黑龍江省哈爾濱市巴彥縣重點(diǎn)名校2024屆中考四模數(shù)學(xué)試題含解析_第1頁
黑龍江省哈爾濱市巴彥縣重點(diǎn)名校2024屆中考四模數(shù)學(xué)試題含解析_第2頁
黑龍江省哈爾濱市巴彥縣重點(diǎn)名校2024屆中考四模數(shù)學(xué)試題含解析_第3頁
黑龍江省哈爾濱市巴彥縣重點(diǎn)名校2024屆中考四模數(shù)學(xué)試題含解析_第4頁
黑龍江省哈爾濱市巴彥縣重點(diǎn)名校2024屆中考四模數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

黑龍江省哈爾濱市巴彥縣重點(diǎn)名校2024屆中考四模數(shù)學(xué)試題注意事項(xiàng)1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.足球運(yùn)動員將足球沿與地面成一定角度的方向踢出,足球飛行的路線是一條拋物線.不考慮空氣阻力,足球距離地面的高度h(單位:m)與足球被踢出后經(jīng)過的時間t(單位:s)之間的關(guān)系如下表:t01234567…h(huán)08141820201814…下列結(jié)論:①足球距離地面的最大高度為20m;②足球飛行路線的對稱軸是直線;③足球被踢出9s時落地;④足球被踢出1.5s時,距離地面的高度是11m.其中正確結(jié)論的個數(shù)是()A.1 B.2 C.3 D.42.在平面直角坐標(biāo)系中,將點(diǎn)P(4,﹣3)繞原點(diǎn)旋轉(zhuǎn)90°得到P1,則P1的坐標(biāo)為()A.(﹣3,﹣4)或(3,4) B.(﹣4,﹣3)C.(﹣4,﹣3)或(4,3) D.(﹣3,﹣4)3.如圖,中,,且,設(shè)直線截此三角形所得陰影部分的面積為S,則S與t之間的函數(shù)關(guān)系的圖象為下列選項(xiàng)中的A. B. C. D.4.如圖是某個幾何體的三視圖,該幾何體是()A.三棱柱 B.三棱錐 C.圓柱 D.圓錐5.如圖,下列各三角形中的三個數(shù)之間均具有相同的規(guī)律,根據(jù)此規(guī)律,最后一個三角形中y與n之間的關(guān)系是()A.y=2n+1 B.y=2n+n C.y=2n+1+n D.y=2n+n+16.下列說法正確的是()A.﹣3是相反數(shù) B.3與﹣3互為相反數(shù)C.3與互為相反數(shù) D.3與﹣互為相反數(shù)7.函數(shù)與在同一坐標(biāo)系中的大致圖象是()A、B、C、D、8.如圖,在平行四邊形ABCD中,E是邊CD上一點(diǎn),將△ADE沿AE折疊至△AD′E處,AD′與CE交于點(diǎn)F,若∠B=52°,∠DAE=20°,則∠FED′的度數(shù)為()A.40° B.36° C.50° D.45°9.如圖,將含60°角的直角三角板ABC繞頂點(diǎn)A順時針旋轉(zhuǎn)45°度后得到△AB′C′,點(diǎn)B經(jīng)過的路徑為弧BB′,若∠BAC=60°,AC=1,則圖中陰影部分的面積是()A. B. C. D.π10.下列命題中假命題是()A.正六邊形的外角和等于 B.位似圖形必定相似C.樣本方差越大,數(shù)據(jù)波動越小 D.方程無實(shí)數(shù)根二、填空題(共7小題,每小題3分,滿分21分)11.如圖,矩形ABCD中,AB=1,BC=2,點(diǎn)P從點(diǎn)B出發(fā),沿B-C-D向終點(diǎn)D勻速運(yùn)動,設(shè)點(diǎn)P走過的路程為x,△ABP的面積為S,能正確反映S與x之間函數(shù)關(guān)系的圖象是()A. B. C. D.12.將一副三角尺如圖所示疊放在一起,則的值是.13.?dāng)?shù)據(jù):2,5,4,2,2的中位數(shù)是_____,眾數(shù)是_____,方差是_____.14..如圖,圓錐側(cè)面展開得到扇形,此扇形半徑CA=6,圓心角∠ACB=120°,則此圓錐高OC的長度是_______.15.如圖,在△ABC中,DE∥BC,,則=_____.16.如圖所示,直線y=x+b交x軸A點(diǎn),交y軸于B點(diǎn),交雙曲線于P點(diǎn),連OP,則OP2﹣OA2=__.17.拋物線y=x2+2x+m﹣1與x軸有交點(diǎn),則m的取值范圍是_____.三、解答題(共7小題,滿分69分)18.(10分)計算:(﹣2)3+(﹣3)×[(﹣4)2+2]﹣(﹣3)2÷(﹣2)19.(5分)如圖,某市郊外景區(qū)內(nèi)一條筆直的公路a經(jīng)過三個景點(diǎn)A、B、C,景區(qū)管委會又開發(fā)了風(fēng)景優(yōu)美的景點(diǎn)D,經(jīng)測量,景點(diǎn)D位于景點(diǎn)A的北偏東30′方向8km處,位于景點(diǎn)B的正北方向,還位于景點(diǎn)C的北偏西75°方向上,已知AB=5km.景區(qū)管委會準(zhǔn)備由景點(diǎn)D向公路a修建一條距離最短的公路,不考試其他因素,求出這條公路的長.(結(jié)果精確到0.1km).求景點(diǎn)C與景點(diǎn)D之間的距離.(結(jié)果精確到1km).20.(8分)為落實(shí)“綠水青山就是金山銀山”的發(fā)展理念,某市政部門招標(biāo)一工程隊(duì)負(fù)責(zé)在山腳下修建一座水庫的土方施工任務(wù).該工程隊(duì)有兩種型號的挖掘機(jī),已知3臺型和5臺型挖掘機(jī)同時施工一小時挖土165立方米;4臺型和7臺型挖掘機(jī)同時施工一小時挖土225立方米.每臺型挖掘機(jī)一小時的施工費(fèi)用為300元,每臺型挖掘機(jī)一小時的施工費(fèi)用為180元.分別求每臺型,型挖掘機(jī)一小時挖土多少立方米?若不同數(shù)量的型和型挖掘機(jī)共12臺同時施工4小時,至少完成1080立方米的挖土量,且總費(fèi)用不超過12960元.問施工時有哪幾種調(diào)配方案,并指出哪種調(diào)配方案的施工費(fèi)用最低,最低費(fèi)用是多少元?21.(10分)計算:2sin30°﹣|1﹣|+()﹣122.(10分)如圖,已知△ABC內(nèi)接于,AB是直徑,OD∥AC,AD=OC.(1)求證:四邊形OCAD是平行四邊形;(2)填空:①當(dāng)∠B=時,四邊形OCAD是菱形;②當(dāng)∠B=時,AD與相切.23.(12分)某運(yùn)動品牌對第一季度A、B兩款運(yùn)動鞋的銷售情況進(jìn)行統(tǒng)計,兩款運(yùn)動鞋的銷售量及總銷售額如圖6所示.1月份B款運(yùn)動鞋的銷售量是A款的4524.(14分)為了了解學(xué)生關(guān)注熱點(diǎn)新聞的情況,“兩會”期間,小明對班級同學(xué)一周內(nèi)收看“兩會”新聞的次數(shù)情況作了調(diào)查,調(diào)查結(jié)果統(tǒng)計如圖所示(其中男生收看次的人數(shù)沒有標(biāo)出).根據(jù)上述信息,解答下列各題:×(1)該班級女生人數(shù)是__________,女生收看“兩會”新聞次數(shù)的中位數(shù)是________;(2)對于某個群體,我們把一周內(nèi)收看某熱點(diǎn)新聞次數(shù)不低于次的人數(shù)占其所在群體總?cè)藬?shù)的百分比叫做該群體對某熱點(diǎn)新聞的“關(guān)注指數(shù)”.如果該班級男生對“兩會”新聞的“關(guān)注指數(shù)”比女生低,試求該班級男生人數(shù);(3)為進(jìn)一步分析該班級男、女生收看“兩會”新聞次數(shù)的特點(diǎn),小明給出了男生的部分統(tǒng)計量(如表).統(tǒng)計量平均數(shù)(次)中位數(shù)(次)眾數(shù)(次)方差…該班級男生…根據(jù)你所學(xué)過的統(tǒng)計知識,適當(dāng)計算女生的有關(guān)統(tǒng)計量,進(jìn)而比較該班級男、女生收看“兩會”新聞次數(shù)的波動大小.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】試題解析:由題意,拋物線的解析式為y=ax(x﹣9),把(1,8)代入可得a=﹣1,∴y=﹣t2+9t=﹣(t﹣4.5)2+20.25,∴足球距離地面的最大高度為20.25m,故①錯誤,∴拋物線的對稱軸t=4.5,故②正確,∵t=9時,y=0,∴足球被踢出9s時落地,故③正確,∵t=1.5時,y=11.25,故④錯誤,∴正確的有②③,故選B.2、A【解析】

分順時針旋轉(zhuǎn),逆時針旋轉(zhuǎn)兩種情形求解即可.【詳解】解:如圖,分兩種情形旋轉(zhuǎn)可得P′(3,4),P″(?3,?4),故選A.【點(diǎn)睛】本題考查坐標(biāo)與圖形變換——旋轉(zhuǎn),解題的關(guān)鍵是利用空間想象能力.3、D【解析】

Rt△AOB中,AB⊥OB,且AB=OB=3,所以很容易求得∠AOB=∠A=45°;再由平行線的性質(zhì)得出∠OCD=∠A,即∠AOD=∠OCD=45°,進(jìn)而證明OD=CD=t;最后根據(jù)三角形的面積公式,解答出S與t之間的函數(shù)關(guān)系式,由函數(shù)解析式來選擇圖象.【詳解】解:∵Rt△AOB中,AB⊥OB,且AB=OB=3,∴∠AOB=∠A=45°,∵CD⊥OB,∴CD∥AB,∴∠OCD=∠A,∴∠AOD=∠OCD=45°,∴OD=CD=t,∴S△OCD=×OD×CD=t2(0≤t≤3),即S=t2(0≤t≤3).故S與t之間的函數(shù)關(guān)系的圖象應(yīng)為定義域?yàn)閇0,3],開口向上的二次函數(shù)圖象;故選D.【點(diǎn)睛】本題主要考查的是二次函數(shù)解析式的求法及二次函數(shù)的圖象特征,解答本題的關(guān)鍵是根據(jù)三角形的面積公式,解答出S與t之間的函數(shù)關(guān)系式,由函數(shù)解析式來選擇圖象.4、A【解析】試題分析:觀察可得,主視圖是三角形,俯視圖是兩個矩形,左視圖是矩形,所以這個幾何體是三棱柱,故選A.考點(diǎn):由三視圖判定幾何體.5、B【解析】

∵觀察可知:左邊三角形的數(shù)字規(guī)律為:1,2,…,n,右邊三角形的數(shù)字規(guī)律為:2,22,…,2下邊三角形的數(shù)字規(guī)律為:1+2,2+22,…,∴最后一個三角形中y與n之間的關(guān)系式是y=2n+n.故選B.【點(diǎn)睛】考點(diǎn):規(guī)律型:數(shù)字的變化類.6、B【解析】

符號不同,絕對值相等的兩個數(shù)互為相反數(shù),可據(jù)此來判斷各選項(xiàng)是否正確.【詳解】A、3和-3互為相反數(shù),錯誤;B、3與-3互為相反數(shù),正確;C、3與互為倒數(shù),錯誤;D、3與-互為負(fù)倒數(shù),錯誤;故選B.【點(diǎn)睛】此題考查相反數(shù)問題,正確理解相反數(shù)的定義是解答此題的關(guān)鍵.7、D.【解析】試題分析:根據(jù)一次函數(shù)和反比例函數(shù)的性質(zhì),分k>0和k<0兩種情況討論:當(dāng)k<0時,一次函數(shù)圖象過二、四、三象限,反比例函數(shù)中,-k>0,圖象分布在一、三象限;當(dāng)k>0時,一次函數(shù)過一、三、四象限,反比例函數(shù)中,-k<0,圖象分布在二、四象限.故選D.考點(diǎn):一次函數(shù)和反比例函數(shù)的圖象.8、B【解析】

由平行四邊形的性質(zhì)得出∠D=∠B=52°,由折疊的性質(zhì)得:∠D′=∠D=52°,∠EAD′=∠DAE=20°,由三角形的外角性質(zhì)求出∠AEF=72°,與三角形內(nèi)角和定理求出∠AED′=108°,即可得出∠FED′的大?。驹斀狻俊咚倪呅蜛BCD是平行四邊形,∴∠D=∠B=52°,由折疊的性質(zhì)得:∠D′=∠D=52°,∠EAD′=∠DAE=20°,∴∠AEF=∠D+∠DAE=52°+20°=72°,∠AED′=180°﹣∠EAD′﹣∠D′=108°,∴∠FED′=108°﹣72°=36°.故選B.【點(diǎn)睛】本題考查了平行四邊形的性質(zhì)、折疊的性質(zhì)、三角形的外角性質(zhì)以及三角形內(nèi)角和定理;熟練掌握平行四邊形的性質(zhì)和折疊的性質(zhì),求出∠AEF和∠AED′是解決問題的關(guān)鍵.9、A【解析】試題解析:如圖,∵在Rt△ABC中,∠ACB=90°,∠BAC=60°,AC=1,∴BC=ACtan60°=1×=,AB=2∴S△ABC=AC?BC=.根據(jù)旋轉(zhuǎn)的性質(zhì)知△ABC≌△AB′C′,則S△ABC=S△AB′C′,AB=AB′.∴S陰影=S扇形ABB′+S△AB′C′-S△ABC==.故選A.考點(diǎn):1.扇形面積的計算;2.旋轉(zhuǎn)的性質(zhì).10、C【解析】試題解析:A、正六邊形的外角和等于360°,是真命題;B、位似圖形必定相似,是真命題;C、樣本方差越大,數(shù)據(jù)波動越小,是假命題;D、方程x2+x+1=0無實(shí)數(shù)根,是真命題;故選:C.考點(diǎn):命題與定理.二、填空題(共7小題,每小題3分,滿分21分)11、C【解析】

分出情況當(dāng)P點(diǎn)在BC上運(yùn)動,與P點(diǎn)在CD上運(yùn)動,得到關(guān)系,選出圖象即可【詳解】由題意可知,P從B開始出發(fā),沿B—C—D向終點(diǎn)D勻速運(yùn)動,則當(dāng)0<x≤2,s=x當(dāng)2<x≤3,s=1所以剛開始的時候?yàn)檎壤瘮?shù)s=x圖像,后面為水平直線,故選C【點(diǎn)睛】本題主要考查實(shí)際問題與函數(shù)圖像,關(guān)鍵在于讀懂題意,弄清楚P的運(yùn)動狀態(tài)12、【解析】試題分析:∵∠BAC=∠ACD=90°,∴AB∥CD.∴△ABE∽△DCE.∴.∵在Rt△ACB中∠B=45°,∴AB=AC.∵在RtACD中,∠D=30°,∴.∴.13、221.1.【解析】

先將這組數(shù)據(jù)從小到大排列,再找出最中間的數(shù),即可得出中位數(shù);找出這組數(shù)據(jù)中最多的數(shù)則是眾數(shù);先求出這組數(shù)據(jù)的平均數(shù),再根據(jù)方差公式S2=[(x1-)2+(x2-)2+…+(xn-)2]進(jìn)行計算即可.【詳解】解:把這組數(shù)據(jù)從小到大排列為:2,2,2,4,5,最中間的數(shù)是2,則中位數(shù)是2;眾數(shù)為2;∵這組數(shù)據(jù)的平均數(shù)是(2+2+2+4+5)÷5=3,∴方差是:[(2?3)2+(2?3)2+(2?3)2+(4?3)2+(5?3)2]=1.1.故答案為2,2,1.1.【點(diǎn)睛】本題考查了中位數(shù)、眾數(shù)與方差的定義,解題的關(guān)鍵是熟練的掌握中位數(shù)、眾數(shù)與方差的定義.14、4【解析】

先根據(jù)圓錐的側(cè)面展開圖,扇形的弧長等于該圓錐的底面圓的周長,求出OA,最后用勾股定理即可得出結(jié)論.【詳解】設(shè)圓錐底面圓的半徑為r,∵AC=6,∠ACB=120°,∴=2πr,∴r=2,即:OA=2,在Rt△AOC中,OA=2,AC=6,根據(jù)勾股定理得,OC==4,故答案為4.【點(diǎn)睛】本題考查了扇形的弧長公式,圓錐的側(cè)面展開圖,勾股定理,求出OA的長是解本題的關(guān)鍵.15、【解析】

先利用平行條件證明三角形的相似,再利用相似三角形面積比等于相似比的平方,即可解題.【詳解】解:∵DE∥BC,,∴,由平行條件易證△ADE△ABC,∴S△ADE:S△ABC=1:9,∴=.【點(diǎn)睛】本題考查了相似三角形的判定和性質(zhì),中等難度,熟記相似三角形的面積比等于相似比的平方是解題關(guān)鍵.16、1【解析】解:∵直線y=x+b與雙曲線(x>0)交于點(diǎn)P,設(shè)P點(diǎn)的坐標(biāo)(x,y),∴x﹣y=﹣b,xy=8,而直線y=x+b與x軸交于A點(diǎn),∴OA=b.又∵OP2=x2+y2,OA2=b2,∴OP2﹣OA2=x2+y2﹣b2=(x﹣y)2+2xy﹣b2=1.故答案為1.17、m≤1.【解析】

由拋物線與x軸有交點(diǎn)可得出方程x1+1x+m-1=0有解,利用根的判別式△≥0,即可得出關(guān)于m的一元一次不等式,解之即可得出結(jié)論.【詳解】∴關(guān)于x的一元二次方程x1+1x+m?1=0有解,∴△=11?4(m?1)=8?4m≥0,解得:m≤1.故答案為:m≤1.【點(diǎn)睛】本題考查的知識點(diǎn)是拋物線與坐標(biāo)軸的交點(diǎn),解題的關(guān)鍵是熟練的掌握拋物線與坐標(biāo)軸的交點(diǎn).三、解答題(共7小題,滿分69分)18、-17.1【解析】

按照有理數(shù)混合運(yùn)算的順序,先乘方后乘除最后算加減,有括號的先算括號里面的.【詳解】解:原式=﹣8+(﹣3)×18﹣9÷(﹣2),=﹣8﹣14﹣9÷(﹣2),=﹣62+4.1,=﹣17.1.【點(diǎn)睛】此題要注意正確掌握運(yùn)算順序以及符號的處理.19、(1)景點(diǎn)D向公路a修建的這條公路的長約是3.1km;(2)景點(diǎn)C與景點(diǎn)D之間的距離約為4km.【解析】

解:(1)如圖,過點(diǎn)D作DE⊥AC于點(diǎn)E,過點(diǎn)A作AF⊥DB,交DB的延長線于點(diǎn)F,在Rt△DAF中,∠ADF=30°,∴AF=AD=×8=4,∴DF=,在Rt△ABF中BF==3,∴BD=DF﹣BF=4﹣3,sin∠ABF=,在Rt△DBE中,sin∠DBE=,∵∠ABF=∠DBE,∴sin∠DBE=,∴DE=BD?sin∠DBE=×(4﹣3)=≈3.1(km),∴景點(diǎn)D向公路a修建的這條公路的長約是3.1km;(2)由題意可知∠CDB=75°,由(1)可知sin∠DBE==0.8,所以∠DBE=53°,∴∠DCB=180°﹣75°﹣53°=52°,在Rt△DCE中,sin∠DCE=,∴DC=≈4(km),∴景點(diǎn)C與景點(diǎn)D之間的距離約為4km.20、(1)每臺型挖掘機(jī)一小時挖土30立方米,每臺型挖據(jù)機(jī)一小時挖土15立方米;(2)共有三種調(diào)配方案.方案一:型挖據(jù)機(jī)7臺,型挖掘機(jī)5臺;方案二:型挖掘機(jī)8臺,型挖掘機(jī)4臺;方案三:型挖掘機(jī)9臺,型挖掘機(jī)3臺.當(dāng)A型挖掘機(jī)7臺,型挖掘機(jī)5臺的施工費(fèi)用最低,最低費(fèi)用為12000元.【解析】分析:(1)根據(jù)題意列出方程組即可;(2)利用總費(fèi)用不超過12960元求出方案數(shù)量,再利用一次函數(shù)增減性求出最低費(fèi)用.詳解:(1)設(shè)每臺型,型挖掘機(jī)一小時分別挖土立方米和立方米,根據(jù)題意,得解得所以,每臺型挖掘機(jī)一小時挖土30立方米,每臺型挖據(jù)機(jī)一小時挖土15立方米.(2)設(shè)型挖掘機(jī)有臺,總費(fèi)用為元,則型挖據(jù)機(jī)有臺.根據(jù)題意,得,因?yàn)?,解得,又因?yàn)?解得,所以.所以,共有三種調(diào)配方案.方案一:當(dāng)時,,即型挖據(jù)機(jī)7臺,型挖掘機(jī)5臺;方案二:當(dāng)時,,即型挖掘機(jī)8臺,型挖掘機(jī)4臺;方案三:當(dāng)時,,即型挖掘機(jī)9臺,型挖掘機(jī)3臺.,由一次函數(shù)的性質(zhì)可知,隨的減小而減小,當(dāng)時,,此時型挖掘機(jī)7臺,型挖掘機(jī)5臺的施工費(fèi)用最低,最低費(fèi)用為12000元.點(diǎn)睛:本題考查了二元一次方程組和一次函數(shù)增減性,解答時先根據(jù)題意確定自變量取值范圍,再應(yīng)用一次函數(shù)性質(zhì)解答問題.21、4﹣【解析】

原式利用絕對值的代數(shù)意義,特殊角的三角函數(shù)值,負(fù)整數(shù)指數(shù)冪的法則計算即可.【詳解】原式=2×﹣(﹣1)+2=1﹣+1+2=4﹣.【點(diǎn)睛】本題考查了實(shí)數(shù)的運(yùn)算,熟練掌握運(yùn)算法則是解本題的關(guān)鍵.22、(1)證明見解析;(2)①30°,②45°【解析】試題分析:(1)根據(jù)已知條件求得∠OAC=∠OCA,∠AOD=∠ADO,然后根據(jù)三角形內(nèi)角和定理得出∠AOC=∠OAD,從而證得OC∥AD,即可證得結(jié)論;

(2)①若四邊形OCAD是菱形,則OC=AC,從而證得OC=OA=AC,得出∠即可求得

②AD與相切,根據(jù)切線的性質(zhì)得出根據(jù)AD∥OC,內(nèi)錯角相等得出從而求得試題解析:(方法不唯一)(1)∵OA=OC,AD=OC,∴OA=AD,∴∠OAC=∠OCA,∠AOD=∠ADO,∵OD∥AC,∴∠OAC=∠AOD,∴∠OAC=∠OCA=∠AOD=∠ADO,∴∠AOC=∠OAD,∴OC∥AD

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論