安徽省滁州市明光中學2025屆高一數(shù)學第二學期期末監(jiān)測模擬試題含解析_第1頁
安徽省滁州市明光中學2025屆高一數(shù)學第二學期期末監(jiān)測模擬試題含解析_第2頁
安徽省滁州市明光中學2025屆高一數(shù)學第二學期期末監(jiān)測模擬試題含解析_第3頁
安徽省滁州市明光中學2025屆高一數(shù)學第二學期期末監(jiān)測模擬試題含解析_第4頁
安徽省滁州市明光中學2025屆高一數(shù)學第二學期期末監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

安徽省滁州市明光中學2025屆高一數(shù)學第二學期期末監(jiān)測模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知向量,,,則()A. B. C. D.2.已知=4,=3,,則與的夾角為()A. B. C. D.3.若實數(shù),滿足約束條件則的取值范圍為()A. B. C. D.4.已知圓內(nèi)接四邊形ABCD各邊的長度分別為AB=5,BC=8,CD=3,DA=5,則AC的長為()A.6 B.7 C.8 D.95.在區(qū)間上隨機取一個數(shù),使得的概率為()A. B. C. D.6.已知,,則()A. B. C. D.7.為了解名學生的學習情況,采用系統(tǒng)抽樣的方法,從中抽取容量為的樣本,則分段的間隔為()A. B. C. D.8.一個三角形的三邊長成等比數(shù)列,公比為,則函數(shù)的值域為()A.(,+∞) B.[,+∞) C.(,-1) D.[,-1)9.已知直三棱柱的所有頂點都在球0的表面上,,,則=()A.1 B.2 C. D.410.某幾何體三視圖如圖所示,則該幾何體的體積為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.數(shù)列中,其前n項和,則的通項公式為______________..12.已知,則______;的最小值為______.13.用秦九韶算法求多項式當時的值的過程中:,__.14.一個幾何體的三視圖如圖所示(單位:m),則該幾何體的體積為.15.已知扇形的面積為,圓心角為,則該扇形半徑為__________.16.已知正三棱錐的底面邊長為6,所在直線與底面所成角為60°,則該三棱錐的側面積為_______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.如圖,在四棱錐中,底面為菱形,、、分別是棱、、的中點,且平面.(1)求證:平面;(2)求證:平面.18.如圖所示,是邊長為的正三角形,點四等分線段.(Ⅰ)求的值;(Ⅱ)若點是線段上一點,且,求實數(shù)的值.19.設等差數(shù)列的公差為d,前項和為,等比數(shù)列的公比為.已知,,,.(1)求數(shù)列,的通項公式;(2)當時,記,求數(shù)列的前項和.20.已知等差數(shù)列的前項和為,且,.(1)求數(shù)列的通項公式;(2)已知數(shù)列的前項和,,求數(shù)列,的前項和.21.如圖,在直三棱柱中,,,,點N為AB中點,點M在邊AB上.(1)當點M為AB中點時,求證:平面;(2)試確定點M的位置,使得平面.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】

利用平面向量垂直的坐標等價條件列等式求出實數(shù)的值.【詳解】,,,,解得,故選D.【點睛】本題考查向量垂直的坐標表示,解題時將向量垂直轉化為兩向量的數(shù)量積為零來處理,考查計算能力,屬于基礎題.2、C【解析】

由已知中,,,我們可以求出的值,進而根據(jù)數(shù)量積的夾角公式,求出,,進而得到向量與的夾角;【詳解】,,,,,所以向量與的夾角為.故選C【點睛】本題主要考查平面向量的數(shù)量積運算和向量的夾角的計算,意在考查學生對這些知識的理解掌握水平,屬于基礎題.3、A【解析】

的幾何意義為點與點所在直線的斜率,根據(jù)不等式表示的可行域,可得出取值范圍.【詳解】的幾何意義為點與點所在直線的斜率.畫出如圖的可行域,當直線經(jīng)過點時,;當直線經(jīng)過點時,.的取值范圍為,故選A.【點睛】本題考查了不等式表示的可行域的畫法,以及目標函數(shù)為分式時求取值范圍的方法.4、B【解析】

分別在△ABC和△ACD中用余弦定理解出AC,列方程解出cosD,得出AC.【詳解】在△ABC中,由余弦定理得AC2=AB2+BC2﹣2AB×BCcosB=89﹣80cosB,在△ACD中,由余弦定理得AC2=CD2+AD2﹣2AD×CDcosD=34﹣30cosD,∴89﹣80cosB=34﹣30cosD,∵A+C=180°,∴cosB=﹣cosD,∴cosD,∴AC2=34﹣30×()=1.∴AC=2.故選B.【點睛】本題考查了余弦定理的應用,三角形的解法,考查了圓內(nèi)接四邊形的性質(zhì)的應用,屬于中檔題.5、A【解析】則,故概率為.6、A【解析】

由,代入運算即可得解.【詳解】解:因為,,所以.故選:A.【點睛】本題考查了兩角差的正切公式,屬基礎題.7、C【解析】試題分析:由題意知,分段間隔為,故選C.考點:本題考查系統(tǒng)抽樣的定義,屬于中等題.8、D【解析】

由題意先設出三邊為則由三邊關系:兩短邊和大于第三邊,分公比大于與公式在小于兩類解出公比的取值范圍,此兩者的并集是函數(shù)的定義域,再由二次函數(shù)的性質(zhì)求出它的值域,選出正確選項.【詳解】解:設三邊:則由三邊關系:兩短邊和大于第三邊,即

(1)當時,,即,解得;

(2)當時,為最大邊,,即,解得,

綜合(1)(2)得:,

又的對稱軸是,故函數(shù)在上是減函數(shù),在上是增函數(shù),

由于時,與時,,

所以函數(shù)的值域為,故選:D.【點睛】本題考查等比數(shù)列的性質(zhì)及二次函數(shù)的值域的求法,解答本題關鍵是熟練掌握等比數(shù)列的性質(zhì),能利用它建立不等式解出公比的取值范圍得出函數(shù)的定義域,熟練掌握二次函數(shù)的性質(zhì)也很重要,由此類題可以看出,扎實的雙基,嫻熟的基礎知識與公式的記憶是解題的知識保障.9、B【解析】

由題得在底面的投影為的外心,故為的中點,再利用數(shù)量積計算得解.【詳解】依題意,在底面的投影為的外心,因為,故為的中點,,故選B.【點睛】本題主要考查平面向量的運算,意在考查學生對該知識的理解掌握水平,屬于基礎題.10、B【解析】試題分析:該幾何體是正方體在兩個角各挖去四分之一個圓柱,因此.故選B.考點:三視圖,體積.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

利用遞推關系,當時,,當時,,即可求出.【詳解】由題知:當時,.當時,.檢驗當時,,所以.故答案為:【點睛】本題主要考查根據(jù)數(shù)列的前項和求數(shù)列的通項公式,體現(xiàn)了分類討論的思想,屬于簡單題.12、50【解析】

由分段函數(shù)的表達式,代入計算即可;先求出的表達式,結合分段函數(shù)的性質(zhì),求最小值即可.【詳解】由,可得,,所以;由的表達式,可得,當時,,此時,當時,,由二次函數(shù)的性質(zhì)可知,,綜上,的最小值為0.故答案為:5;0.【點睛】本題考查求函數(shù)值,考查分段函數(shù)的性質(zhì),考查函數(shù)最值的計算,考查學生的計算能力,屬于基礎題.13、1【解析】

f(x)=5x5+2x4+3x3﹣2x2+x﹣8=((((5x+2)x+3)x﹣2)x+1)﹣8,進而得出.【詳解】f(x)=5x5+2x4+3x3﹣2x2+x﹣8=((((5x+2)x+3)x﹣2)x+1)﹣8,當x=2時,v0=5,v1=5×2+2=12,v2=12×2+3=27,v3=27×2﹣2=1.故答案為:1.【點睛】本題考查了秦九韶算法,考查了推理能力與計算能力,屬于基礎題.14、【解析】該幾何體是由兩個高為1的圓錐與一個高為2的圓柱組合而成,所以該幾何體的體積為.考點:本題主要考查三視圖及幾何體體積的計算.15、2【解析】

將圓心角化為弧度制,再利用扇形面積得到答案.【詳解】圓心角為扇形的面積為故答案為2【點睛】本題考查了扇形的面積公式,屬于簡單題.16、【解析】

畫出圖形,過P做底面的垂線,垂足O落在底面正三角形中心,即,因為,即可求出,所以.【詳解】作于,因為為正三棱錐,所以,為中點,連結,則,過作⊥平面,則點為正三角形的中心,點在上,所以,,正三角形的邊長為6,則,,,斜高,三棱錐的側面積為:【點睛】此題考查正三棱錐,即底面為正三角形,側面為等腰三角形的三棱錐,正四面體為四個面都是正三角形,畫出圖像,屬于簡單的立體幾何題目.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)見解析【解析】

(1)取中點,連接,,得,利用直線與平面平行的判定定理證明平面.(2)連結,由已知條件得,由平面,得,利用直線與平面垂直的判定定理證明平面.【詳解】(1)取中點,連接,,∵、分別是棱、的中點,∴,且.∵在菱形中,是的中點,∴,且,∴且,∴為平行四邊形.∴.∵平面,平面,∴平面.(2)連接,∵是菱形,∴,∵,分別是棱、的中點,∴,∴,∵平面,平面,∴,∵,、平面,∴平面.【點睛】本題考查直線與平面平行以及直線與平面垂直的判定定理的應用,考查學生分析解決問題的能力,屬于中檔題.18、(Ⅰ)(Ⅱ)【解析】

(Ⅰ)以作為基底,表示出,然后利用數(shù)量積的運算法則計算即可求出;(Ⅱ)由平面向量數(shù)量積的運算及其運算可得:設,又,所以,解得,得解.【詳解】(Ⅰ)由題意得,則(Ⅱ)因為點Q是線段上一點,所以設,又,所以,故,解得,因此所求實數(shù)m的值為.【點睛】本題主要考查了平面向量的線性運算以及數(shù)量積的運算以及平面向量基本定理的應用,屬于中檔題.19、(1)見解析(2)【解析】

(1)利用前10項和與首項、公差的關系,聯(lián)立方程組計算即可;(2)當d>1時,由(1)知cn,寫出Tn、Tn的表達式,利用錯位相減法及等比數(shù)列的求和公式,計算即可.【詳解】解:(1)設a1=a,由題意可得,解得,或,當時,an=2n﹣1,bn=2n﹣1;當時,an(2n+79),bn=9?;(2)當d>1時,由(1)知an=2n﹣1,bn=2n﹣1,∴cn,∴Tn=1+3?5?7?9?(2n﹣1)?,∴Tn=1?3?5?7?(2n﹣3)?(2n﹣1)?,∴Tn=2(2n﹣1)?3,∴Tn=6.【點睛】本題考查求數(shù)列的通項及求和,利用錯位相減法是解決本題的關鍵,注意解題方法的積累,屬于中檔題.20、(1),(2)【解析】

(1)根據(jù)題意得到,解方程組即可.(2)首先根據(jù),得到,再利用錯位相減法即可求出.【詳解】(1)有題知,解得.所以.(2)當時,,當時,.檢查:當時,.所以,.①,②,①②得:,.【點睛】本題第一問考查等差數(shù)列的性質(zhì),第二問考查利用錯位相減法求數(shù)列的前項和,同時考查了學生的計算能力,屬于中檔題.21

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論