版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在中,“”是“為鈍角三角形”的()A.充分非必要條件 B.必要非充分條件 C.充要條件 D.既不充分也不必要條件2.如圖所示,為了測(cè)量、兩座島嶼間的距離,小船從初始位置出發(fā),已知在的北偏西的方向上,在的北偏東的方向上,現(xiàn)在船往東開2百海里到達(dá)處,此時(shí)測(cè)得在的北偏西的方向上,再開回處,由向西開百海里到達(dá)處,測(cè)得在的北偏東的方向上,則、兩座島嶼間的距離為()A.3 B. C.4 D.3.不等式的解集記為,有下面四個(gè)命題:;;;.其中的真命題是()A. B. C. D.4.天干地支,簡(jiǎn)稱為干支,源自中國(guó)遠(yuǎn)古時(shí)代對(duì)天象的觀測(cè).“甲、乙、丙、丁、戊、己、庚、辛、壬、癸”稱為十天干,“子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥”稱為十二地支.干支紀(jì)年法是天干和地支依次按固定的順序相互配合組成,以此往復(fù),60年為一個(gè)輪回.現(xiàn)從農(nóng)歷2000年至2019年共20個(gè)年份中任取2個(gè)年份,則這2個(gè)年份的天干或地支相同的概率為()A. B. C. D.5.下圖是我國(guó)第24~30屆奧運(yùn)獎(jiǎng)牌數(shù)的回眸和中國(guó)代表團(tuán)獎(jiǎng)牌總數(shù)統(tǒng)計(jì)圖,根據(jù)表和統(tǒng)計(jì)圖,以下描述正確的是().金牌(塊)銀牌(塊)銅牌(塊)獎(jiǎng)牌總數(shù)2451112282516221254261622125027281615592832171463295121281003038272388A.中國(guó)代表團(tuán)的奧運(yùn)獎(jiǎng)牌總數(shù)一直保持上升趨勢(shì)B.折線統(tǒng)計(jì)圖中的六條線段只是為了便于觀察圖象所反映的變化,不具有實(shí)際意義C.第30屆與第29屆北京奧運(yùn)會(huì)相比,奧運(yùn)金牌數(shù)、銀牌數(shù)、銅牌數(shù)都有所下降D.統(tǒng)計(jì)圖中前六屆奧運(yùn)會(huì)中國(guó)代表團(tuán)的奧運(yùn)獎(jiǎng)牌總數(shù)的中位數(shù)是54.56.從5名學(xué)生中選出4名分別參加數(shù)學(xué),物理,化學(xué),生物四科競(jìng)賽,其中甲不能參加生物競(jìng)賽,則不同的參賽方案種數(shù)為A.48 B.72 C.90 D.967.等比數(shù)列的前項(xiàng)和為,若,,,,則()A. B. C. D.8.若復(fù)數(shù)滿足(是虛數(shù)單位),則的虛部為()A. B. C. D.9.胡夫金字塔是底面為正方形的錐體,四個(gè)側(cè)面都是相同的等腰三角形.研究發(fā)現(xiàn),該金字塔底面周長(zhǎng)除以倍的塔高,恰好為祖沖之發(fā)現(xiàn)的密率.設(shè)胡夫金字塔的高為,假如對(duì)胡夫金字塔進(jìn)行亮化,沿其側(cè)棱和底邊布設(shè)單條燈帶,則需要燈帶的總長(zhǎng)度約為A. B.C. D.10.某人造地球衛(wèi)星的運(yùn)行軌道是以地心為一個(gè)焦點(diǎn)的橢圓,其軌道的離心率為,設(shè)地球半徑為,該衛(wèi)星近地點(diǎn)離地面的距離為,則該衛(wèi)星遠(yuǎn)地點(diǎn)離地面的距離為()A. B.C. D.11.拋擲一枚質(zhì)地均勻的硬幣,每次正反面出現(xiàn)的概率相同,連續(xù)拋擲5次,至少連續(xù)出現(xiàn)3次正面朝上的概率是()A. B. C. D.12.已知函數(shù),,,,則,,的大小關(guān)系為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知平面向量與的夾角為,,,則________.14.已知是定義在上的奇函數(shù),當(dāng)時(shí),,則不等式的解集用區(qū)間表示為__________.15.已知集合,,則____________.16.一個(gè)長(zhǎng)、寬、高分別為1、2、2的長(zhǎng)方體可以在一個(gè)圓柱形容器內(nèi)任意轉(zhuǎn)動(dòng),則容器體積的最小值為_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)橢圓E:(a,b>0)過M(2,),N(,1)兩點(diǎn),O為坐標(biāo)原點(diǎn),(1)求橢圓E的方程;(2)是否存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與橢圓E恒有兩個(gè)交點(diǎn)A,B,且?若存在,寫出該圓的方程,若不存在說明理由.18.(12分)已知拋物線的焦點(diǎn)為,準(zhǔn)線與軸交于點(diǎn),點(diǎn)在拋物線上,直線與拋物線交于另一點(diǎn).(1)設(shè)直線,的斜率分別為,,求證:常數(shù);(2)①設(shè)的內(nèi)切圓圓心為的半徑為,試用表示點(diǎn)的橫坐標(biāo);②當(dāng)?shù)膬?nèi)切圓的面積為時(shí),求直線的方程.19.(12分)設(shè)函數(shù).(1)若,時(shí),在上單調(diào)遞減,求的取值范圍;(2)若,,,求證:當(dāng)時(shí),.20.(12分)已知函數(shù).(1)求曲線在點(diǎn)處的切線方程;(2)若對(duì)任意的,當(dāng)時(shí),都有恒成立,求最大的整數(shù).(參考數(shù)據(jù):)21.(12分)已知函數(shù).(1)若是的極值點(diǎn),求的極大值;(2)求實(shí)數(shù)的范圍,使得恒成立.22.(10分)某房地產(chǎn)開發(fā)商在其開發(fā)的某小區(qū)前修建了一個(gè)弓形景觀湖.如圖,該弓形所在的圓是以為直徑的圓,且米,景觀湖邊界與平行且它們間的距離為米.開發(fā)商計(jì)劃從點(diǎn)出發(fā)建一座景觀橋(假定建成的景觀橋的橋面與地面和水面均平行),橋面在湖面上的部分記作.設(shè).(1)用表示線段并確定的范圍;(2)為了使小區(qū)居民可以充分地欣賞湖景,所以要將的長(zhǎng)度設(shè)計(jì)到最長(zhǎng),求的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】分析:從兩個(gè)方向去判斷,先看能推出三角形的形狀是銳角三角形,而非鈍角三角形,從而得到充分性不成立,再看當(dāng)三角形是鈍角三角形時(shí),也推不出成立,從而必要性也不滿足,從而選出正確的結(jié)果.詳解:由題意可得,在中,因?yàn)椋?,因?yàn)?,所以,,結(jié)合三角形內(nèi)角的條件,故A,B同為銳角,因?yàn)椋?,即,所以,因此,所以是銳角三角形,不是鈍角三角形,所以充分性不滿足,反之,若是鈍角三角形,也推不出“,故必要性不成立,所以為既不充分也不必要條件,故選D.點(diǎn)睛:該題考查的是有關(guān)充分必要條件的判斷問題,在解題的過程中,需要用到不等式的等價(jià)轉(zhuǎn)化,余弦的和角公式,誘導(dǎo)公式等,需要明確對(duì)應(yīng)此類問題的解題步驟,以及三角形形狀對(duì)應(yīng)的特征.2、B【解析】
先根據(jù)角度分析出的大小,然后根據(jù)角度關(guān)系得到的長(zhǎng)度,再根據(jù)正弦定理計(jì)算出的長(zhǎng)度,最后利用余弦定理求解出的長(zhǎng)度即可.【詳解】由題意可知:,所以,,所以,所以,又因?yàn)?,所以,所?故選:B.【點(diǎn)睛】本題考查解三角形中的角度問題,難度一般.理解方向角的概念以及活用正、余弦定理是解答問題的關(guān)鍵.3、A【解析】
作出不等式組表示的可行域,然后對(duì)四個(gè)選項(xiàng)一一分析可得結(jié)果.【詳解】作出可行域如圖所示,當(dāng)時(shí),,即的取值范圍為,所以為真命題;為真命題;為假命題.故選:A【點(diǎn)睛】此題考查命題的真假判斷與應(yīng)用,著重考查作圖能力,熟練作圖,正確分析是關(guān)鍵,屬于中檔題.4、B【解析】
利用古典概型概率計(jì)算方法分析出符合題意的基本事件個(gè)數(shù),結(jié)合組合數(shù)的計(jì)算即可出求得概率.【詳解】20個(gè)年份中天干相同的有10組(每組2個(gè)),地支相同的年份有8組(每組2個(gè)),從這20個(gè)年份中任取2個(gè)年份,則這2個(gè)年份的天干或地支相同的概率.故選:B.【點(diǎn)睛】本小題主要考查古典概型的計(jì)算,考查組合數(shù)的計(jì)算,考查學(xué)生分析問題的能力,難度較易.5、B【解析】
根據(jù)表格和折線統(tǒng)計(jì)圖逐一判斷即可.【詳解】A.中國(guó)代表團(tuán)的奧運(yùn)獎(jiǎng)牌總數(shù)不是一直保持上升趨勢(shì),29屆最多,錯(cuò)誤;B.折線統(tǒng)計(jì)圖中的六條線段只是為了便于觀察圖象所反映的變化,不表示某種意思,正確;C.30屆與第29屆北京奧運(yùn)會(huì)相比,奧運(yùn)金牌數(shù)、銅牌數(shù)有所下降,銀牌數(shù)有所上升,錯(cuò)誤;D.統(tǒng)計(jì)圖中前六屆奧運(yùn)會(huì)中國(guó)代表團(tuán)的奧運(yùn)獎(jiǎng)牌總數(shù)按照順序排列的中位數(shù)為,不正確;故選:B【點(diǎn)睛】此題考查統(tǒng)計(jì)圖,關(guān)鍵點(diǎn)讀懂折線圖,屬于簡(jiǎn)單題目.6、D【解析】因甲不參加生物競(jìng)賽,則安排甲參加另外3場(chǎng)比賽或甲學(xué)生不參加任何比賽①當(dāng)甲參加另外3場(chǎng)比賽時(shí),共有?=72種選擇方案;②當(dāng)甲學(xué)生不參加任何比賽時(shí),共有=24種選擇方案.綜上所述,所有參賽方案有72+24=96種故答案為:96點(diǎn)睛:本題以選擇學(xué)生參加比賽為載體,考查了分類計(jì)數(shù)原理、排列數(shù)與組合數(shù)公式等知識(shí),屬于基礎(chǔ)題.7、D【解析】試題分析:由于在等比數(shù)列中,由可得:,又因?yàn)?,所以有:是方程的二?shí)根,又,,所以,故解得:,從而公比;那么,故選D.考點(diǎn):等比數(shù)列.8、A【解析】
由得,然后分子分母同時(shí)乘以分母的共軛復(fù)數(shù)可得復(fù)數(shù),從而可得的虛部.【詳解】因?yàn)?所以,所以復(fù)數(shù)的虛部為.故選A.【點(diǎn)睛】本題考查了復(fù)數(shù)的除法運(yùn)算和復(fù)數(shù)的概念,屬于基礎(chǔ)題.復(fù)數(shù)除法運(yùn)算的方法是分子分母同時(shí)乘以分母的共軛復(fù)數(shù),轉(zhuǎn)化為乘法運(yùn)算.9、D【解析】
設(shè)胡夫金字塔的底面邊長(zhǎng)為,由題可得,所以,該金字塔的側(cè)棱長(zhǎng)為,所以需要燈帶的總長(zhǎng)度約為,故選D.10、A【解析】
由題意畫出圖形,結(jié)合橢圓的定義,結(jié)合橢圓的離心率,求出橢圓的長(zhǎng)半軸a,半焦距c,即可確定該衛(wèi)星遠(yuǎn)地點(diǎn)離地面的距離.【詳解】橢圓的離心率:,(c為半焦距;a為長(zhǎng)半軸),設(shè)衛(wèi)星近地點(diǎn),遠(yuǎn)地點(diǎn)離地面距離分別為r,n,如圖:則所以,,故選:A【點(diǎn)睛】本題主要考查了橢圓的離心率的求法,注意半焦距與長(zhǎng)半軸的求法,是解題的關(guān)鍵,屬于中檔題.11、A【解析】
首先求出樣本空間樣本點(diǎn)為個(gè),再利用分類計(jì)數(shù)原理求出三個(gè)正面向上為連續(xù)的3個(gè)“1”的樣本點(diǎn)個(gè)數(shù),再求出重復(fù)數(shù)量,可得事件的樣本點(diǎn)數(shù),根據(jù)古典概型的概率計(jì)算公式即可求解.【詳解】樣本空間樣本點(diǎn)為個(gè),具體分析如下:記正面向上為1,反面向上為0,三個(gè)正面向上為連續(xù)的3個(gè)“1”,有以下3種位置1____,__1__,____1.剩下2個(gè)空位可是0或1,這三種排列的所有可能分別都是,但合并計(jì)算時(shí)會(huì)有重復(fù),重復(fù)數(shù)量為,事件的樣本點(diǎn)數(shù)為:個(gè).故不同的樣本點(diǎn)數(shù)為8個(gè),.故選:A【點(diǎn)睛】本題考查了分類計(jì)數(shù)原理與分步計(jì)數(shù)原理,古典概型的概率計(jì)算公式,屬于基礎(chǔ)題12、B【解析】
可判斷函數(shù)在上單調(diào)遞增,且,所以.【詳解】在上單調(diào)遞增,且,所以.故選:B【點(diǎn)睛】本題主要考查了函數(shù)單調(diào)性的判定,指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的性質(zhì),利用單調(diào)性比大小等知識(shí),考查了學(xué)生的運(yùn)算求解能力.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據(jù)已知求出,利用向量的運(yùn)算律,求出即可.【詳解】由可得,則,所以.故答案為:【點(diǎn)睛】本題考查向量的模、向量的數(shù)量積運(yùn)算,考查計(jì)算求解能力,屬于基礎(chǔ)題.14、【解析】設(shè),則,由題意可得故當(dāng)時(shí),由不等式,可得,或求得,或故答案為(15、【解析】
由于,,則.16、【解析】
一個(gè)長(zhǎng)、寬、高分別為1、2、2的長(zhǎng)方體可以在一個(gè)圓柱形容器內(nèi)任意轉(zhuǎn)動(dòng),則圓柱形容器的底面直徑及高的最小值均等于長(zhǎng)方體的體對(duì)角線的長(zhǎng),長(zhǎng)方體的體對(duì)角線的長(zhǎng)為,所以容器體積的最小值為.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】試題分析:(1)因?yàn)闄E圓E:(a,b>0)過M(2,),N(,1)兩點(diǎn),所以解得所以橢圓E的方程為(2)假設(shè)存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與橢圓E恒有兩個(gè)交點(diǎn)A,B,且,設(shè)該圓的切線方程為解方程組得,即,則△=,即,要使,需使,即,所以,所以又,所以,所以,即或,因?yàn)橹本€為圓心在原點(diǎn)的圓的一條切線,所以圓的半徑為,,,所求的圓為,此時(shí)圓的切線都滿足或,而當(dāng)切線的斜率不存在時(shí)切線為與橢圓的兩個(gè)交點(diǎn)為或滿足,綜上,存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與橢圓E恒有兩個(gè)交點(diǎn)A,B,且.考點(diǎn):本題主要考查橢圓的標(biāo)準(zhǔn)方程,直線與橢圓的位置關(guān)系,圓與橢圓的位置關(guān)系.點(diǎn)評(píng):中檔題,涉及直線與圓錐曲線的位置關(guān)系問題,往往要利用韋達(dá)定理.存在性問題,往往從假設(shè)存在出發(fā),運(yùn)用題中條件探尋得到存在的是否條件具備.(2)小題解答中,集合韋達(dá)定理,應(yīng)用平面向量知識(shí)證明了圓的存在性.18、(1)證明見解析;(2)①;②.【解析】
(1)設(shè)過的直線交拋物線于,,聯(lián)立,利用直線的斜率公式和韋達(dá)定理表示出,化簡(jiǎn)即可;(2)由(1)知點(diǎn)在軸上,故,設(shè)出直線方程,求出交點(diǎn)坐標(biāo),因?yàn)閮?nèi)心到三角形各邊的距離相等且均為內(nèi)切圓半徑,列出方程組求解即可.【詳解】(1)設(shè)過的直線交拋物線于,,聯(lián)立方程組,得:.于是,有:,又,;(2)①由(1)知點(diǎn)在軸上,故,聯(lián)立的直線方程:.,又點(diǎn)在拋物線上,得,又,;②由題得,(解法一)所以直線的方程為(解法二)設(shè)內(nèi)切圓半徑為,則.設(shè)直線的斜率為,則:直線的方程為:代入直線的直線方程,可得于是有:得,又由(1)可設(shè)內(nèi)切圓的圓心為則,即:,解得:所以,直線的方程為:.【點(diǎn)睛】本題主要考查了拋物線的性質(zhì),直線與拋物線相關(guān)的綜合問題的求解,考查了學(xué)生的運(yùn)算求解與邏輯推理能力.19、(1)(2)見解析【解析】
(1)在上單調(diào)遞減等價(jià)于在恒成立,分離參數(shù)即可解決.(2)先對(duì)求導(dǎo),化簡(jiǎn)后根據(jù)零點(diǎn)存在性定理判斷唯一零點(diǎn)所在區(qū)間,構(gòu)造函數(shù)利用基本不等式求解即可.【詳解】(1),時(shí),,,∵在上單調(diào)遞減.∴,.令,,時(shí),;時(shí),,∴在上為減函數(shù),在上為增函數(shù).∴,∴.∴的取值范圍為.(2)若,,時(shí),,,令,顯然在上為增函數(shù).又,,∴有唯一零點(diǎn).且,時(shí),,;時(shí),,,∴在上為增函數(shù),在上為減函數(shù).∴.又,∴,,.∴.,.∴當(dāng)時(shí),.【點(diǎn)睛】此題考查函數(shù)定區(qū)間上單調(diào),和零點(diǎn)存在性定理等知識(shí)點(diǎn),難點(diǎn)為找到最值后的構(gòu)造函數(shù)求值域,屬于較難題目.20、(1)(2)2【解析】
(1)先求得切點(diǎn)坐標(biāo),利用導(dǎo)數(shù)求得切線的斜率,由此求得切線方程.(2)對(duì)分成,兩種情況進(jìn)行分類討論.當(dāng)時(shí),將不等式轉(zhuǎn)化為,構(gòu)造函數(shù),利用導(dǎo)數(shù)求得的最小值(設(shè)為)的取值范圍,由的得在上恒成立,結(jié)合一元二次不等式恒成立,判別式小于零列不等式,解不等式求得的取值范圍.【詳解】(1)已知函數(shù),則處即為,又,,可知函數(shù)過點(diǎn)的切線為,即.(2)注意到,不等式中,當(dāng)時(shí),顯然成立;當(dāng)時(shí),不等式可化為令,則,,所以存在,使.由于在上遞增,在上遞減,所以是的唯一零點(diǎn).且在區(qū)間上,遞減,在區(qū)間上,遞增,即的最小值為,令,則,將的最小值設(shè)為,則,因此原式需滿足,即在上恒成立,又,可知判別式即可,即,且可以取到的最大整數(shù)為2.【點(diǎn)睛】本小題主要考查利用導(dǎo)數(shù)求切線方程,考查利用導(dǎo)數(shù)研究不等式恒成立問題,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于難題.21、(1).(2)【解析】
(1)先對(duì)函數(shù)求導(dǎo),結(jié)合極值存在的條件可求t,然后結(jié)合導(dǎo)數(shù)可研究函數(shù)的單調(diào)性,進(jìn)而可求極大值;(2)由已知代入可得,x2+(t﹣2)x﹣tlnx≥0在x>0時(shí)恒成立,構(gòu)造函數(shù)g(x)=x2+(t﹣2)x﹣tlnx,結(jié)合導(dǎo)數(shù)及函數(shù)的性質(zhì)可求.【詳解】(1),x>0,由題意可得,0,解可得t=﹣4,∴,易得,當(dāng)x>2,0<x<1時(shí),f′(x)>0,函數(shù)單調(diào)遞增,當(dāng)1<x<2時(shí),f′(x)<0,函數(shù)單調(diào)遞減,故當(dāng)x=1時(shí),
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度礦產(chǎn)資源開發(fā)與合作合同
- 2024業(yè)務(wù)員合同協(xié)議書范本
- 2024表演合作合同范本
- 個(gè)人土地使用權(quán)部分轉(zhuǎn)讓協(xié)議
- 個(gè)人小額貸款合同協(xié)議書
- 廣東省外地職工勞動(dòng)合同模板
- 2024個(gè)人借款擔(dān)保合同范本「標(biāo)準(zhǔn)版」
- 買賣合同因質(zhì)量問題的反訴狀2024年
- 婚內(nèi)財(cái)產(chǎn)劃分:債務(wù)承擔(dān)約定
- 2024年私人裝修工人簡(jiǎn)單合同
- 2024年國(guó)際貨物買賣FOB條款合同
- 華南理工大學(xué)《嵌入式系統(tǒng)》2022-2023學(xué)年期末試卷
- 統(tǒng)編版(2024)七年級(jí)上冊(cè)道德與法治第三單元《珍愛我們的生命》測(cè)試卷(含答案)
- 江蘇省中等職業(yè)學(xué)校學(xué)業(yè)水平考試語文卷含答案
- 售后服務(wù)保障方案3篇
- 2025屆江蘇省南通市海安市海安高級(jí)中學(xué)物理高三上期中聯(lián)考試題含解析
- 2024-2025學(xué)年二年級(jí)上學(xué)期數(shù)學(xué)期中模擬試卷(蘇教版)(含答案解析)
- 入團(tuán)志愿書(2016版本)(可編輯打印標(biāo)準(zhǔn)A4) (1)
- 案件移交清單模板
- 等差數(shù)列及其通項(xiàng)公式
- 【土木工程本科畢業(yè)設(shè)計(jì)】《混凝土結(jié)構(gòu)》課程設(shè)計(jì)
評(píng)論
0/150
提交評(píng)論