![湖南省臨澧一中2022年數(shù)學(xué)高三第一學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第1頁](http://file4.renrendoc.com/view14/M08/29/24/wKhkGWaB-H2Ad7HeAAH4h2GvrxM405.jpg)
![湖南省臨澧一中2022年數(shù)學(xué)高三第一學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第2頁](http://file4.renrendoc.com/view14/M08/29/24/wKhkGWaB-H2Ad7HeAAH4h2GvrxM4052.jpg)
![湖南省臨澧一中2022年數(shù)學(xué)高三第一學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第3頁](http://file4.renrendoc.com/view14/M08/29/24/wKhkGWaB-H2Ad7HeAAH4h2GvrxM4053.jpg)
![湖南省臨澧一中2022年數(shù)學(xué)高三第一學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第4頁](http://file4.renrendoc.com/view14/M08/29/24/wKhkGWaB-H2Ad7HeAAH4h2GvrxM4054.jpg)
![湖南省臨澧一中2022年數(shù)學(xué)高三第一學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第5頁](http://file4.renrendoc.com/view14/M08/29/24/wKhkGWaB-H2Ad7HeAAH4h2GvrxM4055.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知,且,則()A. B. C. D.2.已知函數(shù),則的最小值為()A. B. C. D.3.若實(shí)數(shù)x,y滿足條件,目標(biāo)函數(shù),則z的最大值為()A. B.1 C.2 D.04.如圖所示,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是某幾何體的三視圖,其中左視圖中三角形為等腰直角三角形,則該幾何體外接球的體積是()A. B.C. D.5.音樂,是用聲音來展現(xiàn)美,給人以聽覺上的享受,熔鑄人們的美學(xué)趣味.著名數(shù)學(xué)家傅立葉研究了樂聲的本質(zhì),他證明了所有的樂聲都能用數(shù)學(xué)表達(dá)式來描述,它們是一些形如的簡單正弦函數(shù)的和,其中頻率最低的一項(xiàng)是基本音,其余的為泛音.由樂聲的數(shù)學(xué)表達(dá)式可知,所有泛音的頻率都是基本音頻率的整數(shù)倍,稱為基本音的諧波.下列函數(shù)中不能與函數(shù)構(gòu)成樂音的是()A. B. C. D.6.關(guān)于圓周率π,數(shù)學(xué)發(fā)展史上出現(xiàn)過許多很有創(chuàng)意的求法,如著名的浦豐實(shí)驗(yàn)和查理斯實(shí)驗(yàn).受其啟發(fā),我們也可以通過設(shè)計(jì)下面的實(shí)驗(yàn)來估計(jì)的值:先請全校名同學(xué)每人隨機(jī)寫下一個都小于的正實(shí)數(shù)對;再統(tǒng)計(jì)兩數(shù)能與構(gòu)成鈍角三角形三邊的數(shù)對的個數(shù);最后再根據(jù)統(tǒng)計(jì)數(shù)估計(jì)的值,那么可以估計(jì)的值約為()A. B. C. D.7.已知底面為正方形的四棱錐,其一條側(cè)棱垂直于底面,那么該四棱錐的三視圖可能是下列各圖中的()A. B. C. D.8.運(yùn)行如圖所示的程序框圖,若輸出的值為300,則判斷框中可以填()A. B. C. D.9.函數(shù)的圖象與軸交點(diǎn)的橫坐標(biāo)構(gòu)成一個公差為的等差數(shù)列,要得到函數(shù)的圖象,只需將的圖象()A.向左平移個單位 B.向右平移個單位C.向左平移個單位 D.向右平移個單位10.如圖,正方體的底面與正四面體的底面在同一平面上,且,若正方體的六個面所在的平面與直線相交的平面?zhèn)€數(shù)分別記為,則下列結(jié)論正確的是()A. B. C. D.11.雙曲線:(),左焦點(diǎn)到漸近線的距離為2,則雙曲線的漸近線方程為()A. B. C. D.12.如圖,圓錐底面半徑為,體積為,、是底面圓的兩條互相垂直的直徑,是母線的中點(diǎn),已知過與的平面與圓錐側(cè)面的交線是以為頂點(diǎn)的拋物線的一部分,則該拋物線的焦點(diǎn)到圓錐頂點(diǎn)的距離等于()A. B.1 C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在棱長為的正方體中,是正方形的中心,為的中點(diǎn),過的平面與直線垂直,則平面截正方體所得的截面面積為______.14.根據(jù)如圖所示的偽代碼,若輸出的的值為,則輸入的的值為_______.15.已知函數(shù),則函數(shù)的極大值為___________.16.設(shè)直線過雙曲線的一個焦點(diǎn),且與的一條對稱軸垂直,與交于兩點(diǎn),為的實(shí)軸長的2倍,則雙曲線的離心率為.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)若恒成立,求的取值范圍;(2)設(shè)函數(shù)的極值點(diǎn)為,當(dāng)變化時,點(diǎn)構(gòu)成曲線,證明:過原點(diǎn)的任意直線與曲線有且僅有一個公共點(diǎn).18.(12分)已知等比數(shù)列,其公比,且滿足,和的等差中項(xiàng)是1.(Ⅰ)求數(shù)列的通項(xiàng)公式;(Ⅱ)若,是數(shù)列的前項(xiàng)和,求使成立的正整數(shù)的值.19.(12分)已知函數(shù),為實(shí)數(shù),且.(Ⅰ)當(dāng)時,求的單調(diào)區(qū)間和極值;(Ⅱ)求函數(shù)在區(qū)間,上的值域(其中為自然對數(shù)的底數(shù)).20.(12分)某商場以分期付款方式銷售某種商品,根據(jù)以往資料統(tǒng)計(jì),顧客購買該商品選擇分期付款的期數(shù)的分布列為:2340.4其中,(Ⅰ)求購買該商品的3位顧客中,恰有2位選擇分2期付款的概率;(Ⅱ)商場銷售一件該商品,若顧客選擇分2期付款,則商場獲得利潤l00元,若顧客選擇分3期付款,則商場獲得利潤150元,若顧客選擇分4期付款,則商場獲得利潤200元.商場銷售兩件該商品所獲的利潤記為(單位:元)(?。┣蟮姆植剂?;(ⅱ)若,求的數(shù)學(xué)期望的最大值.21.(12分)在四棱錐中,底面為直角梯形,,,,,,,分別為,的中點(diǎn).(1)求證:.(2)若,求二面角的余弦值.22.(10分)已知函數(shù)(),是的導(dǎo)數(shù).(1)當(dāng)時,令,為的導(dǎo)數(shù).證明:在區(qū)間存在唯一的極小值點(diǎn);(2)已知函數(shù)在上單調(diào)遞減,求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】分析:首先利用同角三角函數(shù)關(guān)系式,結(jié)合題中所給的角的范圍,求得的值,之后借助于倍角公式,將待求的式子轉(zhuǎn)化為關(guān)于的式子,代入從而求得結(jié)果.詳解:根據(jù)題中的條件,可得為銳角,根據(jù),可求得,而,故選B.點(diǎn)睛:該題考查的是有關(guān)同角三角函數(shù)關(guān)系式以及倍角公式的應(yīng)用,在解題的過程中,需要對已知真切求余弦的方法要明確,可以應(yīng)用同角三角函數(shù)關(guān)系式求解,也可以結(jié)合三角函數(shù)的定義式求解.2、C【解析】
利用三角恒等變換化簡三角函數(shù)為標(biāo)準(zhǔn)正弦型三角函數(shù),即可容易求得最小值.【詳解】由于,故其最小值為:.故選:C.【點(diǎn)睛】本題考查利用降冪擴(kuò)角公式、輔助角公式化簡三角函數(shù),以及求三角函數(shù)的最值,屬綜合基礎(chǔ)題.3、C【解析】
畫出可行域和目標(biāo)函數(shù),根據(jù)平移得到最大值.【詳解】若實(shí)數(shù)x,y滿足條件,目標(biāo)函數(shù)如圖:當(dāng)時函數(shù)取最大值為故答案選C【點(diǎn)睛】求線性目標(biāo)函數(shù)的最值:當(dāng)時,直線過可行域且在軸上截距最大時,值最大,在軸截距最小時,z值最??;當(dāng)時,直線過可行域且在軸上截距最大時,值最小,在軸上截距最小時,值最大.4、C【解析】
作出三視圖所表示幾何體的直觀圖,可得直觀圖為直三棱柱,并且底面為等腰直角三角形,即可求得外接球的半徑,即可得外接球的體積.【詳解】如圖為幾何體的直觀圖,上下底面為腰長為的等腰直角三角形,三棱柱的高為4,其外接球半徑為,所以體積為.故選:C【點(diǎn)睛】本題考查三視圖還原幾何體的直觀圖、球的體積公式,考查空間想象能力、運(yùn)算求解能力,求解時注意球心的確定.5、C【解析】
由基本音的諧波的定義可得,利用可得,即可判斷選項(xiàng).【詳解】由題,所有泛音的頻率都是基本音頻率的整數(shù)倍,稱為基本音的諧波,由,可知若,則必有,故選:C【點(diǎn)睛】本題考查三角函數(shù)的周期與頻率,考查理解分析能力.6、D【解析】
由試驗(yàn)結(jié)果知對0~1之間的均勻隨機(jī)數(shù),滿足,面積為1,再計(jì)算構(gòu)成鈍角三角形三邊的數(shù)對,滿足條件的面積,由幾何概型概率計(jì)算公式,得出所取的點(diǎn)在圓內(nèi)的概率是圓的面積比正方形的面積,即可估計(jì)的值.【詳解】解:根據(jù)題意知,名同學(xué)取對都小于的正實(shí)數(shù)對,即,對應(yīng)區(qū)域?yàn)檫呴L為的正方形,其面積為,若兩個正實(shí)數(shù)能與構(gòu)成鈍角三角形三邊,則有,其面積;則有,解得故選:.【點(diǎn)睛】本題考查線性規(guī)劃可行域問題及隨機(jī)模擬法求圓周率的幾何概型應(yīng)用問題.線性規(guī)劃可行域是一個封閉的圖形,可以直接解出可行域的面積;求解與面積有關(guān)的幾何概型時,關(guān)鍵是弄清某事件對應(yīng)的面積,必要時可根據(jù)題意構(gòu)造兩個變量,把變量看成點(diǎn)的坐標(biāo),找到試驗(yàn)全部結(jié)果構(gòu)成的平面圖形,以便求解.7、C【解析】試題分析:通過對以下四個四棱錐的三視圖對照可知,只有選項(xiàng)C是符合要求的.考點(diǎn):三視圖8、B【解析】
由,則輸出為300,即可得出判斷框的答案【詳解】由,則輸出的值為300,,故判斷框中應(yīng)填?故選:.【點(diǎn)睛】本題考查了程序框圖的應(yīng)用問題,解題時應(yīng)模擬程序框圖的運(yùn)行過程,以便得出正確的結(jié)論,是基礎(chǔ)題.9、A【解析】依題意有的周期為.而,故應(yīng)左移.10、A【解析】
根據(jù)題意,畫出幾何位置圖形,由圖形的位置關(guān)系分別求得的值,即可比較各選項(xiàng).【詳解】如下圖所示,平面,從而平面,易知與正方體的其余四個面所在平面均相交,∴,∵平面,平面,且與正方體的其余四個面所在平面均相交,∴,∴結(jié)合四個選項(xiàng)可知,只有正確.故選:A.【點(diǎn)睛】本題考查了空間幾何體中直線與平面位置關(guān)系的判斷與綜合應(yīng)用,對空間想象能力要求較高,屬于中檔題.11、B【解析】
首先求得雙曲線的一條漸近線方程,再利用左焦點(diǎn)到漸近線的距離為2,列方程即可求出,進(jìn)而求出漸近線的方程.【詳解】設(shè)左焦點(diǎn)為,一條漸近線的方程為,由左焦點(diǎn)到漸近線的距離為2,可得,所以漸近線方程為,即為,故選:B【點(diǎn)睛】本題考查雙曲線的漸近線的方程,考查了點(diǎn)到直線的距離公式,屬于中檔題.12、D【解析】
建立平面直角坐標(biāo)系,求得拋物線的軌跡方程,解直角三角形求得拋物線的焦點(diǎn)到圓錐頂點(diǎn)的距離.【詳解】將拋物線放入坐標(biāo)系,如圖所示,∵,,,∴,設(shè)拋物線,代入點(diǎn),可得∴焦點(diǎn)為,即焦點(diǎn)為中點(diǎn),設(shè)焦點(diǎn)為,,,∴.故選:D【點(diǎn)睛】本小題考查圓錐曲線的概念,拋物線的性質(zhì),兩點(diǎn)間的距離等基礎(chǔ)知識;考查運(yùn)算求解能力,空間想象能力,推理論證能力,應(yīng)用意識.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
確定平面即為平面,四邊形是菱形,計(jì)算面積得到答案.【詳解】如圖,在正方體中,記的中點(diǎn)為,連接,則平面即為平面.證明如下:由正方體的性質(zhì)可知,,則,四點(diǎn)共面,記的中點(diǎn)為,連接,易證.連接,則,所以平面,則.同理可證,,,則平面,所以平面即平面,且四邊形即平面截正方體所得的截面.因?yàn)檎襟w的棱長為,易知四邊形是菱形,其對角線,,所以其面積.故答案為:【點(diǎn)睛】本題考查了正方體的截面面積,意在考查學(xué)生的空間想象能力和計(jì)算能力.14、【解析】
算法的功能是求的值,根據(jù)輸出的值,分別求出當(dāng)時和當(dāng)時的值即可得解.【詳解】解:由程序語句知:算法的功能是求的值,當(dāng)時,,可得:,或(舍去);當(dāng)時,,可得:(舍去).綜上的值為:.故答案為:.【點(diǎn)睛】本題考查了選擇結(jié)構(gòu)的程序語句,根據(jù)語句判斷算法的功能是解題的關(guān)鍵,屬于基礎(chǔ)題.15、【解析】
對函數(shù)求導(dǎo),通過賦值,求得,再對函數(shù)單調(diào)性進(jìn)行分析,求得極大值.【詳解】,故解得,,令,解得函數(shù)在單調(diào)遞增,在單調(diào)遞減,故的極大值為故答案為:.【點(diǎn)睛】本題考查函數(shù)極值的求解,難點(diǎn)是要通過賦值,求出未知量.16、【解析】
不妨設(shè)雙曲線,焦點(diǎn),令,由的長為實(shí)軸的二倍能夠推導(dǎo)出的離心率.【詳解】不妨設(shè)雙曲線,焦點(diǎn),對稱軸,由題設(shè)知,因?yàn)榈拈L為實(shí)軸的二倍,,,,故答案為.【點(diǎn)睛】本題主要考查利用雙曲線的簡單性質(zhì)求雙曲線的離心率,屬于中檔題.求解與雙曲線性質(zhì)有關(guān)的問題時要結(jié)合圖形進(jìn)行分析,既使不畫出圖形,思考時也要聯(lián)想到圖形,當(dāng)涉及頂點(diǎn)、焦點(diǎn)、實(shí)軸、虛軸、漸近線等雙曲線的基本量時,要理清它們之間的關(guān)系,挖掘出它們之間的內(nèi)在聯(lián)系.求離心率問題應(yīng)先將用有關(guān)的一些量表示出來,再利用其中的一些關(guān)系構(gòu)造出關(guān)于的等式,從而求出的值.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)證明見解析【解析】
(1)由恒成立,可得恒成立,進(jìn)而構(gòu)造函數(shù),求導(dǎo)可判斷出的單調(diào)性,進(jìn)而可求出的最小值,令即可;(2)由,可知存在唯一的,使得,則,,進(jìn)而可得,即曲線的方程為,進(jìn)而只需證明對任意,方程有唯一解,然后構(gòu)造函數(shù),分、和三種情況,分別證明函數(shù)在上有唯一的零點(diǎn),即可證明結(jié)論成立.【詳解】(1)由題意,可知,由恒成立,可得恒成立.令,則.令,則,,,在上單調(diào)遞增,又,時,;時,,即時,;時,,時,單調(diào)遞減;時,單調(diào)遞增,時,取最小值,.(2)證明:由,令,由,結(jié)合二次函數(shù)性質(zhì)可知,存在唯一的,使得,故存在唯一的極值點(diǎn),則,,,曲線的方程為.故只需證明對任意,方程有唯一解.令,則,①當(dāng)時,恒成立,在上單調(diào)遞增.,,,存在滿足時,使得.又單調(diào)遞增,所以為唯一解.②當(dāng)時,二次函數(shù),滿足,則恒成立,在上單調(diào)遞增.,,存在使得,又在上單調(diào)遞增,為唯一解.③當(dāng)時,二次函數(shù),滿足,此時有兩個不同的解,不妨設(shè),,,列表如下:00↗極大值↘極小值↗由表可知,當(dāng)時,的極大值為.,,,,,..下面來證明,構(gòu)造函數(shù),則,當(dāng)時,,此時單調(diào)遞增,,時,,,故成立.,存在,使得.又在單調(diào)遞增,為唯一解.所以,對任意,方程有唯一解,即過原點(diǎn)任意的直線與曲線有且僅有一個公共點(diǎn).【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)單調(diào)性的應(yīng)用,考查不等式恒成立問題,考查利用單調(diào)性研究圖象交點(diǎn)問題,考查學(xué)生的計(jì)算求解能力與推理論證能力,屬于難題.18、(Ⅰ).(Ⅱ).【解析】
(Ⅰ)由等差數(shù)列中項(xiàng)性質(zhì)和等比數(shù)列的通項(xiàng)公式,解方程可得首項(xiàng)和公比,可得所求通項(xiàng)公式;(Ⅱ),由數(shù)列的錯位相減法求和可得,解方程可得所求值.【詳解】(Ⅰ)等比數(shù)列,其公比,且滿足,和的等差中項(xiàng)是即有,解得:(Ⅱ)由(Ⅰ)知:則相減可得:化簡可得:,即為解得:【點(diǎn)睛】本題考查等比數(shù)列的通項(xiàng)公式和求和公式的運(yùn)用,考查數(shù)列的錯位相減法求和,以及方程思想和運(yùn)算能力,屬于中檔題.19、(Ⅰ)極大值0,沒有極小值;函數(shù)的遞增區(qū)間,遞減區(qū)間,(Ⅱ)見解析【解析】
(Ⅰ)由,令,得增區(qū)間為,令,得減區(qū)間為,所以有極大值,無極小值;(Ⅱ)由,分,和三種情況,考慮函數(shù)在區(qū)間上的值域,即可得到本題答案.【詳解】當(dāng)時,,,當(dāng)時,,函數(shù)單調(diào)遞增,當(dāng)時,,函數(shù)單調(diào)遞減,故當(dāng)時,函數(shù)取得極大值,沒有極小值;函數(shù)的增區(qū)間為,減區(qū)間為,,當(dāng)時,,在上單調(diào)遞增,即函數(shù)的值域?yàn)?;?dāng)時,,在上單調(diào)遞減,即函數(shù)的值域?yàn)?;?dāng)時,易得時,,在上單調(diào)遞增,時,,在上單調(diào)遞減,故當(dāng)時,函數(shù)取得最大值,最小值為,中最小的,當(dāng)時,,最小值;當(dāng),,最小值;綜上,當(dāng)時,函數(shù)的值域?yàn)椋?dāng)時,函數(shù)的值域,當(dāng)時,函數(shù)的值域?yàn)椋?dāng)時,函數(shù)的值域?yàn)?【點(diǎn)睛】本題主要考查利用導(dǎo)數(shù)求單調(diào)區(qū)間和極值,以及利用導(dǎo)數(shù)研究含參函數(shù)在給定區(qū)間的值域,考查學(xué)生的運(yùn)算求解能力,體現(xiàn)了分類討論的數(shù)學(xué)思想.20、(Ⅰ)0.288(Ⅱ)(ⅰ)見解析(ⅱ)數(shù)學(xué)期望的最大值為280【解析】
(Ⅰ)根據(jù)題意,設(shè)購買該商品的3位顧客中,選擇分2期付款的人數(shù)為,由獨(dú)立重復(fù)事件的特點(diǎn)得出,利用二項(xiàng)分布的概率公式,即可求出結(jié)果;(Ⅱ)(?。┮李}意,的取值為200,250,300,350,400,根據(jù)離散型分布求出概率和的分布列;(ⅱ)由題意知,,解得,根據(jù)的分布列,得出的數(shù)學(xué)期望,結(jié)合,即可算出的最大值.【詳解】解:(Ⅰ)設(shè)購買該商品的3位顧客中,選擇分2期付款的人數(shù)為,則,則,故購買該商品的3位顧客中,恰有2位選擇分2期付款的概率為0.288.(Ⅱ)(?。┮李}意,的取值為200,250,300,350,400,,,,,的分布列為:2002503003504000.16(ⅱ),由題意知,,,,,又,即,解得,,,當(dāng)時,的最大值為280,所以的數(shù)學(xué)期望的最大值為280.【點(diǎn)睛】本題考查獨(dú)立重復(fù)事件和二項(xiàng)分布的應(yīng)用,以及離散型分布列和數(shù)學(xué)期望,考查計(jì)算能力.21、(1)見解析(2)【解析】
(1)由已知可證明平面,從而得證面面垂直,再由,得線面垂直,從而得,由直
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年學(xué)校體育器材設(shè)施租賃合同
- 2025年企業(yè)內(nèi)部股權(quán)認(rèn)購合同范本
- 2025年跨區(qū)域金融協(xié)同發(fā)展策劃框架協(xié)議
- 2025年醫(yī)療設(shè)備租賃與維護(hù)合作協(xié)議
- 2025年勞保服裝定制合同樣本
- 2025年企業(yè)合作社交媒體代運(yùn)營合同
- 2025年建筑工程策劃環(huán)境風(fēng)險評估合作協(xié)議
- 2025年中期票據(jù)發(fā)行保證合同樣本
- 2025年中介電子商務(wù)合同
- 2025年農(nóng)村耕地整合策劃協(xié)同協(xié)議
- 質(zhì)量體系工程師崗位說明書
- 三年級上語文開學(xué)第一課
- 烹飪刀工與原料成型技術(shù)課件
- 消防設(shè)施維護(hù)與日常檢查培訓(xùn)講義
- 最新安全生產(chǎn)管理教材電子版
- 良性陣發(fā)性位置性眩暈完整版本課件
- 典當(dāng)業(yè)務(wù)計(jì)劃方案
- 老化箱點(diǎn)檢表A4版本
- 音標(biāo)教學(xué)課件(共73張PPT)
- 2012數(shù)據(jù)結(jié)構(gòu)英文試卷A及答案
- 二次回路施工驗(yàn)收
評論
0/150
提交評論