




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)復(fù)數(shù)滿足(為虛數(shù)單位),則在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.已知關(guān)于的方程在區(qū)間上有兩個(gè)根,,且,則實(shí)數(shù)的取值范圍是()A. B. C. D.3.三國時(shí)代吳國數(shù)學(xué)家趙爽所注《周髀算經(jīng)》中給出了勾股定理的絕妙證明.下面是趙爽的弦圖及注文,弦圖是一個(gè)以勾股形之弦為邊的正方形,其面積稱為弦實(shí).圖中包含四個(gè)全等的勾股形及一個(gè)小正方形,分別涂成紅(朱)色及黃色,其面積稱為朱實(shí)、黃實(shí),利用,化簡(jiǎn),得.設(shè)勾股形中勾股比為,若向弦圖內(nèi)隨機(jī)拋擲顆圖釘(大小忽略不計(jì)),則落在黃色圖形內(nèi)的圖釘數(shù)大約為()A. B. C. D.4.若不相等的非零實(shí)數(shù),,成等差數(shù)列,且,,成等比數(shù)列,則()A. B. C.2 D.5.在平行六面體中,M為與的交點(diǎn),若,,則與相等的向量是()A. B. C. D.6.已知函數(shù)的圖象如圖所示,則可以為()A. B. C. D.7.已知i是虛數(shù)單位,則1+iiA.-12+32i8.若某幾何體的三視圖如圖所示,則該幾何體的表面積為()A.240 B.264 C.274 D.2829.已知等差數(shù)列的前n項(xiàng)和為,且,則()A.4 B.8 C.16 D.210.函數(shù)的定義域?yàn)椋ǎ〢.或 B.或C. D.11.中,點(diǎn)在邊上,平分,若,,,,則()A. B. C. D.12.命題:的否定為A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.(5分)已知為實(shí)數(shù),向量,,且,則____________.14.在的展開式中的系數(shù)為,則_______.15.公比為正數(shù)的等比數(shù)列的前項(xiàng)和為,若,,則的值為__________.16.已知正方形邊長為,空間中的動(dòng)點(diǎn)滿足,,則三棱錐體積的最大值是______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)當(dāng)時(shí),解關(guān)于的不等式;(2)若對(duì)任意,都存在,使得不等式成立,求實(shí)數(shù)的取值范圍.18.(12分)如圖,在三棱錐中,平面平面,,.點(diǎn),,分別為線段,,的中點(diǎn),點(diǎn)是線段的中點(diǎn).(1)求證:平面.(2)判斷與平面的位置關(guān)系,并證明.19.(12分)已知函數(shù).(Ⅰ)當(dāng)時(shí),求不等式的解集;(Ⅱ)若存在滿足不等式,求實(shí)數(shù)的取值范圍.20.(12分)如圖1,四邊形是邊長為2的菱形,,為的中點(diǎn),以為折痕將折起到的位置,使得平面平面,如圖2.(1)證明:平面平面;(2)求點(diǎn)到平面的距離.21.(12分)已知,,.(1)求的最小值;(2)若對(duì)任意,都有,求實(shí)數(shù)的取值范圍.22.(10分)已知圓外有一點(diǎn),過點(diǎn)作直線.(1)當(dāng)直線與圓相切時(shí),求直線的方程;(2)當(dāng)直線的傾斜角為時(shí),求直線被圓所截得的弦長.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】
由復(fù)數(shù)的除法運(yùn)算可整理得到,由此得到對(duì)應(yīng)的點(diǎn)的坐標(biāo),從而確定所處象限.【詳解】由得:,對(duì)應(yīng)的點(diǎn)的坐標(biāo)為,位于第一象限.故選:.【點(diǎn)睛】本題考查復(fù)數(shù)對(duì)應(yīng)的點(diǎn)所在象限的求解,涉及到復(fù)數(shù)的除法運(yùn)算,屬于基礎(chǔ)題.2、C【解析】
先利用三角恒等變換將題中的方程化簡(jiǎn),構(gòu)造新的函數(shù),將方程的解的問題轉(zhuǎn)化為函數(shù)圖象的交點(diǎn)問題,畫出函數(shù)圖象,再結(jié)合,解得的取值范圍.【詳解】由題化簡(jiǎn)得,,作出的圖象,又由易知.故選:C.【點(diǎn)睛】本題考查了三角恒等變換,方程的根的問題,利用數(shù)形結(jié)合法,求得范圍.屬于中檔題.3、A【解析】分析:設(shè)三角形的直角邊分別為1,,利用幾何概型得出圖釘落在小正方形內(nèi)的概率即可得出結(jié)論.解析:設(shè)三角形的直角邊分別為1,,則弦為2,故而大正方形的面積為4,小正方形的面積為.圖釘落在黃色圖形內(nèi)的概率為.落在黃色圖形內(nèi)的圖釘數(shù)大約為.故選:A.點(diǎn)睛:應(yīng)用幾何概型求概率的方法建立相應(yīng)的幾何概型,將試驗(yàn)構(gòu)成的總區(qū)域和所求事件構(gòu)成的區(qū)域轉(zhuǎn)化為幾何圖形,并加以度量.(1)一般地,一個(gè)連續(xù)變量可建立與長度有關(guān)的幾何概型,只需把這個(gè)變量放在數(shù)軸上即可;(2)若一個(gè)隨機(jī)事件需要用兩個(gè)變量來描述,則可用這兩個(gè)變量的有序?qū)崝?shù)對(duì)來表示它的基本事件,然后利用平面直角坐標(biāo)系就能順利地建立與面積有關(guān)的幾何概型;(3)若一個(gè)隨機(jī)事件需要用三個(gè)連續(xù)變量來描述,則可用這三個(gè)變量組成的有序數(shù)組來表示基本事件,利用空間直角坐標(biāo)系即可建立與體積有關(guān)的幾何概型.4、A【解析】
由題意,可得,,消去得,可得,繼而得到,代入即得解【詳解】由,,成等差數(shù)列,所以,又,,成等比數(shù)列,所以,消去得,所以,解得或,因?yàn)?,,是不相等的非零?shí)數(shù),所以,此時(shí),所以.故選:A【點(diǎn)睛】本題考查了等差等比數(shù)列的綜合應(yīng)用,考查了學(xué)生概念理解,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.5、D【解析】
根據(jù)空間向量的線性運(yùn)算,用作基底表示即可得解.【詳解】根據(jù)空間向量的線性運(yùn)算可知因?yàn)?,則即,故選:D.【點(diǎn)睛】本題考查了空間向量的線性運(yùn)算,用基底表示向量,屬于基礎(chǔ)題.6、A【解析】
根據(jù)圖象可知,函數(shù)為奇函數(shù),以及函數(shù)在上單調(diào)遞增,且有一個(gè)零點(diǎn),即可對(duì)選項(xiàng)逐個(gè)驗(yàn)證即可得出.【詳解】首先對(duì)4個(gè)選項(xiàng)進(jìn)行奇偶性判斷,可知,為偶函數(shù),不符合題意,排除B;其次,在剩下的3個(gè)選項(xiàng),對(duì)其在上的零點(diǎn)個(gè)數(shù)進(jìn)行判斷,在上無零點(diǎn),不符合題意,排除D;然后,對(duì)剩下的2個(gè)選項(xiàng),進(jìn)行單調(diào)性判斷,在上單調(diào)遞減,不符合題意,排除C.故選:A.【點(diǎn)睛】本題主要考查圖象的識(shí)別和函數(shù)性質(zhì)的判斷,意在考查學(xué)生的直觀想象能力和邏輯推理能力,屬于容易題.7、D【解析】
利用復(fù)數(shù)的運(yùn)算法則即可化簡(jiǎn)得出結(jié)果【詳解】1+i故選D【點(diǎn)睛】本題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,屬于基礎(chǔ)題。8、B【解析】
將三視圖還原成幾何體,然后分別求出各個(gè)面的面積,得到答案.【詳解】由三視圖可得,該幾何體的直觀圖如圖所示,延長交于點(diǎn),其中,,,所以表面積.故選B項(xiàng).【點(diǎn)睛】本題考查三視圖還原幾何體,求組合體的表面積,屬于中檔題9、A【解析】
利用等差的求和公式和等差數(shù)列的性質(zhì)即可求得.【詳解】.故選:.【點(diǎn)睛】本題考查等差數(shù)列的求和公式和等差數(shù)列的性質(zhì),考查基本量的計(jì)算,難度容易.10、A【解析】
根據(jù)偶次根式被開方數(shù)非負(fù)可得出關(guān)于的不等式,即可解得函數(shù)的定義域.【詳解】由題意可得,解得或.因此,函數(shù)的定義域?yàn)榛?故選:A.【點(diǎn)睛】本題考查具體函數(shù)定義域的求解,考查計(jì)算能力,屬于基礎(chǔ)題.11、B【解析】
由平分,根據(jù)三角形內(nèi)角平分線定理可得,再根據(jù)平面向量的加減法運(yùn)算即得答案.【詳解】平分,根據(jù)三角形內(nèi)角平分線定理可得,又,,,,..故選:.【點(diǎn)睛】本題主要考查平面向量的線性運(yùn)算,屬于基礎(chǔ)題.12、C【解析】
命題為全稱命題,它的否定為特稱命題,將全稱量詞改為存在量詞,并將結(jié)論否定,可知命題的否定為,故選C.二、填空題:本題共4小題,每小題5分,共20分。13、5【解析】
由,,且,得,解得,則,則.14、2【解析】
首先求出的展開項(xiàng)中的系數(shù),然后根據(jù)系數(shù)為即可求出的取值.【詳解】由題知,當(dāng)時(shí)有,解得.故答案為:.【點(diǎn)睛】本題主要考查了二項(xiàng)式展開項(xiàng)的系數(shù),屬于簡(jiǎn)單題.15、56【解析】
根據(jù)已知條件求等比數(shù)列的首項(xiàng)和公比,再代入等比數(shù)列的通項(xiàng)公式,即可得到答案.【詳解】,,.故答案為:.【點(diǎn)睛】本題考查等比數(shù)列的通項(xiàng)公式和前項(xiàng)和公式,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力、運(yùn)算求解能力.16、【解析】
以為原點(diǎn),為軸,為軸,過作平面的垂線為軸建立空間直角坐標(biāo)系,設(shè)點(diǎn),根據(jù)題中條件得出,進(jìn)而可求出的最大值,由此能求出三棱錐體積的最大值.【詳解】以為原點(diǎn),為軸,為軸,過作平面的垂線為軸建立空間直角坐標(biāo)系,則,,,設(shè)點(diǎn),空間中的動(dòng)點(diǎn)滿足,,所以,整理得,,當(dāng),時(shí),取最大值,所以,三棱錐的體積為.因此,三棱錐體積的最大值為.故答案為:.【點(diǎn)睛】本題考查三棱錐體積的最大值的求法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】
(1)分類討論去絕對(duì)值號(hào),然后解不等式即可.(2)因?yàn)閷?duì)任意,都存在,使得不等式成立,等價(jià)于,根據(jù)絕對(duì)值不等式易求,根據(jù)二次函數(shù)易求,然后解不等式即可.【詳解】解:(1)當(dāng)時(shí),,則當(dāng)時(shí),由得,,解得;當(dāng)時(shí),恒成立;當(dāng)時(shí),由得,,解得.所以的解集為(2)對(duì)任意,都存在,得成立,等價(jià)于.因?yàn)?,所以,且|,①當(dāng)時(shí),①式等號(hào)成立,即.又因?yàn)?,②?dāng)時(shí),②式等號(hào)成立,即.所以,即即的取值范圍為:.【點(diǎn)睛】知識(shí):考查含兩個(gè)絕對(duì)值號(hào)的不等式的解法;恒成立問題和存在性問題求參變數(shù)的范圍問題;能力:分析問題和解決問題的能力以及運(yùn)算求解能力;中檔題.18、(1)見解析(2)平面.見解析【解析】
(1)要證平面,只需證明,,即可求得答案;(2)連接交于點(diǎn),連接,根據(jù)已知條件求證,即可判斷與平面的位置關(guān)系,進(jìn)而求得答案.【詳解】(1),為邊的中點(diǎn),,平面平面,平面平面,平面,平面,,在內(nèi),,為所在邊的中點(diǎn),,又,,平面.(2)判斷可知,平面,證明如下:連接交于點(diǎn),連接.、、分別為邊、、的中點(diǎn),.又是的重心,,,平面,平面,平面.【點(diǎn)睛】本題主要考查了求證線面垂直和線面平行,解題關(guān)鍵是掌握線面垂直判定定理和線面平行判斷定理,考查了分析能力和空間想象能力,屬于中檔題.19、(Ⅰ)或.(Ⅱ)【解析】
(Ⅰ)分類討論解絕對(duì)值不等式得到答案.(Ⅱ)討論和兩種情況,得到函數(shù)單調(diào)性,得到只需,代入計(jì)算得到答案.【詳解】(Ⅰ)當(dāng)時(shí),不等式為,變形為或或,解集為或.(Ⅱ)當(dāng)時(shí),,由此可知在單調(diào)遞減,在單調(diào)遞增,當(dāng)時(shí),同樣得到在單調(diào)遞減,在單調(diào)遞增,所以,存在滿足不等式,只需,即,解得.【點(diǎn)睛】本題考查了解絕對(duì)值不等式,不等式存在性問題,意在考查學(xué)生的計(jì)算能力和綜合應(yīng)用能力.20、(1)證明見解析(2)【解析】
(1)由題意可證得,,所以平面,則平面平面可證;(2)解法一:利用等體積法由可求出點(diǎn)到平面的距離;解法二:由條件知點(diǎn)到平面的距離等于點(diǎn)到平面的距離,過點(diǎn)作的垂線,垂足,證明平面,計(jì)算出即可.【詳解】解法一:(1)依題意知,因?yàn)椋?又平面平面,平面平面,平面,所以平面.又平面,所以.由已知,是等邊三角形,且為的中點(diǎn),所以.因?yàn)椋?又,所以平面.又平面,所以平面平面.(2)在中,,,所以.由(1)知,平面,且,所以三棱錐的體積.在中,,,得,由(1)知,平面,所以,所以,設(shè)點(diǎn)到平面的距離,則三棱錐的體積,得.解法二:(1)同解法一;(2)因?yàn)椋矫?,平面,所以平?所以點(diǎn)到平面的距離等于點(diǎn)到平面的距離.過點(diǎn)作的垂線,垂足,即.由(1)知,平面平面,平面平面,平面,所以平面,即為點(diǎn)到平面的距離.由(1)知,,在中,,,得.又,所以.所以點(diǎn)到平面的距離為.【點(diǎn)睛】本題主要考查空間面面垂直的的判定及點(diǎn)到面的距離,考查學(xué)生的空間想象能力、推理論證能力、運(yùn)算求解能力.求點(diǎn)到平面的距離一般可采用兩種方法求解:①等體積法;②作(找)出點(diǎn)到平面的垂線段,進(jìn)行計(jì)算即可.21、(1)2;(2).【解析】
(1)化簡(jiǎn)得,所以,展開后利用基本不等式求最小值即可;(2)由(1),原不等式可轉(zhuǎn)化為,討論去絕對(duì)值即可求得的取值范圍.【詳解】(1)∵,,∴,∴.∴.當(dāng)且僅當(dāng)且即時(shí),.(2)由(1)知,,對(duì)任意,都有,∴,即.①當(dāng)時(shí),有,解得;②當(dāng),時(shí),有,解得;③當(dāng)時(shí),有,解得;綜上,,∴實(shí)數(shù)的取值范圍是.【點(diǎn)睛】本題主要考查基本不等式的運(yùn)用和求解含絕對(duì)值的不等式,考
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 生物技術(shù)藥物研發(fā)合同
- 私人訂制戶外探險(xiǎn)活動(dòng)服務(wù)協(xié)議
- 智能家居系統(tǒng)與節(jié)能照明合作協(xié)議
- 數(shù)據(jù)挖掘技術(shù)在企業(yè)決策支持系統(tǒng)中的應(yīng)用合作協(xié)議
- 精密電子元器件采購合同
- 離婚標(biāo)準(zhǔn)協(xié)議書車輛分配
- 裝修公司合同保密協(xié)議
- 信用社借款展期合同協(xié)議書
- 教育培訓(xùn)合作項(xiàng)目實(shí)施協(xié)議
- 建筑施工臨時(shí)承包合同
- 新部編版小學(xué)六年級(jí)下冊(cè)語文第二單元測(cè)試卷及答案
- 2025年廣東省深圳法院招聘書記員招聘144人歷年高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025年人教版新教材數(shù)學(xué)一年級(jí)下冊(cè)教學(xué)計(jì)劃(含進(jìn)度表)
- GB/T 45107-2024表土剝離及其再利用技術(shù)要求
- 2025年春西師版一年級(jí)下冊(cè)數(shù)學(xué)教學(xué)計(jì)劃
- 企業(yè)員工退休管理規(guī)章制度(3篇)
- 小學(xué)生情緒調(diào)適課件
- 2025年華潤電力招聘筆試參考題庫含答案解析
- 2025蛇年中小學(xué)春節(jié)寒假安全教育課件模板
- 康復(fù)護(hù)士講課課件
- 一年級(jí)家長會(huì)課件2024-2025學(xué)年
評(píng)論
0/150
提交評(píng)論