2023-2024學(xué)年黑龍江省七臺(tái)河市畢業(yè)升學(xué)考試模擬卷數(shù)學(xué)卷含解析_第1頁
2023-2024學(xué)年黑龍江省七臺(tái)河市畢業(yè)升學(xué)考試模擬卷數(shù)學(xué)卷含解析_第2頁
2023-2024學(xué)年黑龍江省七臺(tái)河市畢業(yè)升學(xué)考試模擬卷數(shù)學(xué)卷含解析_第3頁
2023-2024學(xué)年黑龍江省七臺(tái)河市畢業(yè)升學(xué)考試模擬卷數(shù)學(xué)卷含解析_第4頁
2023-2024學(xué)年黑龍江省七臺(tái)河市畢業(yè)升學(xué)考試模擬卷數(shù)學(xué)卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2023-2024學(xué)年黑龍江省七臺(tái)河市畢業(yè)升學(xué)考試模擬卷數(shù)學(xué)卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.如圖,在扇形CAB中,CA=4,∠CAB=120°,D為CA的中點(diǎn),P為弧BC上一動(dòng)點(diǎn)(不與C,B重合),則2PD+PB的最小值為()A.4+23 B.432.如圖,△ABC中,D、E分別為AB、AC的中點(diǎn),已知△ADE的面積為1,那么△ABC的面積是()A.2 B.3 C.4 D.53.化簡:-,結(jié)果正確的是()A.1 B. C. D.4.如圖,以正方形ABCD的邊CD為邊向正方形ABCD外作等邊△CDE,AC與BE交于點(diǎn)F,則∠AFE的度數(shù)是()A.135° B.120° C.60° D.45°5.如圖,AB∥CD,DB⊥BC,∠2=50°,則∠1的度數(shù)是()A.40° B.50° C.60° D.140°6.如圖的幾何體是由一個(gè)正方體切去一個(gè)小正方體形成的,它的主視圖是()A. B. C. D.7.如圖,田亮同學(xué)用剪刀沿直線將一片平整的樹葉剪掉一部分,發(fā)現(xiàn)剩下樹葉的周長比原樹葉的周長要小,能正確解釋這一現(xiàn)象的數(shù)學(xué)知識(shí)是()A.垂線段最短 B.經(jīng)過一點(diǎn)有無數(shù)條直線C.兩點(diǎn)之間,線段最短 D.經(jīng)過兩點(diǎn),有且僅有一條直線8.如圖是由4個(gè)相同的正方體搭成的幾何體,則其俯視圖是()A. B. C. D.9.如圖,直線y=3x+6與x,y軸分別交于點(diǎn)A,B,以O(shè)B為底邊在y軸右側(cè)作等腰△OBC,將點(diǎn)C向左平移5個(gè)單位,使其對(duì)應(yīng)點(diǎn)C′恰好落在直線AB上,則點(diǎn)C的坐標(biāo)為()A.(3,3) B.(4,3) C.(﹣1,3) D.(3,4)10.在平面直角坐標(biāo)系中,有兩條拋物線關(guān)于x軸對(duì)稱,且他們的頂點(diǎn)相距10個(gè)單位長度,若其中一條拋物線的函數(shù)表達(dá)式為y=+6x+m,則m的值是()A.-4或-14 B.-4或14 C.4或-14 D.4或14二、填空題(共7小題,每小題3分,滿分21分)11.如圖,在Rt△AOB中,∠AOB=90°,OA=2,OB=1,將Rt△AOB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°后得到Rt△FOE,將線段EF繞點(diǎn)E逆時(shí)針旋轉(zhuǎn)90°后得到線段ED,分別以O(shè)、E為圓心,OA、ED長為半徑畫弧AF和弧DF,連接AD,則圖中陰影部分的面積是__.12.如圖,已知,D、E分別是邊BA、CA延長線上的點(diǎn),且如果,,那么AE的長為______.13.如圖,長方形內(nèi)有兩個(gè)相鄰的正方形,面積分別為3和9,那么陰影部分的面積為_____.14.一般地,當(dāng)α、β為任意角時(shí),sin(α+β)與sin(α﹣β)的值可以用下面的公式求得:sin(α+β)=sinα?cosβ+cosα?sinβ;sin(α﹣β)=sinα?cosβ﹣cosα?sinβ.例如sin90°=sin(60°+30°)=sin60°?cos30°+cos60°?sin30°==1.類似地,可以求得sin15°的值是_______.15.如圖,已知l1∥l2∥l3,相鄰兩條平行直線間的距離相等,若等腰直角三角形ABC的直角頂點(diǎn)C在l1上,另兩個(gè)頂點(diǎn)A,B分別在l3,l2上,則sinα的值是_____.16.若是關(guān)于的完全平方式,則__________.17.如圖,直線y=kx與雙曲線y=(x>0)交于點(diǎn)A(1,a),則k=_____.三、解答題(共7小題,滿分69分)18.(10分)(1)計(jì)算:(﹣2)2﹣+(+1)2﹣4cos60°;(2)化簡:÷(1﹣)19.(5分)如圖,已知△ABC內(nèi)接于⊙O,BC交直徑AD于點(diǎn)E,過點(diǎn)C作AD的垂線交AB的延長線于點(diǎn)G,垂足為F.連接OC.(1)若∠G=48°,求∠ACB的度數(shù);(1)若AB=AE,求證:∠BAD=∠COF;(3)在(1)的條件下,連接OB,設(shè)△AOB的面積為S1,△ACF的面積為S1.若tan∠CAF=,求的值.20.(8分)如圖,AB∥CD,∠1=∠2,求證:AM∥CN21.(10分)甲、乙、丙、丁四位同學(xué)進(jìn)行乒乓球單打比賽,要從中選出兩位同學(xué)打第一場(chǎng)比賽.若確定甲打第一場(chǎng),再從其余三位同學(xué)中隨機(jī)選取一位,恰好選中乙同學(xué)的概率是.若隨機(jī)抽取兩位同學(xué),請(qǐng)用畫樹狀圖法或列表法,求恰好選中甲、乙兩位同學(xué)的概率.22.(10分)某校初三體育考試選擇項(xiàng)目中,選擇籃球項(xiàng)目和排球項(xiàng)目的學(xué)生比較多.為了解學(xué)生掌握籃球技巧和排球技巧的水平情況,進(jìn)行了抽樣調(diào)查,過程如下,請(qǐng)補(bǔ)充完整.收集數(shù)據(jù):從選擇籃球和排球的學(xué)生中各隨機(jī)抽取16人,進(jìn)行了體育測(cè)試,測(cè)試成績(十分制)如下:排球109.59.510899.5971045.5109.59.510籃球9.598.58.5109.510869.5109.598.59.56整理、描述數(shù)據(jù):按如下分?jǐn)?shù)段整理、描述這兩組樣本數(shù)據(jù):(說明:成績8.5分及以上為優(yōu)秀,6分及以上為合格,6分以下為不合格)分析數(shù)據(jù):兩組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)如下表所示:項(xiàng)目平均數(shù)中位數(shù)眾數(shù)排球8.759.510籃球8.819.259.5得出結(jié)論:(1)如果全校有160人選擇籃球項(xiàng)目,達(dá)到優(yōu)秀的人數(shù)約為_________人;(2)初二年級(jí)的小明和小軍看到上面數(shù)據(jù)后,小明說:排球項(xiàng)目整體水平較高.小軍說:籃球項(xiàng)目整體水平較高.你同意_______的看法,理由為____________________________.(至少從兩個(gè)不同的角度說明推斷的合理性)23.(12分)已知:AB為⊙O上一點(diǎn),如圖,,,BH與⊙O相切于點(diǎn)B,過點(diǎn)C作BH的平行線交AB于點(diǎn)E.(1)求CE的長;(2)延長CE到F,使,連結(jié)BF并延長BF交⊙O于點(diǎn)G,求BG的長;(3)在(2)的條件下,連結(jié)GC并延長GC交BH于點(diǎn)D,求證:24.(14分)計(jì)算:×(2﹣)﹣÷+.

參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、D【解析】

如圖,作∥∠PAP′=120°,則AP′=2AB=8,連接PP′,BP′,則∠1=∠2,推出△APD∽△ABP′,得到BP′=2PD,于是得到2PD+PB=BP′+PB≥PP′,根據(jù)勾股定理得到PP′=2+82+(2【詳解】如圖,作∥∠PAP′=120°,則AP′=2AB=8,連接PP′,BP′,則∠1=∠2,∵AP'AB∴△APD∽△ABP′,∴BP′=2PD,∴2PD+PB=BP′+PB≥PP′,∴PP′=2+82∴2PD+PB≥47,∴2PD+PB的最小值為47,故選D.【點(diǎn)睛】本題考查了軸對(duì)稱-最短距離問題,相似三角形的判定和性質(zhì),勾股定理,正確的作出輔助線是解題的關(guān)鍵.2、C【解析】

根據(jù)三角形的中位線定理可得DE∥BC,=,即可證得△ADE∽△ABC,根據(jù)相似三角形面積的比等于相似比的平方可得=,已知△ADE的面積為1,即可求得S△ABC=1.【詳解】∵D、E分別是AB、AC的中點(diǎn),∴DE是△ABC的中位線,∴DE∥BC,=,∴△ADE∽△ABC,∴=()2=,∵△ADE的面積為1,∴S△ABC=1.故選C.【點(diǎn)睛】本題考查了三角形的中位線定理及相似三角形的判定與性質(zhì),先證得△ADE∽△ABC,根據(jù)相似三角形面積的比等于相似比的平方得到=是解決問題的關(guān)鍵.3、B【解析】

先將分母進(jìn)行通分,化為(x+y)(x-y)的形式,分子乘上相應(yīng)的分式,進(jìn)行化簡.【詳解】【點(diǎn)睛】本題考查的是分式的混合運(yùn)算,解題的關(guān)鍵就是熟練掌握運(yùn)算規(guī)則.4、B【解析】

易得△ABF與△ADF全等,∠AFD=∠AFB,因此只要求出∠AFB的度數(shù)即可.【詳解】∵四邊形ABCD是正方形,∴AB=AD,∠BAF=∠DAF,∴△ABF≌△ADF,∴∠AFD=∠AFB,∵CB=CE,∴∠CBE=∠CEB,∵∠BCE=∠BCD+∠DCE=90°+60°=150°,∴∠CBE=15°,∵∠ACB=45°,∴∠AFB=∠ACB+∠CBE=60°.∴∠AFE=120°.故選B.【點(diǎn)睛】此題考查正方形的性質(zhì),熟練掌握正方形及等邊三角形的性質(zhì),會(huì)運(yùn)用其性質(zhì)進(jìn)行一些簡單的轉(zhuǎn)化.5、A【解析】試題分析:根據(jù)直角三角形兩銳角互余求出∠3,再根據(jù)兩直線平行,同位角相等解答.解:∵DB⊥BC,∠2=50°,∴∠3=90°﹣∠2=90°﹣50°=40°,∵AB∥CD,∴∠1=∠3=40°.故選A.6、D【解析】試題分析:根據(jù)三視圖的法則可知B為俯視圖,D為主視圖,主視圖為一個(gè)正方形.7、C【解析】

用剪刀沿直線將一片平整的樹葉剪掉一部分,發(fā)現(xiàn)剩下樹葉的周長比原樹葉的周長要小,∴線段AB的長小于點(diǎn)A繞點(diǎn)C到B的長度,∴能正確解釋這一現(xiàn)象的數(shù)學(xué)知識(shí)是兩點(diǎn)之間,線段最短,故選C.【點(diǎn)睛】根據(jù)“用剪刀沿直線將一片平整的樹葉剪掉一部分,發(fā)現(xiàn)剩下樹葉的周長比原樹葉的周長要小”得到線段AB的長小于點(diǎn)A繞點(diǎn)C到B的長度,從而確定答案.本題考查了線段的性質(zhì),能夠正確的理解題意是解答本題的關(guān)鍵,屬于基礎(chǔ)知識(shí),比較簡單.8、A【解析】試題分析:從上面看是一行3個(gè)正方形.故選A考點(diǎn):三視圖9、B【解析】令x=0,y=6,∴B(0,6),∵等腰△OBC,∴點(diǎn)C在線段OB的垂直平分線上,∴設(shè)C(a,3),則C'(a-5,3),∴3=3(a-5)+6,解得a=4,∴C(4,3).故選B.點(diǎn)睛:掌握等腰三角形的性質(zhì)、函數(shù)圖像的平移.10、D【解析】

根據(jù)頂點(diǎn)公式求得已知拋物線的頂點(diǎn)坐標(biāo),然后根據(jù)軸對(duì)稱的性質(zhì)求得另一條拋物線的頂點(diǎn),根據(jù)題意得出關(guān)于m的方程,解方程即可求得.【詳解】∵一條拋物線的函數(shù)表達(dá)式為y=x2+6x+m,∴這條拋物線的頂點(diǎn)為(-3,m-9),∴關(guān)于x軸對(duì)稱的拋物線的頂點(diǎn)(-3,9-m),∵它們的頂點(diǎn)相距10個(gè)單位長度.∴|m-9-(9-m)|=10,∴2m-18=±10,當(dāng)2m-18=10時(shí),m=1,當(dāng)2m-18=-10時(shí),m=4,∴m的值是4或1.故選D.【點(diǎn)睛】本題考查了二次函數(shù)圖象與幾何變換,解答本題的關(guān)鍵是掌握二次函數(shù)的頂點(diǎn)坐標(biāo)公式,坐標(biāo)和線段長度之間的轉(zhuǎn)換,關(guān)于x軸對(duì)稱的點(diǎn)和拋物線的關(guān)系.二、填空題(共7小題,每小題3分,滿分21分)11、.【解析】

作DH⊥AE于H,根據(jù)勾股定理求出AB,根據(jù)陰影部分面積=△ADE的面積+△EOF的面積+扇形AOF的面積-扇形DEF的面積,利用扇形面積公式計(jì)算即可.【詳解】解:如圖作DH⊥AE于H,AOB=,OA=2,OB=1,AB=,由旋轉(zhuǎn)的性質(zhì)可知OE=OB=1,DE=EF=AB=,可得△DHE≌△BOA,DH=OB=1,陰影部分面積=△ADE的面積+△EOF的面積+扇形AOF的面積-扇形DEF的面積==,故答案:.【點(diǎn)睛】本題主要考查扇形的計(jì)算公式,正確表示出陰影部分的面積是計(jì)算的關(guān)鍵.12、【解析】

由DE∥BC不難證明△ABC△ADE,再由,將題中數(shù)值代入并根據(jù)等量關(guān)系計(jì)算AE的長.【詳解】解:由DE∥BC不難證明△ABC△ADE,∵,CE=4,∴,解得:AE=故答案為.【點(diǎn)睛】本題考查了相似三角形的判定和性質(zhì),熟記三角形的判定和性質(zhì)是解題關(guān)鍵.13、1-1【解析】

設(shè)兩個(gè)正方形的邊長是x、y(x<y),得出方程x2=1,y2=9,求出x=,y=1,代入陰影部分的面積是(y﹣x)x求出即可.【詳解】設(shè)兩個(gè)正方形的邊長是x、y(x<y),則x2=1,y2=9,x,y=1,則陰影部分的面積是(y﹣x)x=(11.故答案為11.【點(diǎn)睛】本題考查了二次根式的應(yīng)用,主要考查學(xué)生的計(jì)算能力.14、.【解析】試題分析:sin15°=sin(60°﹣45°)=sin60°?cos45°﹣cos60°?sin45°==.故答案為.考點(diǎn):特殊角的三角函數(shù)值;新定義.15、【解析】

過點(diǎn)A作AD⊥l1于D,過點(diǎn)B作BE⊥l1于E,根據(jù)同角的余角相等求出∠CAD=∠BCE,然后利用“角角邊”證明△ACD和△CBE全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得CD=BE,然后利用勾股定理列式求出AC,然后利用銳角的正弦等于對(duì)邊比斜邊列式計(jì)算即可得解.【詳解】如圖,過點(diǎn)A作AD⊥l1于D,過點(diǎn)B作BE⊥l1于E,設(shè)l1,l2,l3間的距離為1,∵∠CAD+∠ACD=90°,∠BCE+∠ACD=90°,∴∠CAD=∠BCE,在等腰直角△ABC中,AC=BC,在△ACD和△CBE中,,∴△ACD≌△CBE(AAS),∴CD=BE=1,∴AD=2,∴AC=,∴AB=AC=,∴sinα=,故答案為.【點(diǎn)睛】本題考查了全等三角形的判定與性質(zhì),等腰直角三角形的性質(zhì),銳角三角函數(shù)的定義,正確添加輔助線構(gòu)造出全等三角形是解題的關(guān)鍵.16、1或-1【解析】【分析】直接利用完全平方公式的定義得出2(m-3)=±8,進(jìn)而求出答案.詳解:∵x2+2(m-3)x+16是關(guān)于x的完全平方式,∴2(m-3)=±8,解得:m=-1或1,故答案為-1或1.點(diǎn)睛:此題主要考查了完全平方公式,正確掌握完全平方公式的基本形式是解題關(guān)鍵.17、1【解析】解:∵直線y=kx與雙曲線y=(x>0)交于點(diǎn)A(1,a),∴a=1,k=1.故答案為1.三、解答題(共7小題,滿分69分)18、(1)5(2)【解析】

(1)根據(jù)實(shí)數(shù)的運(yùn)算法則進(jìn)行計(jì)算,要記住特殊銳角三角函數(shù)值;(2)根據(jù)分式的混合運(yùn)算法則進(jìn)行計(jì)算.【詳解】解:(1)原式=4﹣2+2+2+1﹣4×=7﹣2=5;(2)原式=÷=?=.【點(diǎn)睛】本題考核知識(shí)點(diǎn):實(shí)數(shù)運(yùn)算,分式混合運(yùn)算.解題關(guān)鍵點(diǎn):掌握相關(guān)運(yùn)算法則.19、(1)48°(1)證明見解析(3)【解析】

(1)連接CD,根據(jù)圓周角定理和垂直的定義可得結(jié)論;

(1)先根據(jù)等腰三角形的性質(zhì)得:∠ABE=∠AEB,再證明∠BCG=∠DAC,可得,則所對(duì)的圓周角相等,根據(jù)同弧所對(duì)的圓周角和圓心角的關(guān)系可得結(jié)論;

(3)過O作OG⊥AB于G,證明△COF≌△OAG,則OG=CF=x,AG=OF,設(shè)OF=a,則OA=OC=1x-a,根據(jù)勾股定理列方程得:(1x-a)1=x1+a1,則a=x,代入面積公式可得結(jié)論.【詳解】(1)連接CD,∵AD是⊙O的直徑,∴∠ACD=90°,∴∠ACB+∠BCD=90°,∵AD⊥CG,∴∠AFG=∠G+∠BAD=90°,∵∠BAD=∠BCD,∴∠ACB=∠G=48°;(1)∵AB=AE,∴∠ABE=∠AEB,∵∠ABC=∠G+∠BCG,∠AEB=∠ACB+∠DAC,由(1)得:∠G=∠ACB,∴∠BCG=∠DAC,∴,∵AD是⊙O的直徑,AD⊥PC,∴,∴,∴∠BAD=1∠DAC,∵∠COF=1∠DAC,∴∠BAD=∠COF;(3)過O作OG⊥AB于G,設(shè)CF=x,∵tan∠CAF==,∴AF=1x,∵OC=OA,由(1)得:∠COF=∠OAG,∵∠OFC=∠AGO=90°,∴△COF≌△OAG,∴OG=CF=x,AG=OF,設(shè)OF=a,則OA=OC=1x﹣a,Rt△COF中,CO1=CF1+OF1,∴(1x﹣a)1=x1+a1,a=x,∴OF=AG=x,∵OA=OB,OG⊥AB,∴AB=1AG=x,∴.【點(diǎn)睛】圓的綜合題,考查了三角形的面積、垂徑定理、角平分線的性質(zhì)、三角形全等的性質(zhì)和判定以及解直角三角形,解題的關(guān)鍵是:(1)根據(jù)圓周角定理找出∠ACB+∠BCD=90°;(1)根據(jù)外角的性質(zhì)和圓的性質(zhì)得:;(3)利用三角函數(shù)設(shè)未知數(shù),根據(jù)勾股定理列方程解決問題.20、詳見解析.【解析】

只要證明∠EAM=∠ECN,根據(jù)同位角相等兩直線平行即可證明.【詳解】證明:∵AB∥CD,∴∠EAB=∠ECD,∵∠1=∠2,∴∠EAM=∠ECN,∴AM∥CN.【點(diǎn)睛】本題考查平行線的判定和性質(zhì),解題的關(guān)鍵是熟練掌握平行線的性質(zhì)和判定,屬于中考基礎(chǔ)題.21、(1)13;(2)【解析】

1)由題意可得共有乙、丙、丁三位同學(xué),恰好選中乙同學(xué)的只有一種情況,則可利用概率公式求解即可求得答案;

(2)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與恰好選中甲、乙兩位同學(xué)的情況,再利用概率公式求解即可求得答案.【詳解】解:(1)∵甲、乙、丙、丁四位同學(xué)進(jìn)行一次乒乓球單打比賽,確定甲打第一場(chǎng),再從其余的三位同學(xué)中隨機(jī)選取一位,∴恰好選到丙的概率是:13(2)畫樹狀圖得:∵共有12種等可能的結(jié)果,恰好選中甲、乙兩人的有2種情況,∴恰好選中甲、乙兩人的概率為:2【點(diǎn)睛】此題考查的是用列表法或樹狀圖法求概率.注意樹狀圖與列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,列表法適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;注意概率=所求情況數(shù)與總情況數(shù)之比.22、130小明平均數(shù)接近,而排球成績的中位數(shù)和眾數(shù)都較高.【解析】

根據(jù)抽取的16人中成績達(dá)到優(yōu)秀的百分比,即可得到全校達(dá)到優(yōu)秀的人數(shù);根據(jù)平均

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論