CSA大型語言模型(LLM)威脅分類 Large Language Model (LLM) Threats Taxonomy_第1頁
CSA大型語言模型(LLM)威脅分類 Large Language Model (LLM) Threats Taxonomy_第2頁
CSA大型語言模型(LLM)威脅分類 Large Language Model (LLM) Threats Taxonomy_第3頁
CSA大型語言模型(LLM)威脅分類 Large Language Model (LLM) Threats Taxonomy_第4頁
CSA大型語言模型(LLM)威脅分類 Large Language Model (LLM) Threats Taxonomy_第5頁
已閱讀5頁,還剩54頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

LargeLanguageModel(LLM)ThreatsTaxonomy

ThepermanentandofficiallocationfortheAIControlsFrameworkWorkingGroupis

/research/working-groups/ai-controls

?2024CloudSecurityAlliance–AllRightsReserved.Youmaydownload,store,displayonyour

computer,view,print,andlinktotheCloudSecurityAllianceat

subject

tothefollowing:(a)thedraftmaybeusedsolelyforyourpersonal,informational,noncommercialuse;(b)thedraftmaynotbemodifiedoralteredinanyway;(c)thedraftmaynotberedistributed;and(d)the

trademark,copyrightorothernoticesmaynotberemoved.Youmayquoteportionsofthedraftas

permittedbytheFairUseprovisionsoftheUnitedStatesCopyrightAct,providedthatyouattributetheportionstotheCloudSecurityAlliance.

?Copyright2024,CloudSecurityAlliance.Allrightsreserved.2

Acknowledgments

LeadAuthors

Reviewers

SiahBurke

PhilAlger

MarcoCapotondi

IlangoAllikuzhi

DanieleCatteddu

BakrAbdouh

KenHuang

VinayBansalVijayBolinaBrianBrinkley

Contributors

AnupamChatterjeeJasonClinton

MarinaBregkou

VidyaBalasubramanian

AlanCurranSandyDunnDavidGee

AvishayBar

ZackHamilton

MonicaChakrabortyAntonChuvakin

RicardoFerreiraAlessandroGrecoKrystalJackson

VicHargraveJerryHuang

RajeshKambleGianKapoorRicoKomenda

GianKapoor

VaniMittal

KushalKumar

AnkitaKumariYutaoMa

DannyManimboVishwasManralJesusLuna

MichaelRoza

LarsRuddigheit

JasonMorton

AmeyaNaik

GabrielNwajiakuMeghanaParwatePrabalPathak

RuchirPatwa

BrianPendletonKunalPradhan

DorSarig

Dr.MattRoldan

AmitSharma

RakeshSharmaKurtSeifried

CalebSima

EricTierling

JenniferToren

RobvanderVeerAshishVashishthaSounilYu

DennisXu

OmarSantos

Dr.JoshuaScarpino

NataliaSemenova

BhuvaneswariSelvaduraiJamillahShakoor

TalShapira

AkramSheriff

SrinivasTatipamula

Maria(MJ)SchwengerMahmoudZamani

RaphaelZimme

?Copyright2024,CloudSecurityAlliance.Allrightsreserved.3

TableofContents

Acknowledgments 3

TableofContents 4

ObjectivesandScope 5

RelationshipwiththeCSAAIControlFramework 6

1.LargeLanguageModelAssets 7

1.1.DataAssets 7

1.2.LLM-OpsCloudEnvironment 9

1.3.Model 10

1.4.OrchestratedServices 11

1.5.AIApplications 13

2.LLM-ServiceLifecycle 15

2.1Preparation 16

2.2Development 17

2.3Evaluation/Validation 18

2.4Deployment 20

2.5Delivery 22

2.6ServiceRetirement 24

3.LLM-ServiceImpactCategories 26

4.LLMServiceThreatCategories 26

4.1.ModelManipulation 26

4.2.DataPoisoning 27

4.3.SensitiveDataDisclosure 27

4.4.ModelTheft 27

4.5.ModelFailure/Malfunctioning 27

4.6.InsecureSupplyChain 27

4.7.InsecureApps/Plugins 27

4.8.DenialofService(DoS) 28

4.9.LossofGovernance/Compliance 28

5.References/Sources 29

?Copyright2024,CloudSecurityAlliance.Allrightsreserved.4

ObjectivesandScope

ThisdocumentwasauthoredbytheCloudSecurityAlliance(CSA)ArtificialIntelligence(AI)Controls

FrameworkWorkingGroup,withinthecontextoftheCSAAISafetyInitiative.Itestablishesacommon

taxonomyanddefinitionsforkeytermsrelatedtoriskscenariosandthreatstoLargeLanguageModels(LLMs).ThegoalistoprovideasharedlanguageandconceptualframeworktofacilitatecommunicationandalignmentwithintheIndustryandtosupportadditionalresearchwithinthecontextoftheCSAAI

SafetyInitiative.Morespecifically,thesedefinitionsandtaxonomyareintendedtoassisttheCSAAIControlWorkingGroupandtheCSAAITechnologyandRiskWorkingGroupintheirongoingefforts.

Inthiseffort,wefocusonthedefinitionofthefollowingelements(SeeFigure1):

●LLMAssets

●LLM-ServiceLifecycle

●LLM-ServiceImpactCategories

●LLM-ServiceThreatCategories

Figure1:CSALLMThreatTaxonomy

?Copyright2024,CloudSecurityAlliance.Allrightsreserved.5

Thesedefinitionsandtaxonomyreflectanextensivereviewoftheavailableliterature,aswellasmeetingsanddiscussionsamongWorkingGroupmembersandco-chairs.Throughthiscollaborativeexercise,a

strongconsensusemerged,establishingafoundationalsetofcommonterminologiesguidingourcollectiveefforts.

Thisdocumentdrawsinspirationfromnumerousindustryreferencescitedattheendofthedocument,andmostnotablyfromNISTAI100-2E2023titled“AdversarialMachineLearning:ATaxonomyand

TerminologyofAttacksandMitigations”[Barrettetal.,2023].

Withthesedefinitionsandtaxonomy,conversationsregardingtheevaluationofAIthreatsandrisks,

developingappropriatecontrolmeasures,andgoverningresponsibleAIdevelopmentcanadvancewithgreaterclarityandconsistencyacrossdiverseCSAgroupsandamongstakeholders.Establishinga

commonnomenclaturereducesconfusion,helpsconnectrelatedconcepts,andfacilitatesmoreprecisedialogue.ThisdocumentconsolidateskeytermsintoacentralreferenceservingthepurposeofaligningboththeAIControlWorkingGroupandtheAITechandRiskWorkingGroupwithintheCSAAISafetyInitiative.

RelationshipwiththeCSAAIControlFramework

TheCSAAIControlFrameworkWorkingGroup’sgoalistodefineaframeworkofcontrolobjectivestosupportorganizationsintheirsecureandresponsibledevelopment,management,anduseofAI

technologies.TheframeworkwillassistinevaluatingrisksanddefiningcontrolsrelatedtoGenerativeAI(GenAI),particularlyLLMs.

Thecontrolobjectiveswillcoveraspectsrelatedtocybersecurity.Additionally,itwillcoveraspectsrelatedtosafety,privacy,transparency,accountability,andexplainabilityasfarastheyrelatetocybersecurity.

PleasereviewCSA’sblogposttoexplorethedifferencesandcommonalitiesbetween

AISafetyandAI

Security

.

Byfocusingonthebusiness-to-businessimplications,theCSAAIControlFrameworkcomplements

governmentefforts1inprotectingnationalsecurity,citizen’srightsandlegalenforcement,advocatingforsecureandethicalAIapplicationsthatcomplywithglobalstandardsandregulations.

1E.g.EUAIAct,U.S.ArtificialIntelligenceSafetyInstitute(USAISI),etc.

?Copyright2024,CloudSecurityAlliance.Allrightsreserved.6

1.LargeLanguageModelAssets

ThissectiondefinesthefoundationalcomponentsessentialforimplementingandmanagingLLM

systems,fromthedetaileddataassetscrucialfortrainingandfine-tuningthesemodels,tothecomplexLLM-Opsenvironment,ensuringseamlessdeploymentandoperationofAIsystems.Furthermore,this

sectionclarifiestheLLM'ssignificance,architecture,capabilities,andoptimizationtechniques(seeFigure2).Additionally,thissectionexploresthevitalaspectofassetprotection,leveragingtheResponsible,

Accountable,Consulted,Informed(RACI)matrixtodelineateresponsibilitieswithinbothopen-sourcecommunitiesandorganizationstowardsimplementationofAIservices.

Figure2:LLMAssets

1.1.DataAssets

InLLMservices,manyassetsplayanintegralroleinshapingaservice'sefficacyandfunctionality.Data

assetsareattheforefrontoftheseassetsandserveasthecornerstoneofLLMoperations.ThelistbelowdescribesthetypicalrangeofassetsconstitutinganLLMService:

?Copyright2024,CloudSecurityAlliance.Allrightsreserved.7

●Datausedfortraining,benchmarking,testing,andvalidation

●Datausedforfine-tunetraining

●DatausedforRetrieval-AugmentedGeneration(RAG)

●Datacardsthatdefinethemetadataofthedatainuse

●Inputdata

●Usersessiondata

●Modeloutputdata

●Modelparameters(weights)

●Modelhyperparameters

●LogdatafromLLMsystems

Thefollowingarethedefinitionsoftheseassets:

1.Training,benchmarking,testing,andvalidationdata:Thisencompassesthedatasetusedtotrain,benchmark,test,andvalidatethemodel,consistingoftextsourcesfromwhichthemodelderivesinsightsintolanguagepatterns,andsemanticsthatareimperativeforqualityofthemodel.Eachdataelementis

treatedandmanagedindividually.

2.Fine-tunetrainingdata:Additionaldataisemployedtofine-tuneorfurtherpre-trainthemodelpost-initialtraining.Thisfacilitatesadjustmentstothemodel’sparameterstoalignmorecloselywithspecificusecasesordomains,enhancingitsadaptabilityandaccuracy.

3.Retrieval-AugmentedGeneration(RAG):IntegratesexternalknowledgebaseswithLLMs.By

retrievingrelevantinformationbeforegeneratingresponses,RAGenablesLLMstoleveragebothmodelknowledgeandexternalknowledgeeffectively.RAGcanretrievesupplementarydatafromvarious

sources,includinginternalsystems,andpublicsources,suchastheInternet,enrichinginputpromptsandrefiningthemodel'scontextualunderstandingtoproducehigher-qualityresponses.

4.Datacards:MetadataofthedatasetsusedforvariouspurposesinLLMneedstobemaintained.ThishelpsgovernAIdataandprovideslineage,traceability,ownership,datasensitivity,andcompliance

regimesforeverydatasetused.Storingandthencontinuouslyupdatingdatacardsasthedata,ownership,orrequirementschangeisessentialtomaintaincomplianceandvisibility.

5.Inputdata(system-levelprompt):Theinputdataisprovidedtosetthecontextandboundaries

aroundLLMsystems.Thesedatasetsareadditionallyusedtosettopicboundariesandguardrailsincaseofadversarialgeneration.

6.Usersessiondata:InformationamassedduringuserinteractionswiththeAIsystems,encompassinginputqueries,model-generatedresponses,andanysupplementarycontextprovidedbyusers,facilitatingpersonalizedinteractions.

7.Modeloutputdata:Theresultantoutputgeneratedbythemodelinresponsetoinputprompts,encompassingtextresponses,predictions,orotherformsofprocesseddata,reflectiveofthemodel'scomprehensionandinferencecapabilities.

?Copyright2024,CloudSecurityAlliance.Allrightsreserved.8

8.Modelparameters(weights):Internalparametersorweightsacquiredbythemodelduringtraining,delineatingitsbehaviorandexertingaprofoundinfluenceonitscapacitytogenerateandcontextuallyrelevantresponses.

9.Modelhyperparameters:Configurationsorsettingsspecifiedduringmodeltraining,including

parameterssuchaslearningrate,batchsize,orarchitecturechoices,arepivotalinshapingthemodel'soverallperformanceandbehavior.

10.Logdata:Recordeddataencapsulatingvariouseventsandinteractionsduringthemodel'soperation,

includinginputprompts,modelresponses,performancemetrics,andanyencounterederrorsoranomalies,instrumentalformonitoringandrefiningthemodel'sfunctionalityandperformance.

1.2.LLM-OpsCloudEnvironment

TheLLM-OpsEnvironmentencompassestheinfrastructureandprocessesinvolvedinthedeploymentandoperationofLLMs.Thefollowingbulletpointsarethekeytermsassociatedwiththisenvironment:

●Cloudrunningthetrainingenvironment

●Cloudrunningthemodelinferencepoint

●CloudrunningtheAIapplications

●Hybridandmulti-cloudinfrastructure

●Securityofthedeploymentenvironment

●Continuousmonitoring

●Cloudtohosttrainingdata(Storage)

ThesignificanceandessenceofeachoftheaboveassetwithintheframeworkoftheLLM-OpsEnvironmentisdescribedbelow:

1.Cloudrunningthetrainingenvironment:Thisdenotesthecloudplatformorserviceproviderentrustedwithhostingandmanagingthecomputationalresources,storagefacilities,andancillaryinfrastructurepivotalfortrainingLLMs.Itservesasthedevelopmentspacewheremodelsundergoiterativerefinementandenhancement.

2.Cloudrunningthemodelinferencepoint:Thisencapsulatesthecloudplatformorserviceprovidertaskedwithhostingandadministeringthecomputationalresources,storagesolutions,andassociated

infrastructureindispensablefordeployingLLMsandfacilitatinginferenceprocesses.Itenablesthemodeltogenerateresponsesbasedonuserinputs,ensuringseamlessinteractionandresponsiveness.

3.Public/Private/HybridCloudRunningtheAIapplications:ThisreferstothecloudplatformorserviceproviderentrustedwithhostingandoverseeingtheinfrastructureessentialforrunningAI

applicationsorAIservices,harnessingthecapabilitiesoftrainedlanguagemodels.ItservesastheoperationalhubwhereAI-drivenapplicationsleveragetheinferenceprowessofmodelstodelivervalue-addedfunctionalitiesandservicestoend-users.

4.Securityofthedeploymentenvironment:ThisencompassesthearrayofmechanismsandpoliciesimplementedtogovernandfortifyaccesstotheassortedcomponentsoftheLLM-OpsEnvironment.It

?Copyright2024,CloudSecurityAlliance.Allrightsreserved.9

encompassesIdentityandAccessManagement(IAM)protocolsandnetworksecuritymeasures,safeguardingtheintegrityandconfidentialityofcriticalassetsandfunctionalities.

5.Continuousmonitoring:ThisdenotestheongoingprocessofvigilantlyscrutinizingtheLLM-OpsEnvironment'sperformance,securityposture,andoverallwell-being.Itencompassesthevigilant

surveillanceofthetrainingenvironment,inferenceendpoint,andapplicationcomponents,ensuringoptimalfunctionalitywhilepromptlyidentifyingandremedyinganyanomaliesorissuesthatmayarise.

6.Cloudtohosttrainingdata(Storage):Thissignifiesthecloudplatformorserviceprovidertaskedwithsecurelyhousingandmanagingtheextensivedatasetsrequisitefortraininglanguagemodels.Itentailsrobuststorageanddatamanagementcapabilitiestoaccommodatethevoluminousanddiversedatasetsfundamentalfornurturingandrefininglanguagemodels.

1.3.Model

Theconceptof"Model"inthecontextofMLreferstoamathematicalrepresentationoranalgorithmtrainedtomakepredictionsorperformaspecifictask.

Thechoiceoffoundationmodel,fine-tuningapproach,andthedecisiontouseopen-sourceor

closed-sourcemodelscansignificantlyaffectLLMs'capabilities,performance,anddeploymentflexibilitywithinvariousapplicationsanddomains.

Wedefinethefollowingmodelassetsinthissubsection:

●FoundationModel

●Fine-TunedModel

●OpenSourcevs.ClosedSourceModels

●Domain-SpecificModels

●Modelcards

1.FoundationModel:

TheFoundationModelisthebaseuponwhichfurtheradvancementsarebuilt.Thesemodelsaretypicallylarge,pre-trainedlanguagemodelsthatencapsulateabroadunderstandingoflanguage,obtainedfromextensiveexposuretounlabeledtextdatathroughself-supervisedlearningtechniques.Foundation

models,ingeneral,provideastartingpointforsubsequentfine-tuningandspecializationtocaterto

specifictasksordomains.Forsomeadvancedandinnovativefoundationmodels,anotherterm,

“Frontier

Model”

canbeusedtorepresentabrandnewfoundationmodelintheAIMarketplace.FromanAIperspective,sometimestheterm“BaseModel''representsfoundationmodelsintheapplicationtechnologystacks.

2.Fine-TunedModel:

DerivedfromtheFoundationModel,theFine-TunedModelundergoesrefinementandadaptationto

catertospecifictasksordomains.Throughtheprocessoffine-tuning,theparametersofthefoundationmodelareupdatedutilizingsupervisedlearningtechniquesandtask-specificlabeleddata.Thisiterativeprocessenablesthemodeltoenhanceitsperformanceontargettasksordomainswhileretainingthe

foundationalknowledgeandcapabilitiesinheritedfromtheFoundationModel.

?Copyright2024,CloudSecurityAlliance.Allrightsreserved.10

3.Open-Sourcevs.Closed-SourceModels:

Thisdichotomypertainstotheaccessibilityandlicensingofamodel'ssourcecode,modelweights,andassociatedartifacts.Open-sourcemodelsmayreleasesomeoralloftheirtrainingdataandsourcecode,datausedforthemodeldevelopment,modelarchitecture,weights,andtoolstothepublicunder

open-sourcelicenses,grantingfreeusagewithspecifictermsandconditions.However,closed-sourcemodelsmaintainproprietarystatus,withholdingtheirsourcecode,weights,andimplementationdetailsfromthepublicdomain,oftenmotivatedbyintellectualpropertyprotectionorcommercialinterests.

Closed-sourcemodelsthatallowuserstoaccessthemodelsforfinetuningorinferencepurposesarecalledOpenaccessmodels.

Thesemodelassetscollectivelyformthebackboneofmodeldevelopment,fosteringinnovation,adaptability,andaccessibilitywithinGenAI.

4.Domain-SpecificModels:

Domain-specificmodelsrefertomachinelearningmodelsthataredesignedandtrainedtoexcelonspecificdomainknowledge,suchasfinancial,medicines,andcoding.

5.Modelcards:

Thecharacteristicsofmodelscanbedescribedusingmodelcards.ModelcardsarefilesthatmaintainthecontextofthemodelwhichisessentialforGovernanceandmakingsureAImodelscanbeusedcorrectly.Modelcards2consistofmodelcontextdetailslikeownership,performancecharacteristics,datasetsthemodelistrainedon,orderoftrainingetc.Thisalsohelpswithtraceability,lineageandunderstandingthebehaviorofthemodel.Modelcardsneedtobecontinuouslymaintainedandupdatedasthecontext

metadatachanges.[CSA,2024]

Moredetailsofmodelcardscanbefound,forexample,atthe

HuggingFace

platform,wherethemachinelearningcommunitycollaboratesonmodels,datasets,andapplications.

1.4.OrchestratedServices

TheseservicesencompassarangeofcomponentsandfunctionalitiesthatenabletheefficientandsecureoperationofLLMs.

ThefollowingisthelistofOrchestratedServicesAssets:

●CachingServices

●SecurityGateways(LLMGateways)

●DeploymentServices

●MonitoringServices

●OptimizationServices

●Plug-insforSecurity

●Plug-insforCustomizationandIntegration

●LLMGeneralAgents

2Formoredetailson‘Modelcards’pleaseconsultthe‘AIModelRiskManagementFramework’ofthe

AIRiskandTechnology

workinggroup

.

?Copyright2024,CloudSecurityAlliance.Allrightsreserved.11

Definitionandsignificanceofeachoftheabovelistedassetswithinthecontextoforchestratedservicesfollowsbelow.

1.CachingServices:

CachingServicesrefertosystemsorcomponentsthatfacilitatethecachingofmodelpredictions,inputs,orotherdatatoenhanceperformancebyreducingredundantcomputations.Bytemporarilystoring

frequentlyaccesseddata,cachingserviceshelpminimizeresponsetimesandalleviatecomputationalstrainonLLMs.

2.SecurityGateways(LLMGateways):

SecurityGateways,alsoknownasLLMGateways,arespecializedcomponentsthatserveas

intermediariesbetweenLLMsandexternalsystems.Thesegatewaysbolstersecuritybyimplementingaccesscontrolmeasures,inputvalidation,filteringmaliciouscontent(suchaspromptinjections),

PII/privacyinformation,andsafeguardsagainstpotentialthreatsormisuse,ensuringtheintegrityandconfidentialityofdataprocessedbyLLMs.

3.DeploymentServices:

DeploymentServicesstreamlinethedeploymentandscalingofLLMsacrossdiverseenvironments,includingcloudplatformsandon-premisesinfrastructure.Theseservicesautomatedeployment

processes,facilitateversionmanagement,andoptimizeresourceallocationtoensureefficientandseamlessLLMdeployment.

4.MonitoringServices:

MonitoringServicesarepivotalinoverseeingLLMsecurity,performance,health,andusage.These

servicesemploymonitoringtoolsandtechniquestogatherreal-timeinsights,detectanomalies,misuse(suchaspromptinjections)andissuealerts,enablingsecurity,proactivemaintenance,andtimely

interventiontoupholdtheoptimaloperationofLLMs.

5.OptimizationServices:

OptimizationServicesaregearedtowardsoptimizingtheperformanceandresourceutilizationofLLMs.Theseservicesemployarangeoftechniquessuchasmodelquantization,pruning,efficientinference

strategiestoenhanceLLMefficiency,reductionofcomputationaloverhead,andimprovementofoverallperformanceacrossdiversedeploymentscenarios.

6.Plug-insforSecurity:

Securityplug-insextendLLMsecuritybyprovidingdataencryption,accesscontrolmechanisms,threatdetectioncapabilities,andcomplianceenforcementmeasures,thusincreasingcyberresiliency.

7.Plug-insforCustomizationandIntegration:

Plug-insforCustomizationandIntegrationenablethecustomizationofLLMbehaviorandseamless

integrationwithothersystems,applications,ordatasources.Theseplug-insprovideflexibilityintailoring

LLMfunctionalitiestospecificusecasesordomainsandfacilitateinteroperabilitywithexistinginfrastructure,fosteringenhancedversatilityandutilityofLLMdeployments.

?Copyright2024,CloudSecurityAlliance.Allrightsreserved.12

8.LLMGeneralAgents:

LLMGeneralAgentsareintelligentagentsorcomponentscollaboratingwithLLMstoaugmenttheirfunctionalitiesandcapabilities.Theseagentsmayperformvarioustasks,suchas

●planning,

●reflection,

●functioncalling,

●monitoring,

●dataprocessing,

●explainability,

●optimization,

●scaling,andcollaboration,

●andenhancingtheversatilityandadaptabilityofLLMdeploymentsindiverseoperationalcontexts.

1.5.AIApplications

AIapplicationshavebecomeubiquitous,permeatingvariousfacetsofourdailylivesandbusiness

operations.Fromcontentgenerationtolanguagetranslationandbeyond,AIapplicationsfueledbyLLMshaverevolutionizedindustriesandreshapedhowweinteractwithinformationandtechnology.However,withtheproliferationofAIapplicationscomestheimperativeneedforeffectivecontrolframeworksto

governtheirdevelopment,deployment,andusage.

AIapplicationsrepresentthepinnacleofinnovation,offeringmanycapabilitiesthatcatertodiverse

businessdomainsandusecases.TheseapplicationsleveragethepowerofLLMstodecipherandprocessnaturallanguageinputs,enablingfunctionalitiessuchascontentgeneration,questionanswering,

sentimentanalysis,languagetranslation,andmore.Essentially,AIapplicationsserveastheinterface

throughwhichusersinteractwiththeunderlyingintelligenceofLLMs,facilitatingseamlesscommunicationandtaskautomationacrossvariousdomains.

AsdownstreamapplicationsofLLMs,AIapplicationsareoneofthemostimportantassetstoconsiderinanAIcontrolframework.TheyrepresentthedirecttouchpointbetweenLLMtechnologyandend-users,shapinghowusersperceiveandinteractwithAIsystems.Assuch,AIapplicationshavethepotentialtoamplifythebenefitsorrisksassociatedwithLLMs.

AIapplicationscanhavesignificanteconomicimpacts.AsbusinessesincreasinglyrelyonAIapplicationstodriveinnovation,streamlineoperations,andgaincompetitiveadvantages,theresponsible

developmentanddeploymentoftheseapplicationsbecomecrucialformaintainingmarketintegrityandfosteringalevelplayingfield.

Giventheseconsiderations,anAIcontrolframeworkmustprioritizethegovernanceandoversightofAIapplications.ThisincludesestablishingguidelinesandstandardsforAIapplicationdevelopment,testing,deployment,operation,andmaintenance,ensuringcompliancewithrelevantregulations,andpromotingtransparencyandaccountabilitythroughouttheAIapplicationlifecycle.Additionally,theframework

shouldfacilitatecontinuousmonitoringandevaluationofAIapplications,enablingtimelyidentificationandmitigationofpotentialrisksorunintendedconsequences.

?Copyright2024,CloudSecurityAlliance.Allrightsreserved.13

ByprioritizingAIapplicationsintheAIcontrolframework,organizationscanproactivelyaddressthechallengesandrisksassociatedwithLLM-poweredapplicationswhileunlockingtheirtransformativepotentialtodriveinnovationandimprovelives.

AIapplicationcardsarefilesthatmaintaintheAIcontextoftheapplicationwhichisessentialfor

governanceoftheapplication.AIapplicationcardsconveytheAIdataoftheapplications,including

modelsused,datasetsused,applicationandAIusecases,applicationowners(seedifferentkindsof

ownersfromtheRACImodelinthenextsection),andguardians.AIapplicationcardsareaneasywayto

conveyandshareAIdataforapplications,tohelpAIgovernanceexecutives,AIcouncils,andregulatorstounderstandtheapplicationandtheAIituses.TheAIapplicationcardsmayinturnpointtomodeland

datacards.

?Copyright2024,CloudSecurityAlliance.Allrightsreserved.14

2.LLM-ServiceLifecycle

TheLLM-ServiceLifecycleoutlinesdistinctphases,eachcrucialinensuringtheservice'sefficiency,

reliability,andrelevancethroughoutitslifespan.Fromthepreparatorystagesofconceptualizationand

planningtotheeventualarchivinganddisposal,eachphaseisintricatelyintegratedintoacomprehensiveframeworkdesignedtoimproveservicedeliveryandmaintainalignmentwithevolvingneedsand

standards.Organizationscanmanageservicedevelopment,evaluation,deployment,delivery,andretirementthroughthisstructuredapproachwithclarityandeffectiveness.

DrawinguponemergingstandardslikeISO/IEC5338onAIsystemlifecycles,andreviewsfrom

organizationsliketheUK'sCentreforDataEthicsandInnovation(CDEI),thislifecyclecoverstheend-to-endprocess,fromearlypreparationanddesignthroughtraining,evaluation,deployment,operation,andeventuallyretirement.

Thefollowingisthehigh-levelbreakdownofthelifecyclewewilldefineinthissection.

●Preparation:

。Datacollection

。Datacuration

。Datastorage

。Resourceprovisioning。Teamandexpertise

●Development:

。Design。Training

。Keyconsiderationsduringdevelopment。Guardrails

●Evaluation/Validation:

。Evaluation

。Validation/RedTeaming。Re-evaluation

。Keyconsiderationsduringevaluation/validation

●Deployment:

。Orchestration

。AIServicessupplychain。AIapplications

●Delivery:

。Operations。Maintenance

。Continuousmonitoring。Continuousimprovement

?Copyright2024,CloudS

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論