版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
安徽省淮北市相山區(qū)重點達標名校2024年中考數(shù)學全真模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,AB∥CD,FE⊥DB,垂足為E,∠1=50°,則∠2的度數(shù)是()A.60° B.50° C.40° D.30°2.如圖,直角坐標平面內(nèi)有一點,那么與軸正半軸的夾角的余切值為()A.2 B. C. D.3.如圖,線段AB是直線y=4x+2的一部分,點A是直線與y軸的交點,點B的縱坐標為6,曲線BC是雙曲線y=的一部分,點C的橫坐標為6,由點C開始不斷重復“A﹣B﹣C”的過程,形成一組波浪線.點P(2017,m)與Q(2020,n)均在該波浪線上,分別過P、Q兩點向x軸作垂線段,垂足為點D和E,則四邊形PDEQ的面積是()A.10 B. C. D.154.比較4,,的大小,正確的是()A.4<< B.4<<C.<4< D.<<45.某反比例函數(shù)的圖象經(jīng)過點(-2,3),則此函數(shù)圖象也經(jīng)過()A.(2,-3) B.(-3,3) C.(2,3) D.(-4,6)6.如圖,平面直角坐標中,點A(1,2),將AO繞點A逆時針旋轉(zhuǎn)90°,點O的對應點B恰好落在雙曲線y=kxA.2 B.3 C.4 D.67.如圖,在矩形ABCD中,AB=2a,AD=a,矩形邊上一動點P沿A→B→C→D的路徑移動.設點P經(jīng)過的路徑長為x,PD2=y,則下列能大致反映y與x的函數(shù)關系的圖象是()A. B.C. D.8.若△ABC與△DEF相似,相似比為2:3,則這兩個三角形的面積比為()A.2:3 B.3:2 C.4:9 D.9:49.若二次函數(shù)的圖象與軸有兩個交點,坐標分別是(x1,0),(x2,0),且.圖象上有一點在軸下方,則下列判斷正確的是()A. B. C. D.10.中國在第二十三屆冬奧會閉幕式上奉獻了《2022相約北京》的文藝表演,會后表演視頻在網(wǎng)絡上推出,即刻轉(zhuǎn)發(fā)量就超過810000這個數(shù)用科學記數(shù)法表示為()A.8.1×106 B.8.1×105 C.81×105 D.81×104二、填空題(共7小題,每小題3分,滿分21分)11.計算(2+1)(2-1)的結果為_____.12.關于x的一元二次方程有兩個不相等的實數(shù)根,則k的取值范圍是▲.13.如圖,Rt△ABC中,∠BAC=90°,AB=3,AC=6,點D,E分別是邊BC,AC上的動點,則DA+DE的最小值為_____.14.如圖,點E在正方形ABCD的邊CD上.若△ABE的面積為8,CE=3,則線段BE的長為_______.15.如圖,矩形ABCD中,AB=2AD,點A(0,1),點C、D在反比例函數(shù)y=(k>0)的圖象上,AB與x軸的正半軸相交于點E,若E為AB的中點,則k的值為_____.16.如圖,在圓心角為90°的扇形OAB中,半徑OA=1cm,C為的中點,D、E分別是OA、OB的中點,則圖中陰影部分的面積為_____cm1.17.分解因式:4a2-4a+1=______.三、解答題(共7小題,滿分69分)18.(10分)由我國完全自主設計、自主建造的首艘國產(chǎn)航母于2018年5月成功完成第一次海上試驗任務.如圖,航母由西向東航行,到達處時,測得小島位于它的北偏東方向,且與航母相距80海里,再航行一段時間后到達B處,測得小島位于它的北偏東方向.如果航母繼續(xù)航行至小島的正南方向的處,求還需航行的距離的長.19.(5分)如圖,在中,,點在上運動,點在上,始終保持與相等,的垂直平分線交于點,交于,判斷與的位置關系,并說明理由;若,,,求線段的長.20.(8分)甲、乙兩人相約周末登花果山,甲、乙兩人距地面的高度y(米)與登山時間x(分)之間的函數(shù)圖象如圖所示,根據(jù)圖象所提供的信息解答下列問題:甲登山上升的速度是每分鐘米,乙在A地時距地面的高度b為米.若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,請求出乙登山全程中,距地面的高度y(米)與登山時間x(分)之間的函數(shù)關系式.登山多長時間時,甲、乙兩人距地面的高度差為50米?21.(10分)已知關于的一元二次方程.試證明:無論取何值此方程總有兩個實數(shù)根;若原方程的兩根,滿足,求的值.22.(10分)如圖,已知,等腰Rt△OAB中,∠AOB=90°,等腰Rt△EOF中,∠EOF=90°,連結AE、BF.求證:(1)AE=BF;(2)AE⊥BF.23.(12分)如圖,在△ABC中,∠ABC=90°,BD為AC邊上的中線.(1)按如下要求尺規(guī)作圖,保留作圖痕跡,標注相應的字母:過點C作直線CE,使CE⊥BC于點C,交BD的延長線于點E,連接AE;(2)求證:四邊形ABCE是矩形.24.(14分)如圖,⊙O是△ABC的外接圓,AD是⊙O的直徑,BC的延長線于過點A的直線相交于點E,且∠B=∠EAC.(1)求證:AE是⊙O的切線;(2)過點C作CG⊥AD,垂足為F,與AB交于點G,若AG?AB=36,tanB=,求DF的值
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】試題分析:∵FE⊥DB,∵∠DEF=90°,∵∠1=50°,∴∠D=90°﹣50°=40°,∵AB∥CD,∴∠2=∠D=40°.故選C.考點:平行線的性質(zhì).2、B【解析】
作PA⊥x軸于點A,構造直角三角形,根據(jù)三角函數(shù)的定義求解.【詳解】過P作x軸的垂線,交x軸于點A,
∵P(2,4),
∴OA=2,AP=4,.
∴∴.故選B.【點睛】本題考查的知識點是銳角三角函數(shù)的定義,解題關鍵是熟記三角函數(shù)的定義.3、C【解析】
A,C之間的距離為6,點Q與點P的水平距離為3,進而得到A,B之間的水平距離為1,且k=6,根據(jù)四邊形PDEQ的面積為,即可得到四邊形PDEQ的面積.【詳解】A,C之間的距離為6,2017÷6=336…1,故點P離x軸的距離與點B離x軸的距離相同,在y=4x+2中,當y=6時,x=1,即點P離x軸的距離為6,∴m=6,2020﹣2017=3,故點Q與點P的水平距離為3,∵解得k=6,雙曲線1+3=4,即點Q離x軸的距離為,∴∵四邊形PDEQ的面積是.故選:C.【點睛】考查了反比例函數(shù)的圖象與性質(zhì),平行四邊形的面積,綜合性比較強,難度較大.4、C【解析】
根據(jù)4=<且4=>進行比較【詳解】解:易得:4=<且4=>,所以<4<故選C.【點睛】本題主要考查開平方開立方運算。5、A【解析】
設反比例函數(shù)y=(k為常數(shù),k≠0),由于反比例函數(shù)的圖象經(jīng)過點(-2,3),則k=-6,然后根據(jù)反比例函數(shù)圖象上點的坐標特征分別進行判斷.【詳解】設反比例函數(shù)y=(k為常數(shù),k≠0),∵反比例函數(shù)的圖象經(jīng)過點(-2,3),∴k=-2×3=-6,而2×(-3)=-6,(-3)×(-3)=9,2×3=6,-4×6=-24,∴點(2,-3)在反比例函數(shù)y=-的圖象上.故選A.【點睛】本題考查了反比例函數(shù)圖象上點的坐標特征:反比例函數(shù)y=(k為常數(shù),k≠0)的圖象是雙曲線,圖象上的點(x,y)的橫縱坐標的積是定值k,即xy=k.6、B【解析】
作AC⊥y軸于C,ADx軸,BD⊥y軸,它們相交于D,有A點坐標得到AC=1,OC=1,由于AO繞點A逆時針旋轉(zhuǎn)90°,點O的對應B點,所以相當是把△AOC繞點A逆時針旋轉(zhuǎn)90°得到△ABD,根據(jù)旋轉(zhuǎn)的性質(zhì)得AD=AC=1,BD=OC=1,原式可得到B點坐標為(2,1),然后根據(jù)反比例函數(shù)圖象上點的坐標特征計算k的值.【詳解】作AC⊥y軸于C,AD⊥x軸,BD⊥y軸,它們相交于D,如圖,∵A點坐標為(1,1),∴AC=1,OC=1.∵AO繞點A逆時針旋轉(zhuǎn)90°,點O的對應B點,即把△AOC繞點A逆時針旋轉(zhuǎn)90°得到△ABD,∴AD=AC=1,BD=OC=1,∴B點坐標為(2,1),∴k=2×1=2.故選B.【點睛】本題考查了反比例函數(shù)圖象上點的坐標特征:反比例函數(shù)y=kx(k為常數(shù),k≠0)的圖象是雙曲線,圖象上的點(x,y)的橫縱坐標的積是定值k,即xy=k7、D【解析】解:(1)當0≤t≤2a時,∵,AP=x,∴;(2)當2a<t≤3a時,CP=2a+a﹣x=3a﹣x,∵,∴=;(3)當3a<t≤5a時,PD=2a+a+2a﹣x=5a﹣x,∵=y,∴=;綜上,可得,∴能大致反映y與x的函數(shù)關系的圖象是選項D中的圖象.故選D.8、C【解析】
由△ABC與△DEF相似,相似比為2:3,根據(jù)相似三角形的性質(zhì),即可求得答案.【詳解】∵△ABC與△DEF相似,相似比為2:3,∴這兩個三角形的面積比為4:1.故選C.【點睛】此題考查了相似三角形的性質(zhì).注意相似三角形的面積比等于相似比的平方.9、D【解析】
根據(jù)拋物線與x軸有兩個不同的交點,根的判別式△>0,再分a>0和a<0兩種情況對C、D選項討論即可得解.【詳解】A、二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸有兩個交點無法確定a的正負情況,故本選項錯誤;B、∵x1<x2,∴△=b2-4ac>0,故本選項錯誤;C、若a>0,則x1<x0<x2,若a<0,則x0<x1<x2或x1<x2<x0,故本選項錯誤;D、若a>0,則x0-x1>0,x0-x2<0,所以,(x0-x1)(x0-x2)<0,∴a(x0-x1)(x0-x2)<0,若a<0,則(x0-x1)與(x0-x2)同號,∴a(x0-x1)(x0-x2)<0,綜上所述,a(x0-x1)(x0-x2)<0正確,故本選項正確.10、B【解析】
科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】810000=8.1×1.
故選B.【點睛】本題考查了科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.二、填空題(共7小題,每小題3分,滿分21分)11、1【解析】
利用平方差公式進行計算即可.【詳解】原式=(2)2﹣1=2﹣1=1,故答案為:1.【點睛】本題考查了二次根式的混合運算:先把各二次根式化為最簡二次根式,在進行二次根式的乘除運算,然后合并同類二次根式.12、k<且k≠1.【解析】根據(jù)一元二次方程kx2-x+1=1有兩個不相等的實數(shù)根,知△=b2-4ac>1,然后據(jù)此列出關于k的方程,解方程,結合一元二次方程的定義即可求解:∵有兩個不相等的實數(shù)根,∴△=1-4k>1,且k≠1,解得,k<且k≠1.13、【解析】【分析】如圖,作A關于BC的對稱點A',連接AA',交BC于F,過A'作AE⊥AC于E,交BC于D,則AD=A'D,此時AD+DE的值最小,就是A'E的長,根據(jù)相似三角形對應邊的比可得結論.【詳解】如圖,作A關于BC的對稱點A',連接AA',交BC于F,過A'作AE⊥AC于E,交BC于D,則AD=A'D,此時AD+DE的值最小,就是A'E的長;Rt△ABC中,∠BAC=90°,AB=3,AC=6,∴BC==9,S△ABC=AB?AC=BC?AF,∴3×6=9AF,AF=2,∴AA'=2AF=4,∵∠A'FD=∠DEC=90°,∠A'DF=∠CDE,∴∠A'=∠C,∵∠AEA'=∠BAC=90°,∴△AEA'∽△BAC,∴,∴,∴A'E=,即AD+DE的最小值是,故答案為.【點睛】本題考查軸對稱﹣最短問題、三角形相似的性質(zhì)和判定、兩點之間線段最短、垂線段最短等知識,解題的關鍵是靈活運用軸對稱以及垂線段最短解決最短問題.14、5.【解析】
試題解析:過E作EM⊥AB于M,∵四邊形ABCD是正方形,∴AD=BC=CD=AB,∴EM=AD,BM=CE,∵△ABE的面積為8,∴×AB×EM=8,解得:EM=4,即AD=DC=BC=AB=4,∵CE=3,由勾股定理得:BE==5.考點:1.正方形的性質(zhì);2.三角形的面積;3.勾股定理.15、【解析】解:如圖,作DF⊥y軸于F,過B點作x軸的平行線與過C點垂直與x軸的直線交于G,CG交x軸于K,作BH⊥x軸于H,∵四邊形ABCD是矩形,∴∠BAD=90°,∴∠DAF+∠OAE=90°,∵∠AEO+∠OAE=90°,∴∠DAF=∠AEO,∵AB=2AD,E為AB的中點,∴AD=AE,在△ADF和△EAO中,∵∠DAF=∠AEO,∠AFD=∠AOE=90°,AD=AE,∴△ADF≌△EAO(AAS),∴DF=OA=1,AF=OE,∴D(1,k),∴AF=k﹣1,同理;△AOE≌△BHE,△ADF≌△CBG,∴BH=BG=DF=OA=1,EH=CG=OE=AF=k﹣1,∴OK=2(k﹣1)+1=2k﹣1,CK=k﹣2,∴C(2k﹣1,k﹣2),∴(2k﹣1)(k﹣2)=1k,解得k1=,k2=,∵k﹣1>0,∴k=.故答案為.點睛:本題考查了矩形的性質(zhì)和反比例函數(shù)圖象上點的坐標特征.圖象上的點(x,y)的橫縱坐標的積是定值k,即xy=k.16、π+﹣【解析】試題分析:如圖,連接OC,EC,由題意得△OCD≌△OCE,OC⊥DE,DE==,所以S四邊形ODCE=×1×=,S△OCD=,又S△ODE=×1×1=,S扇形OBC==,所以陰影部分的面積為:S扇形OBC+S△OCD﹣S△ODE=+﹣;故答案為.考點:扇形面積的計算.17、【解析】
根據(jù)完全平方公式的特點:兩項平方項的符號相同,另一項是兩底數(shù)積的2倍,本題可用完全平方公式分解因式.【詳解】解:.故答案為.【點睛】本題考查用完全平方公式法進行因式分解,能用完全平方公式法進行因式分解的式子的特點需熟練掌握.三、解答題(共7小題,滿分69分)18、還需要航行的距離的長為20.4海里.【解析】分析:根據(jù)題意得:∠ACD=70°,∠BCD=37°,AC=80海里,在直角三角形ACD中,由三角函數(shù)得出CD=27.2海里,在直角三角形BCD中,得出BD,即可得出答案.詳解:由題知:,,.在中,,,(海里).在中,,,(海里).答:還需要航行的距離的長為20.4海里.點睛:此題考查了解直角三角形的應用-方向角問題,三角函數(shù)的應用;求出CD的長度是解決問題的關鍵.19、(1).理由見解析;(2).【解析】
(1)根據(jù)得到∠A=∠PDA,根據(jù)線段垂直平分線的性質(zhì)得到,利用,得到,于是得到結論;
(2)連接PE,設DE=x,則EB=ED=x,CE=8-x,根據(jù)勾股定理即可得到結論.【詳解】(1).理由如下,∵,∴,∵,∴,∵垂直平分,∴,∴,∴,∴,即.(2)連接,設,由(1)得,,又,,∵,∴,∴,解得,即.【點睛】本題考查了線段垂直平分線的性質(zhì),直角三角形的性質(zhì),勾股定理,正確的作出輔助線解題的關鍵.20、(1)10,30;(2)y=;(3)登山4分鐘、9分鐘或15分鐘時,甲、乙兩人距地面的高度差為50米.【解析】
(1)根據(jù)速度=高度÷時間即可算出甲登山上升的速度;根據(jù)高度=速度×時間即可算出乙在A地時距地面的高度b的值;(2)分0≤x≤2和x≥2兩種情況,根據(jù)高度=初始高度+速度×時間即可得出y關于x的函數(shù)關系;(3)當乙未到終點時,找出甲登山全程中y關于x的函數(shù)關系式,令二者做差等于50即可得出關于x的一元一次方程,解之即可求出x值;當乙到達終點時,用終點的高度﹣甲登山全程中y關于x的函數(shù)關系式=50,即可得出關于x的一元一次方程,解之可求出x值.綜上即可得出結論.【詳解】(1)(300﹣100)÷20=10(米/分鐘),b=15÷1×2=30,故答案為10,30;(2)當0≤x≤2時,y=15x;當x≥2時,y=30+10×3(x﹣2)=30x﹣30,當y=30x﹣30=300時,x=11,∴乙登山全程中,距地面的高度y(米)與登山時間x(分)之間的函數(shù)關系式為y=;(3)甲登山全程中,距地面的高度y(米)與登山時間x(分)之間的函數(shù)關系式為y=10x+100(0≤x≤20).當10x+100﹣(30x﹣30)=50時,解得:x=4,當30x﹣30﹣(10x+100)=50時,解得:x=9,當300﹣(10x+100)=50時,解得:x=15,答:登山4分鐘、9分鐘或15分鐘時,甲、乙兩人距地面的高度差為50米.【點睛】本題考查了一次函數(shù)的應用以及解一元一次方程,解題的關鍵是:(1)根據(jù)數(shù)量關系列式計算;(2)根據(jù)高度=初始高度+速度×時間找出y關于x的函數(shù)關系式;(3)將兩函數(shù)關系式做差找出關于x的一元一次方程.21、(1)證明見解析;(2)-2.【解析】分析:(1)將原方程變形為一般式,根據(jù)方程的系數(shù)結合根的判別式,即可得出△=(2p+1)2≥1,由此即可證出:無論p取何值此方程總有兩個實數(shù)根;(2)根據(jù)根與系數(shù)的關系可得出x1+x2=5、x1x2=6-p2-p,結合x12+x22-x1x2=3p2+1,即可求出p值.詳解:(1)證明:原方程可變形為x2-5x+6-p2-p=1.∵△=(-5)2-4(6-p2-p)=25-24+4p2+4p=4p2+4p+1=(2p+1)2≥1,∴無論p取何值此方程總有兩個實數(shù)根;(2)∵原方程的兩根為x1、x2,∴x1+x2=5,x1x2=6-p2-p.又∵x12+x22-x1x2=3p2+1,∴(x1+x2)2-3x1x2=3p2+1,∴52-3(6-p2-p)=3p2+1,∴25-18+3p2+3p=3p2+1,∴3p=-6,∴p=-2.點睛:本題考查了根與系數(shù)的關系以及根的判別式,解題的關鍵是:(1)牢記“當△≥1時,方程有兩個實數(shù)根”;(2)根據(jù)根與系數(shù)的關系結合x12+x22-x1x2=3p2+1,求出p值.22、見解析【解析】
(1)可以把要證明相等的線段AE,CF放到△AEO,△BFO中考慮全等的條件,由兩個等腰直角三角形得AO=BO,OE=OF,再找夾角相等,這兩個夾角都是直角減去∠BOE的結果,所以相等,由此可以證明△AEO≌△BFO;(2)由(1)知:∠OAC=∠OBF,∴∠BDA=∠AOB=90°,由此可以證明AE⊥BF【詳解】解:(1)證明:在△AEO與△BFO中,∵Rt△OAB與Rt△EOF等腰直角三角形,∴AO=OB,OE=OF,∠AOE=90°-∠BOE=∠
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 武漢輕工大學《語言信息處理》2023-2024學年第一學期期末試卷
- 二零二五版?zhèn)€人與企業(yè)間的商務汽車租賃及行程安排合同3篇
- 二零二五版旅游產(chǎn)業(yè)反擔保合同與旅游資產(chǎn)抵押協(xié)議3篇
- 二零二五年建筑玻璃采購合同標準2篇
- 二零二五年度離婚后按揭房產(chǎn)權屬分割及子女撫養(yǎng)費用協(xié)議3篇
- 個人借款擔保合同書2024年版版B版
- 二零二五年知識產(chǎn)權保護保密協(xié)議翻譯服務協(xié)議3篇
- 二零二五版企業(yè)內(nèi)部無息短期資金互助借款合同3篇
- 天津財經(jīng)大學《兒童美術創(chuàng)作與指導》2023-2024學年第一學期期末試卷
- 2024版股權合作的協(xié)議書范本
- GB/T 12914-2008紙和紙板抗張強度的測定
- GB/T 1185-2006光學零件表面疵病
- ps6000自動化系統(tǒng)用戶操作及問題處理培訓
- 家庭教養(yǎng)方式問卷(含評分標準)
- 城市軌道交通安全管理課件(完整版)
- 線纜包覆擠塑模設計和原理
- TSG ZF001-2006 安全閥安全技術監(jiān)察規(guī)程
- 部編版二年級語文下冊《蜘蛛開店》
- 鍋爐升降平臺管理
- 200m3╱h凈化水處理站設計方案
- 個體化健康教育記錄表格模板1
評論
0/150
提交評論