2025屆黔東南市重點中學數(shù)學九上期末教學質(zhì)量檢測模擬試題含解析_第1頁
2025屆黔東南市重點中學數(shù)學九上期末教學質(zhì)量檢測模擬試題含解析_第2頁
2025屆黔東南市重點中學數(shù)學九上期末教學質(zhì)量檢測模擬試題含解析_第3頁
2025屆黔東南市重點中學數(shù)學九上期末教學質(zhì)量檢測模擬試題含解析_第4頁
2025屆黔東南市重點中學數(shù)學九上期末教學質(zhì)量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2025屆黔東南市重點中學數(shù)學九上期末教學質(zhì)量檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.方程的解是()A. B. C., D.,2.如圖,在平行四邊形ABCD中,F(xiàn)是邊AD上的一點,射線CF和BA的延長線交于點E,如果,那么的值是()A. B. C. D.3.如圖,反比例函數(shù)的圖象上有一點A,AB平行于x軸交y軸于點B,△ABO的面積是1,則反比例函數(shù)的表達式是()A. B. C. D.4.若,且,則的值是()A.4 B.2 C.20 D.145.在平面直角坐標系xoy中,△OAB各頂點的坐標分別為:O(0,0),A(1,2),B(3,0),以原點O為位似中心,相似比為2,將△OAB放大,若B點的對應點B′的坐標為(﹣6,0),則A點的對應點A′坐標為()A.(﹣2,﹣4) B.(﹣4,﹣2) C.(﹣1,﹣4) D.(1,﹣4)6.設,,是拋物線上的三點,則,,的大小關系為()A. B. C. D.7.下列四個點,在反比例函數(shù)y=圖象上的是(

)A.(1,-6) B.(2,4) C.(3,-2) D.(-6,-1)8.某商品先漲價后降價,銷售單價由原來元最后調(diào)整到元,漲價和降價的百分率都為.根據(jù)題意可列方程為()A. B.C. D.9.如圖,PA、PB都是⊙O的切線,切點分別為A、B.四邊形ACBD內(nèi)接于⊙O,連接OP則下列結論中錯誤的是()A.PA=PB B.∠APB+2∠ACB=180°C.OP⊥AB D.∠ADB=2∠APB10.已知⊙O的半徑為5,若PO=4,則點P與⊙O的位置關系是()A.點P在⊙O內(nèi) B.點P在⊙O上 C.點P在⊙O外 D.無法判斷二、填空題(每小題3分,共24分)11.已知四條線段a、2、6、a+1成比例,則a的值為_____.12.已知關于的一元二次方程的兩個實數(shù)根分別是x=-2,x=4,則的值為________.13.因式分解:______.14.在一個不透明的盒子里有2個紅球和個白球,這些求除顏色外其余完全相同,搖勻后隨機摸出一個,摸出紅球的概率是,則的值為__________.15.若拋物線與軸的交點為與,則拋物線的對稱軸為直線___________.16.如圖,個全等的等腰三角形的底邊在同一條直線上,底角頂點依次重合.連接第一個三角形的底角頂點和第個三角形的頂角頂點交于點,則_________.17.一個盒子中裝有個紅球,個白球和個藍球,這些球除了顏色外都相同,從中隨機摸出兩個球,能配成紫色的概率為_____.18.如圖,在Rt△ABC中,∠C=90°,∠ABC=30°,AC=2,將Rt△ABC繞點A逆時針旋轉(zhuǎn)60°得到△ADE,則BC邊掃過圖形的面積為_____.三、解答題(共66分)19.(10分)如圖,在Rt△ABC中,∠C=90°,點D是AC邊上一點,DE⊥AB于點E.(1)求證:△ABC∽△ADE;(2)如果AC=8,BC=6,CD=3,求AE的長.20.(6分)若邊長為6的正方形ABCD繞點A順時針旋轉(zhuǎn),得正方形AB′C′D′,記旋轉(zhuǎn)角為a.(I)如圖1,當a=60°時,求點C經(jīng)過的弧的長度和線段AC掃過的扇形面積;(Ⅱ)如圖2,當a=45°時,BC與D′C′的交點為E,求線段D′E的長度;(Ⅲ)如圖3,在旋轉(zhuǎn)過程中,若F為線段CB′的中點,求線段DF長度的取值范圍.21.(6分)2019年12月17日,我國第一艘國產(chǎn)航母“山東艦”在海南三亞交付海軍.如圖,“山東艦”在一次試水測試中,航行至處,觀測指揮塔位于南偏西方向,在沿正南方向以30海里/小時的速度勻速航行2小時后,到達處,再觀測指揮塔位于南偏西方向,若繼續(xù)向南航行.求“山東艦”與指揮塔之間的最近距離為多少海里?(結果保留根號)22.(8分)三臺縣教育和體育局為幫助萬福村李大爺“精準脫貧”,在網(wǎng)上銷售李大爺自己手工做的竹簾,其成本為每張40元,當售價為每張80元時,每月可銷售100張.為了吸引更多顧客,采取降價措施.據(jù)市場調(diào)查反映:銷售單價每降1元,則每月可多銷售5張.設每張竹簾的售價為元(為正整數(shù)),每月的銷售量為張.(1)直接寫出與的函數(shù)關系式;(2)設該網(wǎng)店每月獲得的利潤為元,當銷售單價降低多少元時,每月獲得的利潤最大,最大利潤是多少?(3)李大爺深感扶貧政策給自己帶來的好處,為了回報社會,他決定每月從利潤中捐出200元資助貧困學生.為了保證捐款后每月利潤不低于4220元,求銷售單價應該定在什么范圍內(nèi)?23.(8分)如圖,已知直線l切⊙O于點A,B為⊙O上一點,過點B作BC⊥l,垂足為點C,連接AB、OB.(1)求證:∠ABC=∠ABO;(2)若AB=,AC=1,求⊙O的半徑.24.(8分)如圖,四邊形ABCD為圓內(nèi)接四邊形,對角線AC、BD交于點E,延長DA、CB交于點F.(1)求證:△FBD∽△FAC;(2)如果BD平分∠ADC,BD=5,BC=2,求DE的長;(3)如果∠CAD=60°,DC=DE,求證:AE=AF.25.(10分)一位同學想利用樹影測量樹高,他在某一時間測得長為1m的竹竿影長0.8m,但當他馬上測量樹影時,因樹靠近一幢建筑物,影子不完全落在地面上,有一部分影子在墻上,如圖所示,他先測得留在墻上的影高為1.2m,又測得地面部分的影長為5m,測算一下這棵樹的高時多少?26.(10分)如圖,菱形ABCD的頂點A,D在直線l上,∠BAD=60°,以點A為旋轉(zhuǎn)中心將菱形ABCD順時針旋轉(zhuǎn)α(0°<α<30°),得到菱形AB′C′D′,B′C′交對角線AC于點M,C′D′交直線l于點N,連接MN,當MN∥B′D′時,解答下列問題:(1)求證:△AB′M≌△AD′N;(2)求α的大小.

參考答案一、選擇題(每小題3分,共30分)1、C【分析】先把從方程的右邊移到左邊,并把兩邊都除以4化簡,然后用因式分解法求解即可.【詳解】∵,∴,∴,∴,∴,.故選C.【點睛】本題考查了一元二次方程的解法,常用的方法有直接開平方法、配方法、因式分解法、求根公式法,靈活選擇合適的方法是解答本題的關鍵.2、D【解析】分析:根據(jù)相似三角形的性質(zhì)進行解答即可.詳解:∵在平行四邊形ABCD中,∴AE∥CD,∴△EAF∽△CDF,∵∴∴∵AF∥BC,∴△EAF∽△EBC,∴故選D.點睛:考查相似三角形的性質(zhì):相似三角形的面積比等于相似比的平方.3、C【分析】如圖,過點A作AC⊥x軸于點C,構建矩形ABOC,根據(jù)反比例函數(shù)系數(shù)k的幾何意義知|k|=四邊形ABOC的面積.【詳解】如圖,過點A作AC⊥x軸于點C.則四邊形ABOC是矩形,∴S=S=1,∴|k|=S=S+S=2,∴k=2或k=?2.又∵函數(shù)圖象位于第一象限,∴k>0,∴k=2.則反比函數(shù)解析式為.故選C.【點睛】此題考查反比例函數(shù)系數(shù)k的幾何意義,解題關鍵在于掌握反比例函數(shù)的性質(zhì).4、A【分析】根據(jù),且,得到,即可求解.【詳解】解:∵,∴,∵,∴,∴,故選:A.【點睛】本題考查比例的性質(zhì),掌握比例的性質(zhì)是解題的關鍵.5、A【分析】根據(jù)相似比為2,B′的坐標為(﹣6,0),判斷A′在第三象限即可解題.【詳解】解:由題可知OA′:OA=2:1,∵B′的坐標為(﹣6,0),∴A′在第三象限,∴A′(﹣2,﹣4),故選A.【點睛】本題考查了圖形的位似,屬于簡單題,確定A′的象限是解題關鍵.6、A【分析】根據(jù)二次函數(shù)的性質(zhì)得到拋物線y=-(x+1)2+k(k為常數(shù))的開口向下,對稱軸為直線x=﹣1,然后根據(jù)三個點離對稱軸的遠近判斷函數(shù)值的大小.【詳解】解:∵拋物線y=-(x+1)2+k(k為常數(shù))的開口向下,對稱軸為直線x=﹣1,而A(2,y1)離直線x=﹣1的距離最遠,C(﹣2,y3)點離直線x=1最近,∴.故選A.【點睛】本題考查了二次函數(shù)圖象上點的坐標特征:二次函數(shù)圖象上點的坐標滿足其解析式.也考查了二次函數(shù)的性質(zhì).7、D【解析】由可得xy=6,故選D.8、A【分析】漲價和降價的百分率都為,根據(jù)增長率的定義即可列出方程.【詳解】漲價和降價的百分率都為.根據(jù)題意可列方程故選A.【點睛】此題主要考查一元二次方程的應用,解題的關鍵是根據(jù)題意找到數(shù)量關系列出方程.9、D【分析】連接,,根據(jù)PA、PB都是⊙O的切線,切點分別為A、B,得到,,所以A,C正確;根據(jù)得到,即,所以B正確;據(jù)此可得答案.【詳解】解:如圖示,連接,,、是的切線,,,所以A,C正確;又∵,,∴在四邊形APBO中,,即,所以B正確;∵D為任意一點,無法證明,故D不正確;故選:D.【點睛】本題考查了圓心角和圓周角,圓的切線的性質(zhì)和切線長定理,熟悉相關性質(zhì)是解題的關鍵.10、A【分析】已知圓O的半徑為r,點P到圓心O的距離是d,①當r>d時,點P在⊙O內(nèi),②當r=d時,點P在⊙O上,③當r<d時,點P在⊙O外,根據(jù)以上內(nèi)容判斷即可.【詳解】∵⊙O的半徑為5,若PO=4,∴4<5,∴點P與⊙O的位置關系是點P在⊙O內(nèi),故選:A.【點睛】本題考查了點與圓的位置關系的應用,注意:已知圓O的半徑為r,點P到圓心O的距離是d,①當r>d時,點P在⊙O內(nèi),②當r=d時,點P在⊙O上,③當r<d時,點P在⊙O外.二、填空題(每小題3分,共24分)11、3【分析】由四條線段a、2、6、a+1成比例,根據(jù)成比例線段的定義,即可得=,即可求得a的值.【詳解】解:∵四條線段a、2、6、a+1成比例,∴=,∵a(a+1)=12,解得:a1=3,a2=-4(不符合題意,舍去).故答案為3.【點睛】本題考查了線段成比例的定義:若四條線段a,b,c,d成比例,則有a:b=c:d.12、-10【解析】根據(jù)根與系數(shù)的關系得出-2+4=-m,-2×4=n,求出即可.【詳解】∵關于x的一元二次方程的兩個實數(shù)根分別為x=-2,x=4,∴?2+4=?m,?2×4=n,解得:m=?2,n=?8,∴m+n=?10,故答案為:-10【點睛】此題考查根與系數(shù)的關系,掌握運算法則是解題關鍵13、【分析】先提取公因式,然后用平方差公式因式分解即可.【詳解】解:故答案為:.【點睛】此題考查的是因式分解,掌握提取公因式法和公式法的結合是解決此題的關鍵.14、1【分析】根據(jù)紅球的概率結合概率公式列出關于n的方程,求出n的值即可【詳解】解:∵摸到紅球的概率為∴解得n=1.

故答案為:1.【點睛】本題考查概率的求法與運用,根據(jù)概率公式求解即可:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結果,那么事件A的概率15、3【分析】函數(shù)的圖象與軸的交點的橫坐標就是方程的根,再根據(jù)兩根之和公式與對稱軸公式即可求解.【詳解】根據(jù)兩根之和公式可得,即則拋物線的對稱軸:故填:3.【點睛】本題考查二次函數(shù)與一元二次方程的關系和兩根之和公式與對稱軸公式,熟練掌握公式是關鍵.16、n【分析】連接A1An,根據(jù)全等三角形的性質(zhì)得到∠AB1B2=∠A2B2B3,根據(jù)平行線的判定得到A1B1∥A2B2,又根據(jù)A1B1=A2B2,得到四邊形A1B1B2A2是平行四邊形,從而得到A1A2∥B1B2,從而得出A1An∥B1B2,然后根據(jù)相似三角形的性質(zhì)即可得到結論.【詳解】解:連接A1An,根據(jù)全等三角形的性質(zhì)得到∠AB1B2=∠A2B2B3,∴A1B1∥A2B2,又A1B1=A2B2,∴四邊形A1B1B2A2是平行四邊形.∴A1A2∥B1B2,A1A2=B1B2=A2A3,同理可得,A2A3=A3A4=A4A5=…=An-1An.根據(jù)全等易知A1,A2,A3,…,An共線,∴A1An∥B1B2,∴PnB1B2∽△PnAnA1,,又A1Pn+PnB2=A1B2,∴.故答案為:n.【點睛】本題考查了相似三角形的判定和性質(zhì),全等三角形的性質(zhì),等腰三角形的性質(zhì),正確的識別圖形是解題的關鍵.17、【分析】首先根據(jù)題意列出表格,然后由表格即可求得所有等可能的結果與兩次摸到的球的顏色能配成紫色的情況,再利用概率公式即可求得答案.【詳解】解:列表得:∵共有種等可能的結果,兩次摸到的球的顏色能配成紫色的有種情況∴兩次摸到的求的顏色能配成紫色的概率為:.故答案是:【點睛】本題考查的是用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復不遺漏的列出所有可能的結果,列表法適合于兩步完成的事件,樹狀圖法適合兩步或兩步以上完成的事件.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.18、2π【分析】根據(jù)BC邊掃過圖形的面積是:S扇形DAB+S△ABC-S△ADE-S扇形ACE,分別求得:扇形BAD的面積、S△ABC以及扇形CAE的面積,即可求解.【詳解】∵∠C=90°,∠BAC=60°,AC=2,∴AB=4,扇形BAD的面積是:=,在直角△ABC中,BC=AB?sin60°=4×=2,AC=2,∴S△ABC=S△ADE=AC?BC=×2×2=2.扇形CAE的面積是:=,則陰影部分的面積是:S扇形DAB+S△ABC﹣S△ADE﹣S扇形ACE=﹣=2π.故答案為:2π.【點睛】本題考查了扇形的面積的計算,正確理解陰影部分的面積是:S扇形DAB+S△ABC-S△ADE-S扇形ACE是關鍵.三、解答題(共66分)19、(1)見解析;(2)2【分析】(1)由∠AED=∠C=90°以及∠A=∠A公共角,從而求證△ABC∽△ADE;(2)由△ABC∽△ADE,可知,代入條件求解即可.【詳解】(1)證明:∵DE⊥AB于點E,∴∠AED=∠C=90°.∵∠A=∠A,∴△ABC∽△ADE.(2)解:∵AC=8,BC=6,∴AB=1.∵△ABC∽△ADE,∴.∴AE=2.【點睛】本題考查相似三角形的綜合問題,解題的關鍵是熟練運用相似三角形的性質(zhì)與判定,本題屬于中等難度題型.20、(I)12π;(Ⅱ)D′E=6﹣6;(Ⅲ)1﹣1≤DF≤1+1.【分析】(Ⅰ)根據(jù)正方形的性質(zhì)得到AD=CD=6,∠D=90°,由勾股定理得到AC=6,根據(jù)弧長的計算公式和扇形的面積公式即可得到結論;(Ⅱ)連接BC′,根據(jù)題意得到B在對角線AC′上,根據(jù)勾股定理得到AC′==6,求得BC′=6﹣6,推出△BC′E是等腰直角三角形,得到C′E=BC′=12﹣6,于是得到結論;(Ⅲ)如圖1,連接DB,AC相交于點O,則O是DB的中點,根據(jù)三角形中位線定理得到FO=AB′=1,推出F在以O為圓心,1為半徑的圓上運動,于是得到結論.【詳解】解:(Ⅰ)∵四邊形ABCD是正方形,∴AD=CD=6,∠D=90°,∴AC=6,∵邊長為6的正方形ABCD繞點A順時針旋轉(zhuǎn),得正方形AB′C′D′,∴∠CAC′=60°,∴的長度==2π,線段AC掃過的扇形面積==12π;(Ⅱ)解:如圖2,連接BC′,∵旋轉(zhuǎn)角∠BAB′=45°,∠BAD′=45°,∴B在對角線AC′上,∵B′C′=AB′=6,在Rt△AB′C′中,AC′==6,∴BC′=6﹣6,∵∠C′BE=180°﹣∠ABC=90°,∠BC′E=90°﹣45°=45°,∴△BC′E是等腰直角三角形,∴C′E=BC′=12﹣6,∴D′E=C′D′﹣EC′=6﹣(12﹣6)=6﹣6;(Ⅲ)如圖1,連接DB,AC相交于點O,則O是DB的中點,∵F為線段BC′的中點,∴FO=AB′=1,∴F在以O為圓心,1為半徑的圓上運動,∵DO=1,∴DF最大值為1+1,DF的最小值為1﹣1,∴DF長的取值范圍為1﹣1≤DF≤1+1.【點睛】本題考查了旋轉(zhuǎn)的綜合題,正方形性質(zhì),全等三角形判定與性質(zhì),三角形中位線定理.(Ⅲ)問解題的關鍵是利用中位線定理得出點P的軌跡.21、【分析】過P作PH⊥MN于H,構建直角三角形,設PH=x海里,分別在兩個直角三角形△PHN和△PHM中利用正切函數(shù)表示出NH長和MH長,列方程求解.【詳解】過P作PH⊥MN,垂足為H,設PH=x海里,在Rt△PHN,tan∠PNH=,∴tan45°=,∴NH=,在Rt△PHM中,tan∠PMH=,∴tan30°=,∴MH=,∵MN=30×2=60海里,∴,∴.答:“山東艦”與指揮塔之間的最近距離為海里.【點睛】本題考查解直角三角形的應用,解答此題的關鍵是構建直角三角形,找準線段之間的關系,利用銳角三角函數(shù)進行解答.22、(1);(2)當降價10元時,每月獲得最大利潤為4500元;(3).【分析】(1)根據(jù)“銷售單價每降1元,則每月可多銷售5張”寫出與的函數(shù)關系式即可;(2)根據(jù)題意,利用利潤=每件的利潤×數(shù)量即可得出w關于x的表達式,再利用二次函數(shù)的性質(zhì)即可得到最大值;(3)先求出每月利潤為4220元時對應的兩個x值,再根據(jù)二次函數(shù)的圖象和性質(zhì)即可得出答案.【詳解】(1)由題意可得:整理得;(2)由題意,得:∵.∴有最大值即當時,∴應降價(元)答:當降價10元時,每月獲得最大利潤為4500元;(3)由題意,得:解之,得:,,∵拋物線開口向下,對稱軸為直線,∴.【點睛】本題主要考查二次函數(shù)的應用,掌握二次函數(shù)的圖象和性質(zhì)以及一元二次方程的解法是解題的關鍵.23、(1)詳見解析;(2)⊙O的半徑是.【分析】(1)連接OA,求出OA∥BC,根據(jù)平行線的性質(zhì)和等腰三角形的性質(zhì)得出∠OBA=∠OAB,∠OBA=∠ABC,即可得出答案;(2)根據(jù)矩形的性質(zhì)求出OD=AC=1,根據(jù)勾股定理求出BC,根據(jù)垂徑定理求出BD,再根據(jù)勾股定理求出OB即可.【詳解】(1)證明:連接OA,∵OB=OA,∴∠OBA=∠OAB,∵AC切⊙O于A,∴OA⊥AC,∵BC⊥AC,∴OA∥BC,∴∠OBA=∠ABC,∴∠ABC=∠ABO;(2)解:過O作OD⊥BC于D,∵OD⊥BC,BC⊥AC,OA⊥AC,∴∠ODC=∠DCA=∠OAC=90°,∴OD=AC=1,在Rt△ACB中,AB=,AC=1,由勾股定理得:BC==3,∵OD⊥BC,OD過O,∴BD=DC=BC==1.5,在Rt△ODB中,由勾股定理得:OB=,即⊙O的半徑是.【點睛】此題主要考查切線的性質(zhì)及判定,解題的關鍵熟知等腰三角形的性質(zhì)、垂徑定理及切線的性質(zhì).24、(1)見解析;(2);(3)見解析【分析】(1)可得出∠ADB=∠ACB,∠AFC=∠BFD,則結論得證;(2)證明△BEC∽△BCD,可得,可求出BE長,則DE可求出;(3)根據(jù)圓內(nèi)接四邊形的性質(zhì)和三角形的內(nèi)角和定理進行證明AB=AF;根據(jù)等腰三角形的判定與性質(zhì)和圓周角定理可證明AE=AB,則結論得出.【詳解】(1)證明:∵∠ADB=∠ACB,∠AFC=∠BFD,∴△FBD∽△FAC;(2)解:∵BD平分∠ADC,∴∠ADB=∠BDC,∵∠ADB=∠ACB,∴∠ACB=∠BDC,∵∠EBC=∠CBD,∴△BEC∽△BCD,∴,∴,∴BE=,∴DE=BD﹣BE=5﹣=;(3)證明:∵∠CAD=60°,∴∠CBD=60°,∠ACD=∠ABD,∵DC=DE,∴∠ACD=∠DEC,∵∠ABC+∠ADC=∠ABC+∠ABF=180°,∴∠FBD=180°,∴∠ABF=∠ADC=120°=120°﹣∠ACD=120°﹣∠DEC=120°﹣(60°+∠ADE)=60°﹣∠ADE,而∠F=60°﹣∠ACF,∵∠ACF=∠ADE,∴∠ABF=∠F,∴AB=AF.∵四邊形ABCD內(nèi)接于圓,∴∠ABD=∠ACD,又∵DE=DC,∴∠DCE=∠DEC=∠AEB,∴∠ABD=∠A

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論