版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年江蘇省泰州市海陵重點名校中考數(shù)學模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.已知:如圖,在平面直角坐標系xOy中,等邊△AOB的邊長為6,點C在邊OA上,點D在邊AB上,且OC=3BD,反比例函數(shù)y=(k≠0)的圖象恰好經(jīng)過點C和點D,則k的值為()A. B. C. D.2.已知:如圖,點P是正方形ABCD的對角線AC上的一個動點(A、C除外),作PE⊥AB于點E,作PF⊥BC于點F,設正方形ABCD的邊長為x,矩形PEBF的周長為y,在下列圖象中,大致表示y與x之間的函數(shù)關系的是()A. B. C. D.3.實數(shù)a,b在數(shù)軸上對應的點的位置如圖所示,則正確的結論是()A.a(chǎn)+b<0 B.a(chǎn)>|﹣2| C.b>π D.4.如圖,兩個同心圓(圓心相同半徑不同的圓)的半徑分別為6cm和3cm,大圓的弦AB與小圓相切,則劣弧AB的長為()A.2πcm B.4πcm C.6πcm D.8πcm5.下列方程有實數(shù)根的是()A. B.C.x+2x?1=0 D.6.在下列四個汽車標志圖案中,能用平移變換來分析其形成過程的圖案是()A. B. C. D.7.如圖所示,數(shù)軸上兩點A,B分別表示實數(shù)a,b,則下列四個數(shù)中最大的一個數(shù)是(
)A.a(chǎn)
B.b
C. D.8.已知點P(a,m),Q(b,n)都在反比例函數(shù)y=的圖象上,且a<0<b,則下列結論一定正確的是()A.m+n<0 B.m+n>0 C.m<n D.m>n9.在0,π,﹣3,0.6,這5個實數(shù)中,無理數(shù)的個數(shù)為()A.1個 B.2個 C.3個 D.4個10.下列美麗的壯錦圖案是中心對稱圖形的是()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.因式分解:3a2-6a+3=________.12.關于x的一元二次方程ax2﹣x﹣=0有實數(shù)根,則a的取值范圍為________.13.如圖,Rt△ABC中,∠BAC=90°,AB=3,AC=6,點D,E分別是邊BC,AC上的動點,則DA+DE的最小值為_____.14.已知:如圖,△ABC的面積為12,點D、E分別是邊AB、AC的中點,則四邊形BCED的面積為_____.15.一元二次方程有兩個不相等的實數(shù)根,則的取值范圍是________.16.將多項式xy2﹣4xy+4y因式分解:_____.三、解答題(共8題,共72分)17.(8分)閱讀材料:對于線段的垂直平分線我們有如下結論:到線段兩個端點距離相等的點在線段的垂直平分線上.即如圖①,若PA=PB,則點P在線段AB的垂直平分線上請根據(jù)閱讀材料,解決下列問題:如圖②,直線CD是等邊△ABC的對稱軸,點D在AB上,點E是線段CD上的一動點(點E不與點C、D重合),連結AE、BE,△ABE經(jīng)順時針旋轉后與△BCF重合.(I)旋轉中心是點,旋轉了(度);(II)當點E從點D向點C移動時,連結AF,設AF與CD交于點P,在圖②中將圖形補全,并探究∠APC的大小是否保持不變?若不變,請求出∠APC的度數(shù);若改變,請說出變化情況.18.(8分)如圖所示,AB是⊙O的一條弦,OD⊥AB,垂足為C,交⊙O于點D,點E在⊙O上.若∠AOD=52°,求∠DEB的度數(shù);若OC=3,OA=5,求AB的長.19.(8分)如圖,在平面直角坐標系中,點的坐標為,以點為圓心,8為半徑的圓與軸交于,兩點,過作直線與軸負方向相交成的角,且交軸于點,以點為圓心的圓與軸相切于點.(1)求直線的解析式;(2)將以每秒1個單位的速度沿軸向左平移,當?shù)谝淮闻c外切時,求平移的時間.20.(8分)美麗的黃河宛如一條玉帶穿城而過,沿河兩岸的濱河路風情線是蘭州最美的景觀之一.數(shù)學課外實踐活動中,小林在南濱河路上的A,B兩點處,利用測角儀分別對北岸的一觀景亭D進行了測量.如圖,測得∠DAC=45°,∠DBC=65°.若AB=132米,求觀景亭D到南濱河路AC的距離約為多少米?(結果精確到1米,參考數(shù)據(jù):sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)21.(8分)如圖,甲、乙用4張撲克牌玩游戲,他倆將撲克牌洗勻后背面朝上,放置在桌面上,每人抽一張,甲先抽,乙后抽,抽出的牌不放回.甲、乙約定:只有甲抽到的牌面數(shù)字比乙大時甲勝;否則乙勝.請你用樹狀圖或列表法說明甲、乙獲勝的機會是否相同.22.(10分)如圖,A(4,3)是反比例函數(shù)y=在第一象限圖象上一點,連接OA,過A作AB∥x軸,截取AB=OA(B在A右側),連接OB,交反比例函數(shù)y=的圖象于點P.求反比例函數(shù)y=的表達式;求點B的坐標;求△OAP的面積.23.(12分)(1)計算:;(2)化簡:.24.如圖①,二次函數(shù)的拋物線的頂點坐標C,與x軸的交于A(1,0)、B(﹣3,0)兩點,與y軸交于點D(0,3).(1)求這個拋物線的解析式;(2)如圖②,過點A的直線與拋物線交于點E,交y軸于點F,其中點E的橫坐標為﹣2,若直線PQ為拋物線的對稱軸,點G為直線PQ上的一動點,則x軸上是否存在一點H,使D、G、H、F四點所圍成的四邊形周長最小?若存在,求出這個最小值及點G、H的坐標;若不存在,請說明理由;(3)如圖③,連接AC交y軸于M,在x軸上是否存在點P,使以P、C、M為頂點的三角形與△AOM相似?若存在,求出點P的坐標;若不存在,請說明理由.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】試題分析:過點C作CE⊥x軸于點E,過點D作DF⊥x軸于點F,如圖所示.設BD=a,則OC=3a.∵△AOB為邊長為1的等邊三角形,∴∠COE=∠DBF=10°,OB=1.在Rt△COE中,∠COE=10°,∠CEO=90°,OC=3a,∴∠OCE=30°,∴OE=a,CE==a,∴點C(a,a).同理,可求出點D的坐標為(1﹣a,a).∵反比例函數(shù)(k≠0)的圖象恰好經(jīng)過點C和點D,∴k=a×a=(1﹣a)×a,∴a=,k=.故選A.2、A【解析】由題意可得:△APE和△PCF都是等腰直角三角形.∴AE=PE,PF=CF,那么矩形PEBF的周長等于2個正方形的邊長.則y=2x,為正比例函數(shù).故選A.3、D【解析】
根據(jù)數(shù)軸上點的位置,可得a,b,根據(jù)有理數(shù)的運算,可得答案.【詳解】a=﹣2,2<b<1.A.a+b<0,故A不符合題意;B.a<|﹣2|,故B不符合題意;C.b<1<π,故C不符合題意;D.<0,故D符合題意;故選D.【點睛】本題考查了實數(shù)與數(shù)軸,利用有理數(shù)的運算是解題關鍵.4、B【解析】
首先連接OC,AO,由切線的性質,可得OC⊥AB,根據(jù)已知條件可得:OA=2OC,進而求出∠AOC的度數(shù),則圓心角∠AOB可求,根據(jù)弧長公式即可求出劣弧AB的長.【詳解】解:如圖,連接OC,AO,
∵大圓的一條弦AB與小圓相切,
∴OC⊥AB,
∵OA=6,OC=3,
∴OA=2OC,
∴∠A=30°,
∴∠AOC=60°,
∴∠AOB=120°,
∴劣弧AB的長==4π,
故選B.【點睛】本題考查切線的性質,弧長公式,熟練掌握切線的性質是解題關鍵.5、C【解析】分析:根據(jù)方程解的定義,一一判斷即可解決問題;詳解:A.∵x4>0,∴x4+2=0無解;故本選項不符合題意;B.∵≥0,∴=﹣1無解,故本選項不符合題意;C.∵x2+2x﹣1=0,△=8=4=12>0,方程有實數(shù)根,故本選項符合題意;D.解分式方程=,可得x=1,經(jīng)檢驗x=1是分式方程的增根,故本選項不符合題意.故選C.點睛:本題考查了無理方程、根的判別式、高次方程、分式方程等知識,解題的關鍵是熟練掌握基本知識,屬于中考常考題型.6、D【解析】
根據(jù)平移不改變圖形的形狀和大小,將題中所示的圖案通過平移后可以得到的圖案是D.【詳解】解:觀察圖形可知圖案D通過平移后可以得到.
故選D.【點睛】本題考查圖形的平移,圖形的平移只改變圖形的位置,而不改變圖形的形狀和大小,學生易混淆圖形的平移與旋轉或翻轉.7、D【解析】
∵負數(shù)小于正數(shù),在(0,1)上的實數(shù)的倒數(shù)比實數(shù)本身大.∴<a<b<,故選D.8、D【解析】
根據(jù)反比例函數(shù)的性質,可得答案.【詳解】∵y=?的k=-2<1,圖象位于二四象限,a<1,∴P(a,m)在第二象限,∴m>1;∵b>1,∴Q(b,n)在第四象限,∴n<1.∴n<1<m,即m>n,故D正確;故選D.【點睛】本題考查了反比例函數(shù)的性質,利用反比例函數(shù)的性質:k<1時,圖象位于二四象限是解題關鍵.9、B【解析】
分別根據(jù)無理數(shù)、有理數(shù)的定義逐一判斷即可得.【詳解】解:在0,π,-3,0.6,這5個實數(shù)中,無理數(shù)有π、這2個,故選B.【點睛】此題主要考查了無理數(shù)的定義,注意帶根號的要開不盡方才是無理數(shù),無限不循環(huán)小數(shù)為無理數(shù).如π,,0.8080080008…(每兩個8之間依次多1個0)等形式.10、A【解析】【分析】根據(jù)中心對稱圖形的定義逐項進行判斷即可得.【詳解】A、是中心對稱圖形,故此選項正確;B、不是中心對稱圖形,故此選項錯誤;C、不是中心對稱圖形,故此選項錯誤;D、不是中心對稱圖形,故此選項錯誤,故選A.【點睛】本題主要考查了中心對稱圖形,熟練掌握中心對稱圖形的定義是解題的關鍵;把一個圖形繞某一點旋轉180°,如果旋轉后的圖形能夠與原來的圖形重合,那么這個圖形就叫做中心對稱圖形.二、填空題(本大題共6個小題,每小題3分,共18分)11、3(a-1)2【解析】
先提公因式,再套用完全平方公式.【詳解】解:3a2-6a+3=3(a2-2a+1)=3(a-1)2.【點睛】考點:提公因式法與公式法的綜合運用.12、a≥﹣1且a≠1【解析】
利用一元二次方程的定義和判別式的意義得到≠1且△=(﹣1)2﹣4a?(﹣)≥1,然后求出兩個不等式的公共部分即可.【詳解】根據(jù)題意得a≠1且△=(﹣1)2﹣4a?(﹣)≥1,解得:a≥﹣1且a≠1.故答案為a≥﹣1且a≠1.【點睛】本題考查了根的判別式:一元二次方程ax2+bx+c=1(a≠1)的根與△=b2﹣4ac有如下關系:當△>1時,方程有兩個不相等的兩個實數(shù)根;當△=1時,方程有兩個相等的兩個實數(shù)根;當△<1時,方程無實數(shù)根.13、【解析】【分析】如圖,作A關于BC的對稱點A',連接AA',交BC于F,過A'作AE⊥AC于E,交BC于D,則AD=A'D,此時AD+DE的值最小,就是A'E的長,根據(jù)相似三角形對應邊的比可得結論.【詳解】如圖,作A關于BC的對稱點A',連接AA',交BC于F,過A'作AE⊥AC于E,交BC于D,則AD=A'D,此時AD+DE的值最小,就是A'E的長;Rt△ABC中,∠BAC=90°,AB=3,AC=6,∴BC==9,S△ABC=AB?AC=BC?AF,∴3×6=9AF,AF=2,∴AA'=2AF=4,∵∠A'FD=∠DEC=90°,∠A'DF=∠CDE,∴∠A'=∠C,∵∠AEA'=∠BAC=90°,∴△AEA'∽△BAC,∴,∴,∴A'E=,即AD+DE的最小值是,故答案為.【點睛】本題考查軸對稱﹣最短問題、三角形相似的性質和判定、兩點之間線段最短、垂線段最短等知識,解題的關鍵是靈活運用軸對稱以及垂線段最短解決最短問題.14、1【解析】【分析】設四邊形BCED的面積為x,則S△ADE=12﹣x,由題意知DE∥BC且DE=BC,從而得,據(jù)此建立關于x的方程,解之可得.【詳解】設四邊形BCED的面積為x,則S△ADE=12﹣x,∵點D、E分別是邊AB、AC的中點,∴DE是△ABC的中位線,∴DE∥BC,且DE=BC,∴△ADE∽△ABC,則=,即,解得:x=1,即四邊形BCED的面積為1,故答案為1.【點睛】本題主要考查相似三角形的判定與性質,解題的關鍵是掌握中位線定理及相似三角形的面積比等于相似比的平方的性質.15、且【解析】
根據(jù)一元二次方程的根與判別式△的關系,結合一元二次方程的定義解答即可.【詳解】由題意可得,1?k≠0,△=4+4(1?k)>0,∴k<2且k≠1.故答案為k<2且k≠1.【點睛】本題主要考查了一元二次方程的根的判別式的應用,解題中要注意不要漏掉對二次項系數(shù)1-k≠0的考慮.16、y(xy﹣4x+4)【解析】
直接提公因式y(tǒng)即可解答.【詳解】xy2﹣4xy+4y=y(xy﹣4x+4).故答案為:y(xy﹣4x+4).【點睛】本題考查了因式分解——提公因式法,確定多項式xy2﹣4xy+4y的公因式為y是解決問題的關鍵.三、解答題(共8題,共72分)17、B60【解析】分析:(1)根據(jù)旋轉的性質可得出結論;(2)根據(jù)旋轉的性質可得BF=CF,則點F在線段BC的垂直平分線上,又由AC=AB,可得點A在線段BC的垂直平分線上,由AF垂直平分BC,即∠CQP=90,進而得出∠APC的度數(shù).詳解:(1)B,60;(2)補全圖形如圖所示;的大小保持不變,理由如下:設與交于點∵直線是等邊的對稱軸∴,∵經(jīng)順時針旋轉后與重合∴,∴∴點在線段的垂直平分線上∵∴點在線段的垂直平分線上∴垂直平分,即∴點睛:本題考查了旋轉的性質,解題的關鍵是熟記旋轉的性質及垂直平分線的性質,注意只證明一點是不能說明這條直線是垂直平分線的.18、(1)26°;(2)1.【解析】試題分析:(1)根據(jù)垂徑定理,得到,再根據(jù)圓周角與圓心角的關系,得知∠E=∠O,據(jù)此即可求出∠DEB的度數(shù);(2)由垂徑定理可知,AB=2AC,在Rt△AOC中,OC=3,OA=5,由勾股定理求AC即可得到AB的長.試題解析:(1)∵AB是⊙O的一條弦,OD⊥AB,∴,∴∠DEB=∠AOD=×52°=26°;(2)∵AB是⊙O的一條弦,OD⊥AB,∴AC=BC,即AB=2AC,在Rt△AOC中,AC===4,則AB=2AC=1.考點:垂徑定理;勾股定理;圓周角定理.19、(1)直線的解析式為:.(2)平移的時間為5秒.【解析】
(1)求直線的解析式,可以先求出A、C兩點的坐標,就可以根據(jù)待定系數(shù)法求出函數(shù)的解析式.(2)設⊙O2平移t秒后到⊙O3處與⊙O1第一次外切于點P,⊙O3與x軸相切于D1點,連接O1O3,O3D1.在直角△O1O3D1中,根據(jù)勾股定理,就可以求出O1D1,進而求出D1D的長,得到平移的時間.【詳解】(1)由題意得,∴點坐標為.∵在中,,,∴點的坐標為.設直線的解析式為,由過、兩點,得,解得,∴直線的解析式為:.(2)如圖,設平移秒后到處與第一次外切于點,與軸相切于點,連接,.則,∵軸,∴,在中,.∵,∴,∴(秒),∴平移的時間為5秒.【點睛】本題綜合了待定系數(shù)法求函數(shù)解析式,以及圓的位置關系,其中兩圓相切時的輔助線的作法是經(jīng)常用到的.20、觀景亭D到南濱河路AC的距離約為248米.【解析】
過點D作DE⊥AC,垂足為E,設BE=x,根據(jù)AE=DE,列出方程即可解決問題.【詳解】過點D作DE⊥AC,垂足為E,設BE=x,在Rt△DEB中,tan∠DBE=,∵∠DBC=65°,∴DE=xtan65°.又∵∠DAC=45°,∴AE=DE.∴132+x=xtan65°,∴解得x≈115.8,∴DE≈248(米).∴觀景亭D到南濱河路AC的距離約為248米.21、甲、乙獲勝的機會不相同.【解析】試題分析:先畫出樹狀圖列舉出所有情況,再分別算出甲、乙獲勝的概率,比較即可判斷.∴P∴甲、乙獲勝的機會不相同.考點:可能性大小的判斷點評:本題屬于基礎應用題,只需學生熟練掌握概率的求法,即可完成.22、(1)反比例函數(shù)解析式為y=;(2)點B的坐標為(9,3);(3)△OAP的面積=1.【解析】
(1)將點A的坐標代入解析式求解可得;(2)利用勾股定理求得AB=OA=1,由AB∥x軸即可得點B的坐標;(3)先根據(jù)點B坐標得出OB所在直線解析式,從而求得直線與雙曲線交點P的坐標,再利用割補法求解可得.【詳解】(1)將點A(4,3)代入y=,得:k=12,則反比例函數(shù)解析式為y=;(2)如圖,過點A作AC⊥x軸于點C,則OC=4、AC=3,∴OA==1,∵AB∥x軸,且AB=OA=1,∴點B的坐標為(9,3);(3)∵點B坐標為(9,3),∴OB所在直線解析式為y=x,由可得點P坐標為(6,2),(負值舍去),過點P作PD⊥x軸,延長DP交AB于點E,則點E坐標為(6,3),∴AE=2、PE=1、PD=2,則△OAP的面積=×(2+6)×3﹣×6×2﹣×2×1=1.【點睛】本題考查了反比例函數(shù)與幾何圖形綜合,熟練掌握反比例函數(shù)圖象上點的坐標特征、正確添加輔助線是解題的關鍵.23、(1)4+;(2).【解析】
(1)根據(jù)冪的乘方、零指數(shù)冪、特殊角的三角函數(shù)值和絕對值可以解答本題;(3)根據(jù)分式的減法和除法可以解答本題.【詳解】(1)=4+1+|1﹣2×|=4+1+|1﹣|=4+1+﹣1=4+;(2)===.【點睛】本題考查分式的混合運算、實數(shù)的運算、零指數(shù)冪、特殊角的三角函數(shù)值和絕對值,解答本題的關鍵是明確它們各自的計算方法.24、【小題1】設所求拋物線的解析式為:,將A(1,0)、B(-3,0)、D(0,3)代入,得…………2分即所求拋物線的解析式為:……………3分【小題2】如圖④,在y軸的負半軸上取一點I,使得點F與點I關于x軸對稱,在x軸上取一點H,連接HF、HI、HG、GD、GE,則HF=HI…①設過A、E兩點的一次函數(shù)解析式為:y=kx+b(k≠0),∵點E在拋物線上且點E的橫坐標為-2,將x=-2,代入拋物線,得∴點E坐標為(-2,3)………………4分又∵拋物線圖象分別與x軸、y軸交于點A(1,0)、B(-3,0)、D(0,3),所以頂點C(-1,4)∴拋物線的對稱軸直線PQ為:直線x=-1,[中國教#&~@育出%版網(wǎng)]∴點D與點E關于PQ對稱,GD=GE……………②分別將點A(1,0)、點E(-2,3)代入y=kx+b,得:k+b=0,-2k+b=3解得:過A、E兩點的一次函數(shù)解析式為:y=-x+1∴當x=0時,y=1∴點F坐標為(0,1)……5分∴|DF|=2………③又∵點F與點I關于x軸對稱,∴點I坐標為(0,-1)∴|EI|=(-2-0)又∵要使四邊形DFHG的周長最小,由于DF是一個定值,∴只要使DG+GH+HI最小即可……6分由圖形的對稱性和①、②、③,可知,DG+GH+HF=EG+GH+HI只有當EI為一條直線時,EG+GH+HI最小設過E(-2,3)、I(0,-1)兩點的函數(shù)解析式為:y=k分別將點E(-2,3)、點I(0,-1)代入y=k-2k1過I、E兩點的一次函數(shù)解析式為:y=-2x-1∴當x=-1時,y=1;當y=0時,x=-12∴點G坐標為(-1,1),點H坐標為(-12∴四邊形DFHG的周長最小為:D
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024日用品衛(wèi)生紙出口貿(mào)易與清關代理合同3篇
- 2024版凱悅酒店消防工程合同
- 2024年道路橋梁施工合同范本3篇
- 2024年高端數(shù)控機床生產(chǎn)銷售合同
- 專業(yè)人力資源三方分配合作合同(2024版)版B版
- 2024年派遣工作詳細勞動協(xié)議樣式版B版
- 專業(yè)廣告設計服務協(xié)議(2024年度)一
- 2024年自卸車建筑材料運輸合同
- 2024年精密零件加工合作協(xié)議
- 專業(yè)化內(nèi)墻裝修項目協(xié)議書2024版版B版
- JGJ142-2012 輻射供暖供冷技術規(guī)程
- 黃金買賣合同范本
- 物業(yè)管理流程:高端寫字樓服務
- JTG-B01-2014公路工程技術標準
- 海員常見疾病的保健與預防
- 易錯題(試題)-2024一年級上冊數(shù)學北師大版含答案
- 《穿越迷宮》課件
- 《C語言從入門到精通》培訓教程課件
- 傷口護理小組工作總結
- 2023年中國半導體行業(yè)薪酬及股權激勵白皮書
- 2024年Minitab全面培訓教程
評論
0/150
提交評論