zhuǎn)化,即可得到本題答案.【詳解】設(shè),對,不等式恒成立的等價條件為,又表示數(shù)軸上一點到兩點的距離之和的倍,顯然當時,,則有,所以,得,從而,所以的最大值為1.故選:C.【點睛】本題主要考查絕對值不等式與恒成立問題的綜合應(yīng)用,較難.3、C【解析】

比較與時不等式左邊的項,即可得到結(jié)果【詳解】因此不等式左邊為,選C.【點睛】本題考查數(shù)學(xué)歸納法,考查基本分析判斷能力,屬基礎(chǔ)題4、B【解析】

利用折線圖的性質(zhì),結(jié)合各選項進行判斷,即可得解.【詳解】由某地某月1日至15日的日平均溫度變化的折線圖,得:在中,這15天日平均溫度的極差為:,故錯誤;在中,連續(xù)三天日平均溫度的方差最大的是7日,8日,9日三天,故正確;在中,由折線圖無法預(yù)測16日溫度要是否低于,故錯誤;在中,由折線圖無法預(yù)測本月溫度小于的天數(shù)是否少于溫度大于的天數(shù),故錯誤.故選.【點睛】本題考查命題真假的判斷,考查折線圖的性質(zhì)等基礎(chǔ)知識,考查運算求解能力、數(shù)據(jù)處理能力,考查數(shù)形結(jié)合思想,是基礎(chǔ)題.5、D【解析】試題分析:因為該函數(shù)的單調(diào)性較難求,所以可以考慮用不等式來求最小值,,因為,由重要不等式可知,所以,本題正確選項為D.考點:重要不等式的運用.6、D【解析】

根據(jù)等差數(shù)列性質(zhì)可求得,再利用等比數(shù)列性質(zhì)求得結(jié)果.【詳解】由等差數(shù)列性質(zhì)可得:又各項不為零,即由等比數(shù)列性質(zhì)可得:本題正確選項:【點睛】本題考查等差數(shù)列、等比數(shù)列性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.7、D【解析】

設(shè)的中點分別為,判斷出中點的軌跡是等邊三角形的高,由此計算出正三棱柱的邊長,進而計算出正三棱柱的體積.【詳解】設(shè)的中點分別為,連接.由于平面,所以.當時,中點為平面的中心,即的中點(設(shè)為點)處.當時,此時的中點為的中點.所以點的軌跡是三角形的高.由于三角形是等邊三角形,而,所以.故正三棱柱的體積為.故選:D【點睛】本小題主要考查線面平行的有關(guān)性質(zhì),考查棱柱的體積計算,考查空間想象能力,考查分析與解決問題的能力,屬于中檔題.8、C【解析】

計算出和,將點的坐標代入回歸直線方程,求得實數(shù)的值,然后將代入回歸直線方程可求得結(jié)果.【詳解】由表格中的數(shù)據(jù)可得,,由于回歸直線過樣本中心點,則,解得,所以,回歸直線方程為,當時,.因此,該設(shè)備使用年限為年時所支出的維修費用約是萬元.故選:C.【點睛】本題考查利用回歸直線方程對總體數(shù)據(jù)進行估計,充分利用結(jié)論“回歸直線過樣本的中心點”的應(yīng)用,考查計算能力,屬于基礎(chǔ)題.9、A【解析】設(shè)甲到達時刻為,乙到達時刻為,依題意列不等式組為,畫出可行域如下圖陰影部分,故概率為.10、C【解析】

根據(jù)題目給出的定義,分析出其數(shù)列的特點為等差數(shù)列,利用等差數(shù)列求解.【詳解】依題意知是公差為的等差數(shù)列,設(shè)其首項為,則,即,利用累加法可得,由于,即解得,,故.選C.【點睛】本題考查新定義數(shù)列和等差數(shù)列,屬于難度題.二、填空題:本大題共6小題,每小題5分,共30分。11、16【解析】

利用及可計算,從而可計算的值.【詳解】因為,故,因為,故,故,故填16.【點睛】等差數(shù)列或等比數(shù)列的處理有兩類基本方法:(1)利用基本量即把數(shù)學(xué)問題轉(zhuǎn)化為關(guān)于基本量的方程或方程組,再運用基本量解決與數(shù)列相關(guān)的問題;(2)利用數(shù)列的性質(zhì)求解即通過觀察下標的特征和數(shù)列和式的特征選擇合適的數(shù)列性質(zhì)處理數(shù)學(xué)問題.12、【解析】

先利用累加法求出數(shù)列的通項公式,然后將數(shù)列的通項裂開,利用裂項求和法求出數(shù)列的前項和.【詳解】當時,.所以,,,,,.上述等式全部相加得,.,因此,數(shù)列的前項和為,故答案為:.【點睛】本題考查累加法求數(shù)列通項和裂項法求和,解題時要注意累加法求通項和裂項法求和對數(shù)列遞推公式和通項公式的要求,考查運算求解能力,屬于中等題.13、【解析】

利用兩個數(shù)的商是正數(shù)等價于兩個數(shù)同號;將已知的分式不等式轉(zhuǎn)化為整式不等式,求出解集.【詳解】同解于解得或故答案為:【點睛】本題考查解分式不等式,利用等價變形轉(zhuǎn)化為整式不等式是解題的關(guān)鍵.14、【解析】

先將和分別解出來,然后求交集即可【詳解】要使,則有且由得由得因為所以原函數(shù)的定義域為故答案為:【點睛】解三角不等式的方法:1.在單位圓中利用三角函數(shù)線,2.利用三角函數(shù)的圖像15、【解析】

由函數(shù),根據(jù),得到,再由,得到,結(jié)合余弦函數(shù)的性質(zhì),即可求解.【詳解】由題意,函數(shù),又由,即,即,因為,則,所以或,即或,所以實數(shù)的取值圍為.故答案為:.【點睛】本題主要考查了余弦的倍角公式,以及三角不等式的求解,其中解答中熟練應(yīng)用余弦函數(shù)的性質(zhì)是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.16、【解析】

以為坐標原點建立平面直角坐標系,用坐標表示出的值,然后利用換元法求解出對應(yīng)的最小值即可.【詳解】如圖所示,設(shè),所以,根據(jù)條件可知:,所以,設(shè),,,所以,所以,所以,所以當時,有最小值,最小值為.故答案為:.【點睛】本題考查利用坐標法以及換元法求解最值,著重考查邏輯推理和運算求解的能力,屬于較難題(1)利用換元法求解最值時注意,換元后新元的取值范圍;(2)三角函數(shù)中的一組“萬能公式”:,.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)或;(3)【解析】

(1)設(shè),根據(jù)圓心與關(guān)于直線對稱,列出方程組,求得的值,即可求解;(2)由圓的弦長公式,求得,根據(jù)斜率分類討論,求得直線的斜率,即可求解;(3)由直線,得直線過定點,根據(jù)時,弦長最短,即可求解.【詳解】(1)由題意,圓的圓心,半徑為,設(shè),因為圓心與關(guān)于直線對稱,所以,解得,則,半徑,所以圓標準方程為:(2)設(shè)點到直線距離為,圓的弦長公式,得,解得,①當斜率不存在時,直線方程為,滿足題意②當斜率存在時,設(shè)直線方程為,則,解得,所以直線的方程為,綜上,直線方程為或(3)由直線,可化為,可得直線過定點,當時,弦長最短,又由,可得,此時最短弦長為.【點睛】本題主要考查了圓的對稱圓的求解,以及直線與圓的位置關(guān)系的應(yīng)用,其中解答中熟記直線與圓的弦長公式,合理、準確計算是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.18、(1);(2)或.【解析】

(1)利用點到直線的距離可得:圓心到直線的距離.根據(jù)直線與圓相切,可得.即可得出圓的標準方程.(2)①當直線的斜率存在時,設(shè)直線的方程:,即:,可得圓心到直線的距離,又,可得:.即可得出直線的方程.②當?shù)男甭什淮嬖跁r,,代入圓的方程可得:,解得可得弦長,即可驗證是否滿足條件.【詳解】(1)圓心到直線的距離.直線與圓相切,.圓的標準方程為:.(2)①當直線的斜率存在時,設(shè)直線的方程:,即:,,又,.解得:.直線的方程為:.②當?shù)男甭什淮嬖跁r,,代入圓的方程可得:,解得,可得弦長,滿足條件.綜上所述的方程為:或.【點睛】本題考查直線與圓的相切的性質(zhì)、點到直線的距離公式、弦長公式、分類討論方法,考查推理能力與計算能力,屬于中檔題.19、(1)證明見解析;(2)證明見解析.【解析】

(1)連結(jié)交于,連結(jié),先證明,再證明平;(2)取的中點為,連結(jié),,,先證明平面,再證明平面平面.【詳解】證明:(1)連結(jié)交于,連結(jié),由于棱柱的側(cè)面是平行四邊形,故為的中點,又為的中點,故是的中位線,所以,又平面,平面,所以平面.(2)取的中點為,連結(jié),,,在中,,由,知為正三角形,故,又,,故,所以,又,所以平面,又平面,所以平面平面.【點睛】本題主要考查空間位置關(guān)系的證明,意在考查學(xué)生對這些知識的理解掌握水平和分析推理能力,屬于基礎(chǔ)題.20、(1);(2).【解析】

(1)利用正弦定理邊角互化思想,結(jié)合兩角和的正弦公式可計算出的值,結(jié)合為銳角,可得出角的值;(2)利用三角形的面積公式可求出,利用余弦定理得出,由此可得出的周長.【詳解】(1)依據(jù)題設(shè)條件的特點,由正弦定理,得,有,從而,解得,為銳角,因此,;(2),故,由余弦定理,即,,,故的周長為.【點睛】本題考查正弦定理邊角互化思想的應(yīng)用,同時也考查余弦定理和三角形面積公式解三角形,要熟悉正弦定理和余弦定理解三角形所適用的基本類型

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論