版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2023-2024學(xué)年福建省莆田市秀嶼區(qū)湖東中學(xué)中考數(shù)學(xué)最后一模試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.如圖是某個幾何體的三視圖,該幾何體是()A.三棱柱 B.三棱錐 C.圓柱 D.圓錐2.如圖是二次函數(shù)y=ax2+bx+cy1>y1.其中說法正確的是()A.①②B.②③C.①②④D.②③④3.如圖,在正方形ABCD中,E為AB的中點(diǎn),G,F(xiàn)分別為AD、BC邊上的點(diǎn),若AG=1,BF=2,∠GEF=90°,則GF的長為()A.2 B.3 C.4 D.54.如圖,半徑為的中,弦,所對的圓心角分別是,,若,,則弦的長等于()A. B. C. D.5.下列圖形中,是軸對稱圖形的是()A. B. C. D.6.一個正方形花壇的面積為7m2,其邊長為am,則a的取值范圍為()A.0<a<1 B.l<a<2 C.2<a<3 D.3<a<47.某市2017年實(shí)現(xiàn)生產(chǎn)總值達(dá)280億的目標(biāo),用科學(xué)記數(shù)法表示“280億”為()A.28×109 B.2.8×108 C.2.8×109 D.2.8×10108.如圖,在平面直角坐標(biāo)系中,△ABC與△A1B1C1是以點(diǎn)P為位似中心的位似圖形,且頂點(diǎn)都在格點(diǎn)上,則點(diǎn)P的坐標(biāo)為()A.(﹣4,﹣3) B.(﹣3,﹣4) C.(﹣3,﹣3) D.(﹣4,﹣4)9.如圖,在Rt△ABC中,∠ACB=90°,∠A=30°,D,E,F(xiàn)分別為AB,AC,AD的中點(diǎn),若BC=2,則EF的長度為()A.12B.1C.3210.一個不透明的袋子里裝著質(zhì)地、大小都相同的3個紅球和2個綠球,隨機(jī)從中摸出一球,不再放回袋中,充分?jǐn)噭蚝笤匐S機(jī)摸出一球.兩次都摸到紅球的概率是()A. B. C. D.11.如圖,在4×4正方形網(wǎng)格中,黑色部分的圖形構(gòu)成一個軸對稱圖形,現(xiàn)在任意選取一個白色的小正方形并涂黑,使黑色部分的圖形仍然構(gòu)成一個軸對稱圖形的概率是()A. B. C. D.12.隨著“中國詩詞大會”節(jié)目的熱播,《唐詩宋詞精選》一書也隨之熱銷.如果一次性購買10本以上,超過10本的那部分書的價格將打折,并依此得到付款金額y(單位:元)與一次性購買該書的數(shù)量x(單位:本)之間的函數(shù)關(guān)系如圖所示,則下列結(jié)論錯誤的是()A.一次性購買數(shù)量不超過10本時,銷售價格為20元/本B.a(chǎn)=520C.一次性購買10本以上時,超過10本的那部分書的價格打八折D.一次性購買20本比分兩次購買且每次購買10本少花80元二、填空題:(本大題共6個小題,每小題4分,共24分.)13.對于函數(shù),我們定義(m、n為常數(shù)).例如,則.已知:.若方程有兩個相等實(shí)數(shù)根,則m的值為__________.14.如果梯形的中位線長為6,一條底邊長為8,那么另一條底邊長等于__________.15.△ABC的頂點(diǎn)都在方格紙的格點(diǎn)上,則sinA=_▲.16.已知函數(shù)y=|x2﹣x﹣2|,直線y=kx+4恰好與y=|x2﹣x﹣2|的圖象只有三個交點(diǎn),則k的值為_____.17.已知△ABC中,BC=4,AB=2AC,則△ABC面積的最大值為_______.18.如圖,長方形內(nèi)有兩個相鄰的正方形,面積分別為3和9,那么陰影部分的面積為_____.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)已知,在菱形ABCD中,∠ADC=60°,點(diǎn)H為CD上任意一點(diǎn)(不與C、D重合),過點(diǎn)H作CD的垂線,交BD于點(diǎn)E,連接AE.(1)如圖1,線段EH、CH、AE之間的數(shù)量關(guān)系是;(2)如圖2,將△DHE繞點(diǎn)D順時針旋轉(zhuǎn),當(dāng)點(diǎn)E、H、C在一條直線上時,求證:AE+EH=CH.20.(6分)我市某中學(xué)藝術(shù)節(jié)期間,向全校學(xué)生征集書畫作品.九年級美術(shù)王老師從全年級14個班中隨機(jī)抽取了4個班,對征集到的作品的數(shù)量進(jìn)行了分析統(tǒng)計,制作了如下兩幅不完整的統(tǒng)計圖.王老師采取的調(diào)查方式是(填“普查”或“抽樣調(diào)查”),王老師所調(diào)查的4個班征集到作品共件,其中b班征集到作品件,請把圖2補(bǔ)充完整;王老師所調(diào)查的四個班平均每個班征集作品多少件?請估計全年級共征集到作品多少件?如果全年級參展作品中有5件獲得一等獎,其中有3名作者是男生,2名作者是女生.現(xiàn)在要在其中抽兩人去參加學(xué)??偨Y(jié)表彰座談會,請直接寫出恰好抽中一男一女的概率.21.(6分)五一期間,小紅到郊野公園游玩,在景點(diǎn)P處測得景點(diǎn)B位于南偏東45°方向,然后沿北偏東37°方向走200m米到達(dá)景點(diǎn)A,此時測得景點(diǎn)B正好位于景點(diǎn)A的正南方向,求景點(diǎn)A與景點(diǎn)B之間的距離.(結(jié)果保留整數(shù))參考數(shù)據(jù):sin37≈0.60,cos37°=0.80,tan37°≈0.7522.(8分)如圖,已知:正方形ABCD,點(diǎn)E在CB的延長線上,連接AE、DE,DE與邊AB交于點(diǎn)F,F(xiàn)G∥BE交AE于點(diǎn)G.(1)求證:GF=BF;(2)若EB=1,BC=4,求AG的長;(3)在BC邊上取點(diǎn)M,使得BM=BE,連接AM交DE于點(diǎn)O.求證:FO?ED=OD?EF.23.(8分)旅游公司在景區(qū)內(nèi)配置了50輛觀光車共游客租賃使用,假定每輛觀光車一天內(nèi)最多只能出租一次,且每輛車的日租金x(元)是5的倍數(shù).發(fā)現(xiàn)每天的營運(yùn)規(guī)律如下:當(dāng)x不超過100元時,觀光車能全部租出;當(dāng)x超過100元時,每輛車的日租金每增加5元,租出去的觀光車就會減少1輛.已知所有觀光車每天的管理費(fèi)是1100元.(1)優(yōu)惠活動期間,為使觀光車全部租出且每天的凈收入為正,則每輛車的日租金至少應(yīng)為多少元?(注:凈收入=租車收入﹣管理費(fèi))(2)當(dāng)每輛車的日租金為多少元時,每天的凈收入最多?24.(10分)如圖,已知AB為⊙O的直徑,AC是⊙O的弦,D是弧BC的中點(diǎn),過點(diǎn)D作⊙O的切線,分別交AC、AB的延長線于點(diǎn)E和點(diǎn)F,連接CD、BD.(1)求證:∠A=2∠BDF;(2)若AC=3,AB=5,求CE的長.25.(10分)“食品安全”受到全社會的廣泛關(guān)注,我區(qū)兼善中學(xué)對部分學(xué)生就食品安全知識的了解程度,采用隨機(jī)抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計,繪制了下面的兩幅尚不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖中所提供的信息解答下列問題:(1)接受問卷調(diào)查的學(xué)生共有人,扇形統(tǒng)計圖中“基本了解”部分所對應(yīng)扇形的圓心角為°;(2)請補(bǔ)全條形統(tǒng)計圖;(3)若對食品安全知識達(dá)到“了解”程度的學(xué)生中,男、女生的比例恰為2:3,現(xiàn)從中隨機(jī)抽取2人參加食品安全知識競賽,請用樹狀圖或列表法求出恰好抽到1個男生和1個女生的概率.26.(12分)知識改變世界,科技改變生活.導(dǎo)航裝備的不斷更新極大方便了人們的出行.如圖,某校組織學(xué)生乘車到黑龍灘(用C表示)開展社會實(shí)踐活動,車到達(dá)A地后,發(fā)現(xiàn)C地恰好在A地的正北方向,且距離A地13千米,導(dǎo)航顯示車輛應(yīng)沿北偏東60°方向行駛至B地,再沿北偏西37°方向行駛一段距離才能到達(dá)C地,求B、C兩地的距離.(參考數(shù)據(jù):sin53°≈,cos53°≈,tan53°≈)27.(12分)計算:(﹣2)3+(﹣3)×[(﹣4)2+2]﹣(﹣3)2÷(﹣2)
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、A【解析】試題分析:觀察可得,主視圖是三角形,俯視圖是兩個矩形,左視圖是矩形,所以這個幾何體是三棱柱,故選A.考點(diǎn):由三視圖判定幾何體.2、C【解析】∵二次函數(shù)的圖象的開口向上,∴a>0。∵二次函數(shù)的圖象y軸的交點(diǎn)在y軸的負(fù)半軸上,∴c<0?!叨魏瘮?shù)圖象的對稱軸是直線x=﹣1,∴-b∴abc<0,因此說法①正確?!?a﹣b=1a﹣1a=0,因此說法②正確?!叨魏瘮?shù)y=∴圖象與x軸的另一個交點(diǎn)的坐標(biāo)是(1,0)。∴把x=1代入y=ax1+bx+c得:y=4a+1b+c>0,因此說法③錯誤?!叨魏瘮?shù)y=∴點(diǎn)(﹣5,y1)關(guān)于對稱軸的對稱點(diǎn)的坐標(biāo)是(3,y1),∵當(dāng)x>﹣1時,y隨x的增大而增大,而52∴y1<y1,因此說法④正確。綜上所述,說法正確的是①②④。故選C。3、B【解析】∵四邊形ABCD是正方形,∴∠A=∠B=90°,∴∠AGE+∠AEG=90°,∠BFE+∠FEB=90°,∵∠GEF=90°,∴∠GEA+∠FEB=90°,∴∠AGE=∠FEB,∠AEG=∠EFB,∴△AEG∽△BFE,∴,又∵AE=BE,∴AE2=AG?BF=2,∴AE=(舍負(fù)),∴GF2=GE2+EF2=AG2+AE2+BE2+BF2=1+2+2+4=9,∴GF的長為3,故選B.【點(diǎn)睛】本題考查了相似三角形的性質(zhì)的應(yīng)用,利用勾股定理即可得解,解題的關(guān)鍵是證明△AEG∽△BFE.4、A【解析】作AH⊥BC于H,作直徑CF,連結(jié)BF,先利用等角的補(bǔ)角相等得到∠DAE=∠BAF,然后再根據(jù)同圓中,相等的圓心角所對的弦相等得到DE=BF=6,由AH⊥BC,根據(jù)垂徑定理得CH=BH,易得AH為△CBF的中位線,然后根據(jù)三角形中位線性質(zhì)得到AH=BF=1,從而求解.解:作AH⊥BC于H,作直徑CF,連結(jié)BF,如圖,∵∠BAC+∠EAD=120°,而∠BAC+∠BAF=120°,∴∠DAE=∠BAF,∴弧DE=弧BF,∴DE=BF=6,∵AH⊥BC,∴CH=BH,∵CA=AF,∴AH為△CBF的中位線,∴AH=BF=1.∴,∴BC=2BH=2.故選A.“點(diǎn)睛”本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.也考查了垂徑定理和三角形中位線性質(zhì).5、B【解析】分析:根據(jù)軸對稱圖形的概念求解.詳解:A、不是軸對稱圖形,故此選項(xiàng)不合題意;B、是軸對稱圖形,故此選項(xiàng)符合題意;C、不是軸對稱圖形,故此選項(xiàng)不合題意;D、不是軸對稱圖形,故此選項(xiàng)不合題意;故選B.點(diǎn)睛:本題考查了軸對稱圖形,軸對稱圖形的判斷方法:把某個圖象沿某條直線折疊,如果圖形的兩部分能夠重合,那么這個是軸對稱圖形.6、C【解析】
先根據(jù)正方形的面積公式求邊長,再根據(jù)無理數(shù)的估算方法求取值范圍.【詳解】解:∵一個正方形花壇的面積為,其邊長為,則a的取值范圍為:.故選:C.【點(diǎn)睛】此題重點(diǎn)考查學(xué)生對無理數(shù)的理解,會估算無理數(shù)的大小是解題的關(guān)鍵.7、D【解析】
根據(jù)科學(xué)計數(shù)法的定義來表示數(shù)字,選出正確答案.【詳解】解:把一個數(shù)表示成a(1≤a<10,n為整數(shù))與10的冪相乘的形式,這種記數(shù)法叫做科學(xué)記數(shù)法,280億用科學(xué)計數(shù)法表示為2.8×1010,所以答案選D.【點(diǎn)睛】本題考查學(xué)生對科學(xué)計數(shù)法的概念的掌握和將數(shù)字用科學(xué)計數(shù)法表示的能力.8、A【解析】
延長A1A、B1B和C1C,從而得到P點(diǎn)位置,從而可得到P點(diǎn)坐標(biāo).【詳解】如圖,點(diǎn)P的坐標(biāo)為(-4,-3).
故選A.【點(diǎn)睛】本題考查了位似變換:如果兩個圖形不僅是相似圖形,而且對應(yīng)頂點(diǎn)的連線相交于一點(diǎn),對應(yīng)邊互相平行,那么這樣的兩個圖形叫做位似圖形,這個點(diǎn)叫做位似中心.9、B【解析】
根據(jù)題意求出AB的值,由D是AB中點(diǎn)求出CD的值,再由題意可得出EF是△ACD的中位線即可求出.【詳解】∵∠ACB=90°,∠A=30°,∴BC=12∵BC=2,∴AB=2BC=2×2=4,∵D是AB的中點(diǎn),∴CD=12AB=12∵E,F分別為AC,AD的中點(diǎn),∴EF是△ACD的中位線.∴EF=12CD=12故答案選B.【點(diǎn)睛】本題考查的知識點(diǎn)是三角形中位線定理,解題的關(guān)鍵是熟練的掌握三角形中位線定理.10、A【解析】
列表或畫樹狀圖得出所有等可能的結(jié)果,找出兩次都為紅球的情況數(shù),即可求出所求的概率:【詳解】列表如下:
紅
紅
紅
綠
綠
紅
﹣﹣﹣
(紅,紅)
(紅,紅)
(綠,紅)
(綠,綠)
紅
(紅,紅)
﹣﹣﹣
(紅,紅)
(綠,紅)
(綠,紅)
紅
(紅,紅)
(紅,紅)
﹣﹣﹣
(綠,紅)
(綠,紅)
綠
(紅,綠)
(紅,綠)
(紅,綠)
﹣﹣﹣
(綠,綠)
綠
(紅,綠)
(紅,綠)
(紅,綠)
(綠,綠)
﹣﹣﹣
∵所有等可能的情況數(shù)為20種,其中兩次都為紅球的情況有6種,∴,故選A.11、B【解析】解:∵根據(jù)軸對稱圖形的概念,軸對稱圖形兩部分沿對稱軸折疊后可重合,白色的小正方形有13個,而能構(gòu)成一個軸對稱圖形的有4個情況,∴使圖中黑色部分的圖形仍然構(gòu)成一個軸對稱圖形的概率是:.故選B.12、D【解析】
A、根據(jù)單價=總價÷數(shù)量,即可求出一次性購買數(shù)量不超過10本時,銷售單價,A選項(xiàng)正確;C、根據(jù)單價=總價÷數(shù)量結(jié)合前10本花費(fèi)200元即可求出超過10本的那部分書的單價,用其÷前十本的單價即可得出C正確;B、根據(jù)總價=200+超過10本的那部分書的數(shù)量×16即可求出a值,B正確;D,求出一次性購買20本書的總價,將其與400相減即可得出D錯誤.此題得解.【詳解】解:A、∵200÷10=20(元/本),∴一次性購買數(shù)量不超過10本時,銷售價格為20元/本,A選項(xiàng)正確;C、∵(840﹣200)÷(50﹣10)=16(元/本),16÷20=0.8,∴一次性購買10本以上時,超過10本的那部分書的價格打八折,C選項(xiàng)正確;B、∵200+16×(30﹣10)=520(元),∴a=520,B選項(xiàng)正確;D、∵200×2﹣200﹣16×(20﹣10)=40(元),∴一次性購買20本比分兩次購買且每次購買10本少花40元,D選項(xiàng)錯誤.故選D.【點(diǎn)睛】考查了一次函數(shù)的應(yīng)用,根據(jù)一次函數(shù)圖象結(jié)合數(shù)量關(guān)系逐一分析四個選項(xiàng)的正誤是解題的關(guān)鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】分析:根據(jù)題目中所給定義先求,再利用根與系數(shù)關(guān)系求m值.詳解:由所給定義知,,若=0,解得m=.點(diǎn)睛:一元二次方程的根的判別式是,△=b2-4ac,a,b,c分別是一元二次方程中二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)和常數(shù)項(xiàng).
△>0說明方程有兩個不同實(shí)數(shù)解,△=0說明方程有兩個相等實(shí)數(shù)解,△<0說明方程無實(shí)數(shù)解.實(shí)際應(yīng)用中,有兩種題型(1)證明方程實(shí)數(shù)根問題,需要對△的正負(fù)進(jìn)行判斷,可能是具體的數(shù)直接可以判斷,也可能是含字母的式子,一般需要配方等技巧.14、4.【解析】
只需根據(jù)梯形的中位線定理“梯形的中位線等于兩底和的一半”,進(jìn)行計算.【詳解】解:根據(jù)梯形的中位線定理“梯形的中位線等于兩底和的一半”,則另一條底邊長.故答案為:4【點(diǎn)睛】本題考查梯形中位線,用到的知識點(diǎn)為:梯形的中位線=(上底+下底)15、【解析】
在直角△ABD中利用勾股定理求得AD的長,然后利用正弦的定義求解.【詳解】在直角△ABD中,BD=1,AB=2,則AD===,則sinA===.故答案是:.16、1﹣1或﹣1【解析】
直線y=kx+4與拋物線y=-x1+x+1(-1≤x≤1)相切時,直線y=kx+4與y=|x1-x-1|的圖象恰好有三個公共點(diǎn),即-x1+x+1=kx+4有相等的實(shí)數(shù)解,利用根的判別式的意義可求出此時k的值,另外當(dāng)y=kx+4過(1,0)時,也滿足條件.【詳解】解:當(dāng)y=0時,x1-x-1=0,解得x1=-1,x1=1,
則拋物線y=x1-x-1與x軸的交點(diǎn)為(-1,0),(1,0),
把拋物線y=x1-x-1圖象x軸下方的部分沿x軸翻折到x軸上方,
則翻折部分的拋物線解析式為y=-x1+x+1(-1≤x≤1),
當(dāng)直線y=kx+4與拋物線y=-x1+x+1(-1≤x≤1)相切時,
直線y=kx+4與函數(shù)y=|x1-x-1|的圖象恰好有三個公共點(diǎn),
即-x1+x+1=kx+4有相等的實(shí)數(shù)解,整理得x1+(k-1)x+1=0,△=(k-1)1-8=0,
解得k=1±1,
所以k的值為1+1或1-1.
當(dāng)k=1+1時,經(jīng)檢驗(yàn),切點(diǎn)橫坐標(biāo)為x=-<-1不符合題意,舍去.
當(dāng)y=kx+4過(1,0)時,k=-1,也滿足條件,故答案為1-1或-1.【點(diǎn)睛】本題考查了二次函數(shù)與幾何變換:翻折變化不改變圖形的大小,故|a|不變,利用頂點(diǎn)式即可求得翻折后的二次函數(shù)解析式;也可利用絕對值的意義,直接寫出自變量在-1≤x≤1上時的解析式。17、【解析】
設(shè)AC=x,則AB=2x,根據(jù)面積公式得S△ABC=2x,由余弦定理求得cosC代入化簡S△ABC=,由三角形三邊關(guān)系求得,由二次函數(shù)的性質(zhì)求得S△ABC取得最大值.【詳解】設(shè)AC=x,則AB=2x,根據(jù)面積公式得:c==2x.由余弦定理可得:,∴S△ABC=2x=2x=由三角形三邊關(guān)系有,解得,故當(dāng)時,取得最大值,
故答案為:.【點(diǎn)睛】本題主要考查了余弦定理和面積公式在解三角形中的應(yīng)用,考查了二次函數(shù)的性質(zhì),考查了計算能力,當(dāng)涉及最值問題時,可考慮用函數(shù)的單調(diào)性和定義域等問題,屬于中檔題.18、1-1【解析】
設(shè)兩個正方形的邊長是x、y(x<y),得出方程x2=1,y2=9,求出x=,y=1,代入陰影部分的面積是(y﹣x)x求出即可.【詳解】設(shè)兩個正方形的邊長是x、y(x<y),則x2=1,y2=9,x,y=1,則陰影部分的面積是(y﹣x)x=(11.故答案為11.【點(diǎn)睛】本題考查了二次根式的應(yīng)用,主要考查學(xué)生的計算能力.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)EH2+CH2=AE2;(2)見解析.【解析】分析:(1)如圖1,過E作EM⊥AD于M,由四邊形ABCD是菱形,得到AD=CD,∠ADE=∠CDE,通過△DME≌△DHE,根據(jù)全等三角形的性質(zhì)得到EM=EH,DM=DH,等量代換得到AM=CH,根據(jù)勾股定理即可得到結(jié)論;
(2)如圖2,根據(jù)菱形的性質(zhì)得到∠BDC=∠BDA=30°,DA=DC,在CH上截取HG,使HG=EH,推出△DEG是等邊三角形,由等邊三角形的性質(zhì)得到∠EDG=60°,推出△DAE≌△DCG,根據(jù)全等三角形的性質(zhì)即可得到結(jié)論.詳解:(1)EH2+CH2=AE2,如圖1,過E作EM⊥AD于M,∵四邊形ABCD是菱形,∴AD=CD,∠ADE=∠CDE,∵EH⊥CD,∴∠DME=∠DHE=90°,在△DME與△DHE中,,∴△DME≌△DHE,∴EM=EH,DM=DH,∴AM=CH,在Rt△AME中,AE2=AM2+EM2,∴AE2=EH2+CH2;故答案為:EH2+CH2=AE2;(2)如圖2,∵菱形ABCD,∠ADC=60°,∴∠BDC=∠BDA=30°,DA=DC,∵EH⊥CD,∴∠DEH=60°,在CH上截取HG,使HG=EH,∵DH⊥EG,∴ED=DG,又∵∠DEG=60°,∴△DEG是等邊三角形,∴∠EDG=60°,∵∠EDG=∠ADC=60°,∴∠EDG﹣∠ADG=∠ADC﹣∠ADG,∴∠ADE=∠CDG,在△DAE與△DCG中,,∴△DAE≌△DCG,∴AE=GC,∵CH=CG+GH,∴CH=AE+EH.點(diǎn)睛:考查了全等三角形的判定和性質(zhì)、菱形的性質(zhì)、旋轉(zhuǎn)的性質(zhì)、等邊三角形的判定和性質(zhì),解題的關(guān)鍵是正確的作出輔助線.20、(1)抽樣調(diào)查;12;3;(2)60;(3).【解析】試題分析:(1)根據(jù)只抽取了4個班可知是抽樣調(diào)查,根據(jù)C在扇形圖中的角度求出所占的份數(shù),再根據(jù)C的人數(shù)是5,列式進(jìn)行計算即可求出作品的件數(shù),然后減去A、C、D的件數(shù)即為B的件數(shù);(2)求出平均每一個班的作品件數(shù),然后乘以班級數(shù)14,計算即可得解;(3)畫出樹狀圖或列出圖表,再根據(jù)概率公式列式進(jìn)行計算即可得解.試題解析:(1)抽樣調(diào)查,所調(diào)查的4個班征集到作品數(shù)為:5÷=12件,B作品的件數(shù)為:12﹣2﹣5﹣2=3件,故答案為抽樣調(diào)查;12;3;把圖2補(bǔ)充完整如下:(2)王老師所調(diào)查的四個班平均每個班征集作品=12÷4=3(件),所以,估計全年級征集到參展作品:3×14=42(件);(3)畫樹狀圖如下:列表如下:共有20種機(jī)會均等的結(jié)果,其中一男一女占12種,所以,P(一男一女)==,即恰好抽中一男一女的概率是.考點(diǎn):1.條形統(tǒng)計圖;2.用樣本估計總體;3.扇形統(tǒng)計圖;4.列表法與樹狀圖法;5.圖表型.21、景點(diǎn)A與B之間的距離大約為280米【解析】
由已知作PC⊥AB于C,可得△ABP中∠A=37°,∠B=45°且PA=200m,要求AB的長,可以先求出AC和BC的長.【詳解】解:如圖,作PC⊥AB于C,則∠ACP=∠BCP=90°,由題意,可得∠A=37°,∠B=45°,PA=200m.在Rt△ACP中,∵∠ACP=90°,∠A=37°,∴AC=AP?cosA=200×0.80=160,PC=AP?sinA=200×0.60=1.在Rt△BPC中,∵∠BCP=90°,∠B=45°,∴BC=PC=1.∴AB=AC+BC=160+1=280(米).答:景點(diǎn)A與B之間的距離大約為280米.【點(diǎn)睛】本題考查了解直角三角形的應(yīng)用-方向角問題,對于解一般三角形,求三角形的邊或高的問題一般可以轉(zhuǎn)化為解直角三角形的問題,解決的方法就是作高線.22、(1)證明見解析;(2)AG=;(3)證明見解析.【解析】
(1)根據(jù)正方形的性質(zhì)得到AD∥BC,AB∥CD,AD=CD,根據(jù)相似三角形的性質(zhì)列出比例式,等量代換即可;(2)根據(jù)勾股定理求出AE,根據(jù)相似三角形的性質(zhì)計算即可;(3)延長GF交AM于H,根據(jù)平行線分線段成比例定理得到,由于BM=BE,得到GF=FH,由GF∥AD,得到,等量代換得到,即,于是得到結(jié)論.【詳解】解:(1)∵四邊形ABCD是正方形,∴AD∥BC,AB∥CD,AD=CD,∵GF∥BE,∴GF∥BC,∴GF∥AD,∴,∵AB∥CD,,∵AD=CD,∴GF=BF;(2)∵EB=1,BC=4,∴=4,AE=,∴=4,∴AG=;(3)延長GF交AM于H,∵GF∥BC,∴FH∥BC,∴,∴,∵BM=BE,∴GF=FH,∵GF∥AD,∴,,∴,∴,∴FO?ED=OD?EF.【點(diǎn)睛】本題主要考查平行線分線段成比例及正方形的性質(zhì),掌握平行線分線段中的線段對應(yīng)成比例是解題的關(guān)鍵,注意利用比例相等也可以證明線段相等.23、(1)每輛車的日租金至少應(yīng)為25元;(2)當(dāng)每輛車的日租金為175元時,每天的凈收入最多是5025元.【解析】試題分析:(1)觀光車全部租出每天的凈收入=出租自行車的總收入﹣管理費(fèi),由凈收入為正列出不等式求解即可;(2)由函數(shù)解析式是分段函數(shù),在每一段內(nèi)求出函數(shù)最大值,比較得出函數(shù)的最大值.試題解析:(1)由題意知,若觀光車能全部租出,則0<x≤100,由50x﹣1100>0,解得x>22,又∵x是5的倍數(shù),∴每輛車的日租金至少應(yīng)為25元;(2)設(shè)每輛車的凈收入為y元,當(dāng)0<x≤100時,y1=50x﹣1100,∵y1隨x的增大而增大,∴當(dāng)x=100時,y1的最大值為50×100﹣1100=3900;當(dāng)x>100時,y2=(50﹣)x﹣1100=﹣x2+70x﹣1100=﹣(x﹣175)2+5025,當(dāng)x=175時,y2的最大值為5025,5025>3900,故當(dāng)每輛車的日租金為175元時,每天的凈收入最多是5025元.考點(diǎn):二次函數(shù)的應(yīng)用.24、(1)見解析;(2)1【解析】
(1)連接AD,如圖,利用圓周角定理得∠ADB=90°,利用切線的性質(zhì)得OD⊥DF,則根據(jù)等角的余角相等得到∠BDF=∠ODA,所以∠OAD=∠BDF,然后證明∠COD=∠OAD得到∠CAB=2∠BDF;
(2)連接BC交OD于H,如圖,利用垂徑定理得到OD⊥BC,則CH=BH,于是可判斷OH為△ABC的中位線,所以O(shè)H=1.5,則HD=1,然后證明四邊形DHCE為矩形得到CE=DH=1.【詳解】(1)證明:連接AD,如圖,∵AB為⊙O的直徑,∴∠ADB=90°,∵EF為切線,∴OD⊥DF,∵∠BDF+∠ODB=90°,∠ODA+∠ODB=90°,∴∠BDF=∠ODA,∵OA=OD,∴∠OAD=∠ODA,∴∠OAD=∠BDF,∵D是弧BC的中點(diǎn),∴∠COD=∠OAD,∴∠CAB=2∠BDF;(2)解:連接BC交OD于H,如圖,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 【正版授權(quán)】 ISO/TS 7815-1:2025 EN Intelligent transport systems - Telematics applications for regulated commercial freight vehicles (TARV) using ITS stations - Part 1: Secure vehicle in
- 精餾塔苯甲苯課程設(shè)計
- 統(tǒng)計信源熵課程設(shè)計
- 移動通信秒表課程設(shè)計
- 泵與泵站課程設(shè)計概要
- 2024招聘考試高頻考點(diǎn)題庫試題含答案
- 線描狗狗創(chuàng)意課程設(shè)計
- 山地自行車行業(yè)銷售工作總結(jié)
- 自然教育課程設(shè)計大賽
- 學(xué)校班主任的食品安全教育策略計劃
- 南京工業(yè)大學(xué)《建筑結(jié)構(gòu)與選型》2021-2022學(xué)年第一學(xué)期期末試卷
- 派出所考勤制度管理制度
- 網(wǎng)絡(luò)評論員培訓(xùn)
- 2024年西藏中考語文真題
- 某大廈10kv配電室增容改造工程施工方案
- 中建“大商務(wù)”管理實(shí)施方案
- 2024年航空職業(yè)技能鑒定考試-航空乘務(wù)員危險品考試近5年真題集錦(頻考類試題)帶答案
- 表 6-1-12? 咽喉部檢查法評分標(biāo)準(zhǔn)
- 2024-2025學(xué)年四年級科學(xué)上冊第一單元《聲音》測試卷(教科版)
- 2024年湖南省長沙市中考數(shù)學(xué)試題(含解析)
- 2024年大學(xué)華西醫(yī)院運(yùn)營管理部招考聘用3人高頻難、易錯點(diǎn)500題模擬試題附帶答案詳解
評論
0/150
提交評論