版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè)集合,,若,則()A. B. C. D.2.已知函數(shù)在上有兩個零點,則的取值范圍是()A. B. C. D.3.已知全集,集合,,則()A. B. C. D.4.命題“”的否定是()A. B.C. D.5.復(fù)數(shù)的共軛復(fù)數(shù)對應(yīng)的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.設(shè)分別為的三邊的中點,則()A. B. C. D.7.()A. B. C. D.8.已知銳角滿足則()A. B. C. D.9.已知雙曲線的漸近線方程為,且其右焦點為,則雙曲線的方程為()A. B. C. D.10.已知拋物線:的焦點為,過點的直線交拋物線于,兩點,其中點在第一象限,若弦的長為,則()A.2或 B.3或 C.4或 D.5或11.設(shè)集合A={y|y=2x﹣1,x∈R},B={x|﹣2≤x≤3,x∈Z},則A∩B=()A.(﹣1,3] B.[﹣1,3] C.{0,1,2,3} D.{﹣1,0,1,2,3}12.若x∈(0,1),a=lnx,b=,c=elnx,則a,b,c的大小關(guān)系為()A.b>c>a B.c>b>a C.a(chǎn)>b>c D.b>a>c二、填空題:本題共4小題,每小題5分,共20分。13.已知,,,且,則的最小值為___________.14.(5分)已知橢圓方程為,過其下焦點作斜率存在的直線與橢圓交于兩點,為坐標(biāo)原點,則面積的取值范圍是____________.15.已知各棱長都相等的直三棱柱(側(cè)棱與底面垂直的棱柱稱為直棱柱)所有頂點都在球的表面上.若球的表面積為則該三棱柱的側(cè)面積為___________.16.某次足球比賽中,,,,四支球隊進入了半決賽.半決賽中,對陣,對陣,獲勝的兩隊進入決賽爭奪冠軍,失利的兩隊爭奪季軍.已知他們之間相互獲勝的概率如下表所示.獲勝概率—0.40.30.8獲勝概率0.6—0.70.5獲勝概率0.70.3—0.3獲勝概率0.20.50.7—則隊獲得冠軍的概率為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在中,角A、B、C的對邊分別為a、b、c,且.(1)求角A的大小;(2)若,的平分線與交于點D,與的外接圓交于點E(異于點A),,求的值.18.(12分)在中,、、分別是角、、的對邊,且.(1)求角的值;(2)若,且為銳角三角形,求的取值范圍.19.(12分)在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù),將曲線經(jīng)過伸縮變換后得到曲線.在以原點為極點,軸正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為.(1)說明曲線是哪一種曲線,并將曲線的方程化為極坐標(biāo)方程;(2)已知點是曲線上的任意一點,又直線上有兩點和,且,又點的極角為,點的極角為銳角.求:①點的極角;②面積的取值范圍.20.(12分)已知函數(shù).(1)求不等式的解集;(2)若存在實數(shù),使得不等式成立,求實數(shù)的取值范圍.21.(12分)已知函數(shù).(1)若不等式有解,求實數(shù)的取值范圍;(2)函數(shù)的最小值為,若正實數(shù),,滿足,證明:.22.(10分)已知函數(shù)(1)當(dāng)時,求不等式的解集;(2)的圖象與兩坐標(biāo)軸的交點分別為,若三角形的面積大于,求參數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
根據(jù)交集的結(jié)果可得是集合的元素,代入方程后可求的值,從而可求.【詳解】依題意可知是集合的元素,即,解得,由,解得.【點睛】本題考查集合的交,注意根據(jù)交集的結(jié)果確定集合中含有的元素,本題屬于基礎(chǔ)題.2、C【解析】
對函數(shù)求導(dǎo),對a分類討論,分別求得函數(shù)的單調(diào)性及極值,結(jié)合端點處的函數(shù)值進行判斷求解.【詳解】∵,.當(dāng)時,,在上單調(diào)遞增,不合題意.當(dāng)時,,在上單調(diào)遞減,也不合題意.當(dāng)時,則時,,在上單調(diào)遞減,時,,在上單調(diào)遞增,又,所以在上有兩個零點,只需即可,解得.綜上,的取值范圍是.故選C.【點睛】本題考查了利用導(dǎo)數(shù)解決函數(shù)零點的問題,考查了函數(shù)的單調(diào)性及極值問題,屬于中檔題.3、B【解析】
直接利用集合的基本運算求解即可.【詳解】解:全集,集合,,則,故選:.【點睛】本題考查集合的基本運算,屬于基礎(chǔ)題.4、D【解析】
根據(jù)全稱命題的否定是特稱命題,對命題進行改寫即可.【詳解】全稱命題的否定是特稱命題,所以命題“,”的否定是:,.故選D.【點睛】本題考查全稱命題的否定,難度容易.5、A【解析】
試題分析:由題意可得:.共軛復(fù)數(shù)為,故選A.考點:1.復(fù)數(shù)的除法運算;2.以及復(fù)平面上的點與復(fù)數(shù)的關(guān)系6、B【解析】
根據(jù)題意,畫出幾何圖形,根據(jù)向量加法的線性運算即可求解.【詳解】根據(jù)題意,可得幾何關(guān)系如下圖所示:,故選:B【點睛】本題考查了向量加法的線性運算,屬于基礎(chǔ)題.7、A【解析】
分子分母同乘,即根據(jù)復(fù)數(shù)的除法法則求解即可.【詳解】解:,故選:A【點睛】本題考查復(fù)數(shù)的除法運算,屬于基礎(chǔ)題.8、C【解析】
利用代入計算即可.【詳解】由已知,,因為銳角,所以,,即.故選:C.【點睛】本題考查二倍角的正弦、余弦公式的應(yīng)用,考查學(xué)生的運算能力,是一道基礎(chǔ)題.9、B【解析】試題分析:由題意得,,所以,,所求雙曲線方程為.考點:雙曲線方程.10、C【解析】
先根據(jù)弦長求出直線的斜率,再利用拋物線定義可求出.【詳解】設(shè)直線的傾斜角為,則,所以,,即,所以直線的方程為.當(dāng)直線的方程為,聯(lián)立,解得和,所以;同理,當(dāng)直線的方程為.,綜上,或.選C.【點睛】本題主要考查直線和拋物線的位置關(guān)系,弦長問題一般是利用弦長公式來處理.出現(xiàn)了到焦點的距離時,一般考慮拋物線的定義.11、C【解析】
先求集合A,再用列舉法表示出集合B,再根據(jù)交集的定義求解即可.【詳解】解:∵集合A={y|y=2x﹣1,x∈R}={y|y>﹣1},B={x|﹣2≤x≤3,x∈Z}={﹣2,﹣1,0,1,2,3},∴A∩B={0,1,2,3},故選:C.【點睛】本題主要考查集合的交集運算,屬于基礎(chǔ)題.12、A【解析】
利用指數(shù)函數(shù)、對數(shù)函數(shù)的單調(diào)性直接求解.【詳解】∵x∈(0,1),∴a=lnx<0,b=()lnx>()0=1,0<c=elnx<e0=1,∴a,b,c的大小關(guān)系為b>c>a.故選:A.【點睛】本題考查三個數(shù)的大小的判斷,考查指數(shù)函數(shù)、對數(shù)函數(shù)的單調(diào)性等基礎(chǔ)知識,考查運算求解能力,是基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由,先將變形為,運用基本不等式可得最小值,再求的最小值,運用函數(shù)單調(diào)性即可得到所求值.【詳解】解:因為,,,且,所以因為,所以,當(dāng)且僅當(dāng)時,取等號,所以令,則,令,則,所以函數(shù)在上單調(diào)遞增,所以所以則所求最小值為故答案為:【點睛】此題考查基本不等式的運用:求最值,注意變形和滿足的條件:一正二定三相等,考查利用單調(diào)性求最值,考查化簡和運算能力,屬于中檔題.14、【解析】
由題意,,則,得.由題意可設(shè)的方程為,,聯(lián)立方程組,消去得,恒成立,,,則,點到直線的距離為,則,又,則,當(dāng)且僅當(dāng)即時取等號.故面積的取值范圍是.15、【解析】
只要算出直三棱柱的棱長即可,在中,利用即可得到關(guān)于x的方程,解方程即可解決.【詳解】由已知,,解得,如圖所示,設(shè)底面等邊三角形中心為,直三棱柱的棱長為x,則,,故,即,解得,故三棱柱的側(cè)面積為.故答案為:.【點睛】本題考查特殊柱體的外接球問題,考查學(xué)生的空間想象能力,是一道中檔題.16、0.18【解析】
根據(jù)表中信息,可得勝C的概率;分類討論B或D進入決賽,再計算A勝B或A勝C的概率即可求解.【詳解】由表中信息可知,勝C的概率為;若B進入決賽,B勝D的概率為,則A勝B的概率為;若D進入決賽,D勝B的概率為,則A勝D的概率為;由相應(yīng)的概率公式知,則A獲得冠軍的概率為.故答案為:0.18【點睛】本題考查了獨立事件的概率應(yīng)用,互斥事件的概率求法,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】
(1)由,利用正弦定理轉(zhuǎn)化整理為,再利用余弦定理求解.(2)根據(jù),利用兩角和的余弦得到,利用數(shù)形結(jié)合,設(shè),在中,由正弦定理求得,在中,求得再求解.【詳解】(1)因為,所以,即,即,所以.(2)∵,.所以,從而.所以,.不妨設(shè),O為外接圓圓心則AO=1,,.在中,由正弦定理知,有.即;在中,由,,從而.所以.【點睛】本題主要考查平面向量的模的幾何意義,還考查了數(shù)形結(jié)合的方法,屬于中檔題.18、(1).(2).【解析】
(1)根據(jù)題意,由余弦定理求得,即可求解C角的值;(2)由正弦定理和三角恒等變換的公式,化簡得到,再根據(jù)為銳角三角形,求得,利用三角函數(shù)的圖象與性質(zhì),即可求解.【詳解】(1)由題意知,∴,由余弦定理可知,,又∵,∴.(2)由正弦定理可知,,即∴,又∵為銳角三角形,∴,即,則,所以,綜上的取值范圍為.【點睛】本題主要考查了利用正弦定理和三角函數(shù)的恒等變換求解三角形問題,對于解三角形問題,通常利用正弦定理進行“邊轉(zhuǎn)角”尋求角的關(guān)系,利用“角轉(zhuǎn)邊”尋求邊的關(guān)系,利用余弦定理借助三邊關(guān)系求角,利用兩角和差公式及二倍角公式求三角函數(shù)值.利用正、余弦定理解三角形問題是高考高頻考點,經(jīng)常利用三角形內(nèi)角和定理,三角形面積公式,結(jié)合正、余弦定理解題.19、(1)曲線為圓心在原點,半徑為2的圓.的極坐標(biāo)方程為(2)①②【解析】
(1)求得曲線伸縮變換后所得的參數(shù)方程,消參后求得的普通方程,判斷出對應(yīng)的曲線,并將的普通方程轉(zhuǎn)化為極坐標(biāo)方程.(2)①將的極角代入直線的極坐標(biāo)方程,由此求得點的極徑,判斷出為等腰三角形,求得直線的普通方程,由此求得,進而求得,從而求得點的極角.②解法一:利用曲線的參數(shù)方程,求得曲線上的點到直線的距離的表達式,結(jié)合三角函數(shù)的知識求得的最小值和最大值,由此求得面積的取值范圍.解法二:根據(jù)曲線表示的曲線,利用圓的幾何性質(zhì)求得圓上的點到直線的距離的最大值和最小值,進而求得面積的取值范圍.【詳解】(1)因為曲線的參數(shù)方程為(為參數(shù)),因為則曲線的參數(shù)方程所以的普通方程為.所以曲線為圓心在原點,半徑為2的圓.所以的極坐標(biāo)方程為,即.(2)①點的極角為,代入直線的極坐標(biāo)方程得點極徑為,且,所以為等腰三角形,又直線的普通方程為,又點的極角為銳角,所以,所以,所以點的極角為.②解法1:直線的普通方程為.曲線上的點到直線的距離.當(dāng),即()時,取到最小值為.當(dāng),即()時,取到最大值為.所以面積的最大值為;所以面積的最小值為;故面積的取值范圍.解法2:直線的普通方程為.因為圓的半徑為2,且圓心到直線的距離,因為,所以圓與直線相離.所以圓上的點到直線的距離最大值為,最小值為.所以面積的最大值為;所以面積的最小值為;故面積的取值范圍.【點睛】本小題考查坐標(biāo)變換,極徑與極角;直線,圓的極坐標(biāo)方程,圓的參數(shù)方程,直線的極坐標(biāo)方程與普通方程,點到直線的距離等.考查數(shù)學(xué)運算能力,包括運算原理的理解與應(yīng)用、運算方法的選擇與優(yōu)化、運算結(jié)果的檢驗與改進等.也兼考了數(shù)學(xué)抽象素養(yǎng)、邏輯推理、數(shù)學(xué)運算、直觀想象等核心素養(yǎng).20、(1);(2).【解析】
(1)將函數(shù)的解析式表示為分段函數(shù),然后分、、三段求解不等式,綜合可得出不等式的解集;(2)求出函數(shù)的最大值,由題意得出,解此不等式即可得出實數(shù)的取值范圍.【詳解】.(1)當(dāng)時,由,解得,此時;當(dāng)時,由,解得,此時;當(dāng)時,由,解得,此時.綜上所述,不等式的解集;(2)當(dāng)時,函數(shù)單調(diào)遞增,則;當(dāng)時,函數(shù)單調(diào)遞減,則,即;當(dāng)時,函數(shù)單調(diào)遞減,則.綜上所述,函數(shù)的最大值為,由題知,,解得.因此,實數(shù)的取值范圍是.【點睛】本題考查含絕對值不等式的求解,同時也考查了絕對值不等式中的參數(shù)問題,考查分類討論思想的應(yīng)用,考查運算求解能力,屬于中等題.21、(1)(2)見解析【解析】
(1)分離得到,求的最小值即可求得的取值范圍;(2)先求出,得到,利用乘變化即可證明不等式.【詳解】解:(1)設(shè),∴在上單調(diào)遞減,在上單調(diào)遞增.故.∵有解,∴.即的取值范圍為.(2),當(dāng)且僅當(dāng)時等號成立.∴,即.∵.當(dāng)且僅當(dāng),,時等號成立.∴,即成立.【點睛】此題考查不等式的證明,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 專業(yè)化混凝土作業(yè)2024分包勞務(wù)協(xié)議版B版
- 個人家具購銷合同范文
- 2024版二手房速銷代理合同范本
- 2《 拉拉手交朋友》(說課稿)2023-2024學(xué)年統(tǒng)編版道德與法治一年級上冊
- 專業(yè)設(shè)計委托服務(wù)協(xié)議(2024版)版A版
- 2024年茶葉品牌保護及知識產(chǎn)權(quán)許可合同
- 職業(yè)學(xué)院校級縱向科研項目開題報告書
- 2024年版電子競技賽事贊助合作協(xié)議
- 福建省南平市武夷山第三中學(xué)高二英語聯(lián)考試題含解析
- 福建省南平市吳屯中學(xué)2020年高二地理聯(lián)考試卷含解析
- Unit10l'mten!(練)新概念英語青少版StarterA
- 臨高后水灣開放式海洋養(yǎng)殖項目可行性研究報告
- GB/T 44143-2024科技人才評價規(guī)范
- 產(chǎn)業(yè)園區(qū)開發(fā)全流程實操解析
- 流感防治技術(shù)方案
- 羽毛球比賽對陣表模板
- 對醫(yī)院領(lǐng)導(dǎo)的批評意見怎么寫更合適范文(6篇)
- 初中語文現(xiàn)代文閱讀訓(xùn)練及答案二十篇
- 現(xiàn)行水利水電工程施工規(guī)范目錄
- 中華財險新疆維吾爾自治區(qū)克孜勒蘇柯爾克孜自治州商業(yè)性防返貧收入保險
- 機房設(shè)備巡檢報告樣式
評論
0/150
提交評論