![CSA大型語言模型(LLM)威脅分類 Large Language Model (LLM) Threats Taxonomy_第1頁](http://file4.renrendoc.com/view14/M08/04/3E/wKhkGWaCvXOADpbeAAFxEKsOd8U150.jpg)
![CSA大型語言模型(LLM)威脅分類 Large Language Model (LLM) Threats Taxonomy_第2頁](http://file4.renrendoc.com/view14/M08/04/3E/wKhkGWaCvXOADpbeAAFxEKsOd8U1502.jpg)
![CSA大型語言模型(LLM)威脅分類 Large Language Model (LLM) Threats Taxonomy_第3頁](http://file4.renrendoc.com/view14/M08/04/3E/wKhkGWaCvXOADpbeAAFxEKsOd8U1503.jpg)
![CSA大型語言模型(LLM)威脅分類 Large Language Model (LLM) Threats Taxonomy_第4頁](http://file4.renrendoc.com/view14/M08/04/3E/wKhkGWaCvXOADpbeAAFxEKsOd8U1504.jpg)
![CSA大型語言模型(LLM)威脅分類 Large Language Model (LLM) Threats Taxonomy_第5頁](http://file4.renrendoc.com/view14/M08/04/3E/wKhkGWaCvXOADpbeAAFxEKsOd8U1505.jpg)
版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
LargeLanguageModel(LLM)ThreatsTaxonomy
ThepermanentandofficiallocationfortheAIControlsFrameworkWorkingGroupis
/research/working-groups/ai-controls
?2024CloudSecurityAlliance–AllRightsReserved.Youmaydownload,store,displayonyour
computer,view,print,andlinktotheCloudSecurityAllianceat
subject
tothefollowing:(a)thedraftmaybeusedsolelyforyourpersonal,informational,noncommercialuse;(b)thedraftmaynotbemodifiedoralteredinanyway;(c)thedraftmaynotberedistributed;and(d)the
trademark,copyrightorothernoticesmaynotberemoved.Youmayquoteportionsofthedraftas
permittedbytheFairUseprovisionsoftheUnitedStatesCopyrightAct,providedthatyouattributetheportionstotheCloudSecurityAlliance.
?Copyright2024,CloudSecurityAlliance.Allrightsreserved.2
Acknowledgments
LeadAuthors
Reviewers
SiahBurke
PhilAlger
MarcoCapotondi
IlangoAllikuzhi
DanieleCatteddu
BakrAbdouh
KenHuang
VinayBansalVijayBolinaBrianBrinkley
Contributors
AnupamChatterjeeJasonClinton
MarinaBregkou
VidyaBalasubramanian
AlanCurranSandyDunnDavidGee
AvishayBar
ZackHamilton
MonicaChakrabortyAntonChuvakin
RicardoFerreiraAlessandroGrecoKrystalJackson
VicHargraveJerryHuang
RajeshKambleGianKapoorRicoKomenda
GianKapoor
VaniMittal
KushalKumar
AnkitaKumariYutaoMa
DannyManimboVishwasManralJesusLuna
MichaelRoza
LarsRuddigheit
JasonMorton
AmeyaNaik
GabrielNwajiakuMeghanaParwatePrabalPathak
RuchirPatwa
BrianPendletonKunalPradhan
DorSarig
Dr.MattRoldan
AmitSharma
RakeshSharmaKurtSeifried
CalebSima
EricTierling
JenniferToren
RobvanderVeerAshishVashishthaSounilYu
DennisXu
OmarSantos
Dr.JoshuaScarpino
NataliaSemenova
BhuvaneswariSelvaduraiJamillahShakoor
TalShapira
AkramSheriff
SrinivasTatipamula
Maria(MJ)SchwengerMahmoudZamani
RaphaelZimme
?Copyright2024,CloudSecurityAlliance.Allrightsreserved.3
TableofContents
Acknowledgments 3
TableofContents 4
ObjectivesandScope 5
RelationshipwiththeCSAAIControlFramework 6
1.LargeLanguageModelAssets 7
1.1.DataAssets 7
1.2.LLM-OpsCloudEnvironment 9
1.3.Model 10
1.4.OrchestratedServices 11
1.5.AIApplications 13
2.LLM-ServiceLifecycle 15
2.1Preparation 16
2.2Development 17
2.3Evaluation/Validation 18
2.4Deployment 20
2.5Delivery 22
2.6ServiceRetirement 24
3.LLM-ServiceImpactCategories 26
4.LLMServiceThreatCategories 26
4.1.ModelManipulation 26
4.2.DataPoisoning 27
4.3.SensitiveDataDisclosure 27
4.4.ModelTheft 27
4.5.ModelFailure/Malfunctioning 27
4.6.InsecureSupplyChain 27
4.7.InsecureApps/Plugins 27
4.8.DenialofService(DoS) 28
4.9.LossofGovernance/Compliance 28
5.References/Sources 29
?Copyright2024,CloudSecurityAlliance.Allrightsreserved.4
ObjectivesandScope
ThisdocumentwasauthoredbytheCloudSecurityAlliance(CSA)ArtificialIntelligence(AI)Controls
FrameworkWorkingGroup,withinthecontextoftheCSAAISafetyInitiative.Itestablishesacommon
taxonomyanddefinitionsforkeytermsrelatedtoriskscenariosandthreatstoLargeLanguageModels(LLMs).ThegoalistoprovideasharedlanguageandconceptualframeworktofacilitatecommunicationandalignmentwithintheIndustryandtosupportadditionalresearchwithinthecontextoftheCSAAI
SafetyInitiative.Morespecifically,thesedefinitionsandtaxonomyareintendedtoassisttheCSAAIControlWorkingGroupandtheCSAAITechnologyandRiskWorkingGroupintheirongoingefforts.
Inthiseffort,wefocusonthedefinitionofthefollowingelements(SeeFigure1):
●LLMAssets
●LLM-ServiceLifecycle
●LLM-ServiceImpactCategories
●LLM-ServiceThreatCategories
Figure1:CSALLMThreatTaxonomy
?Copyright2024,CloudSecurityAlliance.Allrightsreserved.5
Thesedefinitionsandtaxonomyreflectanextensivereviewoftheavailableliterature,aswellasmeetingsanddiscussionsamongWorkingGroupmembersandco-chairs.Throughthiscollaborativeexercise,a
strongconsensusemerged,establishingafoundationalsetofcommonterminologiesguidingourcollectiveefforts.
Thisdocumentdrawsinspirationfromnumerousindustryreferencescitedattheendofthedocument,andmostnotablyfromNISTAI100-2E2023titled“AdversarialMachineLearning:ATaxonomyand
TerminologyofAttacksandMitigations”[Barrettetal.,2023].
Withthesedefinitionsandtaxonomy,conversationsregardingtheevaluationofAIthreatsandrisks,
developingappropriatecontrolmeasures,andgoverningresponsibleAIdevelopmentcanadvancewithgreaterclarityandconsistencyacrossdiverseCSAgroupsandamongstakeholders.Establishinga
commonnomenclaturereducesconfusion,helpsconnectrelatedconcepts,andfacilitatesmoreprecisedialogue.ThisdocumentconsolidateskeytermsintoacentralreferenceservingthepurposeofaligningboththeAIControlWorkingGroupandtheAITechandRiskWorkingGroupwithintheCSAAISafetyInitiative.
RelationshipwiththeCSAAIControlFramework
TheCSAAIControlFrameworkWorkingGroup’sgoalistodefineaframeworkofcontrolobjectivestosupportorganizationsintheirsecureandresponsibledevelopment,management,anduseofAI
technologies.TheframeworkwillassistinevaluatingrisksanddefiningcontrolsrelatedtoGenerativeAI(GenAI),particularlyLLMs.
Thecontrolobjectiveswillcoveraspectsrelatedtocybersecurity.Additionally,itwillcoveraspectsrelatedtosafety,privacy,transparency,accountability,andexplainabilityasfarastheyrelatetocybersecurity.
PleasereviewCSA’sblogposttoexplorethedifferencesandcommonalitiesbetween
AISafetyandAI
Security
.
Byfocusingonthebusiness-to-businessimplications,theCSAAIControlFrameworkcomplements
governmentefforts1inprotectingnationalsecurity,citizen’srightsandlegalenforcement,advocatingforsecureandethicalAIapplicationsthatcomplywithglobalstandardsandregulations.
1E.g.EUAIAct,U.S.ArtificialIntelligenceSafetyInstitute(USAISI),etc.
?Copyright2024,CloudSecurityAlliance.Allrightsreserved.6
1.LargeLanguageModelAssets
ThissectiondefinesthefoundationalcomponentsessentialforimplementingandmanagingLLM
systems,fromthedetaileddataassetscrucialfortrainingandfine-tuningthesemodels,tothecomplexLLM-Opsenvironment,ensuringseamlessdeploymentandoperationofAIsystems.Furthermore,this
sectionclarifiestheLLM'ssignificance,architecture,capabilities,andoptimizationtechniques(seeFigure2).Additionally,thissectionexploresthevitalaspectofassetprotection,leveragingtheResponsible,
Accountable,Consulted,Informed(RACI)matrixtodelineateresponsibilitieswithinbothopen-sourcecommunitiesandorganizationstowardsimplementationofAIservices.
Figure2:LLMAssets
1.1.DataAssets
InLLMservices,manyassetsplayanintegralroleinshapingaservice'sefficacyandfunctionality.Data
assetsareattheforefrontoftheseassetsandserveasthecornerstoneofLLMoperations.ThelistbelowdescribesthetypicalrangeofassetsconstitutinganLLMService:
?Copyright2024,CloudSecurityAlliance.Allrightsreserved.7
●Datausedfortraining,benchmarking,testing,andvalidation
●Datausedforfine-tunetraining
●DatausedforRetrieval-AugmentedGeneration(RAG)
●Datacardsthatdefinethemetadataofthedatainuse
●Inputdata
●Usersessiondata
●Modeloutputdata
●Modelparameters(weights)
●Modelhyperparameters
●LogdatafromLLMsystems
Thefollowingarethedefinitionsoftheseassets:
1.Training,benchmarking,testing,andvalidationdata:Thisencompassesthedatasetusedtotrain,benchmark,test,andvalidatethemodel,consistingoftextsourcesfromwhichthemodelderivesinsightsintolanguagepatterns,andsemanticsthatareimperativeforqualityofthemodel.Eachdataelementis
treatedandmanagedindividually.
2.Fine-tunetrainingdata:Additionaldataisemployedtofine-tuneorfurtherpre-trainthemodelpost-initialtraining.Thisfacilitatesadjustmentstothemodel’sparameterstoalignmorecloselywithspecificusecasesordomains,enhancingitsadaptabilityandaccuracy.
3.Retrieval-AugmentedGeneration(RAG):IntegratesexternalknowledgebaseswithLLMs.By
retrievingrelevantinformationbeforegeneratingresponses,RAGenablesLLMstoleveragebothmodelknowledgeandexternalknowledgeeffectively.RAGcanretrievesupplementarydatafromvarious
sources,includinginternalsystems,andpublicsources,suchastheInternet,enrichinginputpromptsandrefiningthemodel'scontextualunderstandingtoproducehigher-qualityresponses.
4.Datacards:MetadataofthedatasetsusedforvariouspurposesinLLMneedstobemaintained.ThishelpsgovernAIdataandprovideslineage,traceability,ownership,datasensitivity,andcompliance
regimesforeverydatasetused.Storingandthencontinuouslyupdatingdatacardsasthedata,ownership,orrequirementschangeisessentialtomaintaincomplianceandvisibility.
5.Inputdata(system-levelprompt):Theinputdataisprovidedtosetthecontextandboundaries
aroundLLMsystems.Thesedatasetsareadditionallyusedtosettopicboundariesandguardrailsincaseofadversarialgeneration.
6.Usersessiondata:InformationamassedduringuserinteractionswiththeAIsystems,encompassinginputqueries,model-generatedresponses,andanysupplementarycontextprovidedbyusers,facilitatingpersonalizedinteractions.
7.Modeloutputdata:Theresultantoutputgeneratedbythemodelinresponsetoinputprompts,encompassingtextresponses,predictions,orotherformsofprocesseddata,reflectiveofthemodel'scomprehensionandinferencecapabilities.
?Copyright2024,CloudSecurityAlliance.Allrightsreserved.8
8.Modelparameters(weights):Internalparametersorweightsacquiredbythemodelduringtraining,delineatingitsbehaviorandexertingaprofoundinfluenceonitscapacitytogenerateandcontextuallyrelevantresponses.
9.Modelhyperparameters:Configurationsorsettingsspecifiedduringmodeltraining,including
parameterssuchaslearningrate,batchsize,orarchitecturechoices,arepivotalinshapingthemodel'soverallperformanceandbehavior.
10.Logdata:Recordeddataencapsulatingvariouseventsandinteractionsduringthemodel'soperation,
includinginputprompts,modelresponses,performancemetrics,andanyencounterederrorsoranomalies,instrumentalformonitoringandrefiningthemodel'sfunctionalityandperformance.
1.2.LLM-OpsCloudEnvironment
TheLLM-OpsEnvironmentencompassestheinfrastructureandprocessesinvolvedinthedeploymentandoperationofLLMs.Thefollowingbulletpointsarethekeytermsassociatedwiththisenvironment:
●Cloudrunningthetrainingenvironment
●Cloudrunningthemodelinferencepoint
●CloudrunningtheAIapplications
●Hybridandmulti-cloudinfrastructure
●Securityofthedeploymentenvironment
●Continuousmonitoring
●Cloudtohosttrainingdata(Storage)
ThesignificanceandessenceofeachoftheaboveassetwithintheframeworkoftheLLM-OpsEnvironmentisdescribedbelow:
1.Cloudrunningthetrainingenvironment:Thisdenotesthecloudplatformorserviceproviderentrustedwithhostingandmanagingthecomputationalresources,storagefacilities,andancillaryinfrastructurepivotalfortrainingLLMs.Itservesasthedevelopmentspacewheremodelsundergoiterativerefinementandenhancement.
2.Cloudrunningthemodelinferencepoint:Thisencapsulatesthecloudplatformorserviceprovidertaskedwithhostingandadministeringthecomputationalresources,storagesolutions,andassociated
infrastructureindispensablefordeployingLLMsandfacilitatinginferenceprocesses.Itenablesthemodeltogenerateresponsesbasedonuserinputs,ensuringseamlessinteractionandresponsiveness.
3.Public/Private/HybridCloudRunningtheAIapplications:ThisreferstothecloudplatformorserviceproviderentrustedwithhostingandoverseeingtheinfrastructureessentialforrunningAI
applicationsorAIservices,harnessingthecapabilitiesoftrainedlanguagemodels.ItservesastheoperationalhubwhereAI-drivenapplicationsleveragetheinferenceprowessofmodelstodelivervalue-addedfunctionalitiesandservicestoend-users.
4.Securityofthedeploymentenvironment:ThisencompassesthearrayofmechanismsandpoliciesimplementedtogovernandfortifyaccesstotheassortedcomponentsoftheLLM-OpsEnvironment.It
?Copyright2024,CloudSecurityAlliance.Allrightsreserved.9
encompassesIdentityandAccessManagement(IAM)protocolsandnetworksecuritymeasures,safeguardingtheintegrityandconfidentialityofcriticalassetsandfunctionalities.
5.Continuousmonitoring:ThisdenotestheongoingprocessofvigilantlyscrutinizingtheLLM-OpsEnvironment'sperformance,securityposture,andoverallwell-being.Itencompassesthevigilant
surveillanceofthetrainingenvironment,inferenceendpoint,andapplicationcomponents,ensuringoptimalfunctionalitywhilepromptlyidentifyingandremedyinganyanomaliesorissuesthatmayarise.
6.Cloudtohosttrainingdata(Storage):Thissignifiesthecloudplatformorserviceprovidertaskedwithsecurelyhousingandmanagingtheextensivedatasetsrequisitefortraininglanguagemodels.Itentailsrobuststorageanddatamanagementcapabilitiestoaccommodatethevoluminousanddiversedatasetsfundamentalfornurturingandrefininglanguagemodels.
1.3.Model
Theconceptof"Model"inthecontextofMLreferstoamathematicalrepresentationoranalgorithmtrainedtomakepredictionsorperformaspecifictask.
Thechoiceoffoundationmodel,fine-tuningapproach,andthedecisiontouseopen-sourceor
closed-sourcemodelscansignificantlyaffectLLMs'capabilities,performance,anddeploymentflexibilitywithinvariousapplicationsanddomains.
Wedefinethefollowingmodelassetsinthissubsection:
●FoundationModel
●Fine-TunedModel
●OpenSourcevs.ClosedSourceModels
●Domain-SpecificModels
●Modelcards
1.FoundationModel:
TheFoundationModelisthebaseuponwhichfurtheradvancementsarebuilt.Thesemodelsaretypicallylarge,pre-trainedlanguagemodelsthatencapsulateabroadunderstandingoflanguage,obtainedfromextensiveexposuretounlabeledtextdatathroughself-supervisedlearningtechniques.Foundation
models,ingeneral,provideastartingpointforsubsequentfine-tuningandspecializationtocaterto
specifictasksordomains.Forsomeadvancedandinnovativefoundationmodels,anotherterm,
“Frontier
Model”
canbeusedtorepresentabrandnewfoundationmodelintheAIMarketplace.FromanAIperspective,sometimestheterm“BaseModel''representsfoundationmodelsintheapplicationtechnologystacks.
2.Fine-TunedModel:
DerivedfromtheFoundationModel,theFine-TunedModelundergoesrefinementandadaptationto
catertospecifictasksordomains.Throughtheprocessoffine-tuning,theparametersofthefoundationmodelareupdatedutilizingsupervisedlearningtechniquesandtask-specificlabeleddata.Thisiterativeprocessenablesthemodeltoenhanceitsperformanceontargettasksordomainswhileretainingthe
foundationalknowledgeandcapabilitiesinheritedfromtheFoundationModel.
?Copyright2024,CloudSecurityAlliance.Allrightsreserved.10
3.Open-Sourcevs.Closed-SourceModels:
Thisdichotomypertainstotheaccessibilityandlicensingofamodel'ssourcecode,modelweights,andassociatedartifacts.Open-sourcemodelsmayreleasesomeoralloftheirtrainingdataandsourcecode,datausedforthemodeldevelopment,modelarchitecture,weights,andtoolstothepublicunder
open-sourcelicenses,grantingfreeusagewithspecifictermsandconditions.However,closed-sourcemodelsmaintainproprietarystatus,withholdingtheirsourcecode,weights,andimplementationdetailsfromthepublicdomain,oftenmotivatedbyintellectualpropertyprotectionorcommercialinterests.
Closed-sourcemodelsthatallowuserstoaccessthemodelsforfinetuningorinferencepurposesarecalledOpenaccessmodels.
Thesemodelassetscollectivelyformthebackboneofmodeldevelopment,fosteringinnovation,adaptability,andaccessibilitywithinGenAI.
4.Domain-SpecificModels:
Domain-specificmodelsrefertomachinelearningmodelsthataredesignedandtrainedtoexcelonspecificdomainknowledge,suchasfinancial,medicines,andcoding.
5.Modelcards:
Thecharacteristicsofmodelscanbedescribedusingmodelcards.ModelcardsarefilesthatmaintainthecontextofthemodelwhichisessentialforGovernanceandmakingsureAImodelscanbeusedcorrectly.Modelcards2consistofmodelcontextdetailslikeownership,performancecharacteristics,datasetsthemodelistrainedon,orderoftrainingetc.Thisalsohelpswithtraceability,lineageandunderstandingthebehaviorofthemodel.Modelcardsneedtobecontinuouslymaintainedandupdatedasthecontext
metadatachanges.[CSA,2024]
Moredetailsofmodelcardscanbefound,forexample,atthe
HuggingFace
platform,wherethemachinelearningcommunitycollaboratesonmodels,datasets,andapplications.
1.4.OrchestratedServices
TheseservicesencompassarangeofcomponentsandfunctionalitiesthatenabletheefficientandsecureoperationofLLMs.
ThefollowingisthelistofOrchestratedServicesAssets:
●CachingServices
●SecurityGateways(LLMGateways)
●DeploymentServices
●MonitoringServices
●OptimizationServices
●Plug-insforSecurity
●Plug-insforCustomizationandIntegration
●LLMGeneralAgents
2Formoredetailson‘Modelcards’pleaseconsultthe‘AIModelRiskManagementFramework’ofthe
AIRiskandTechnology
workinggroup
.
?Copyright2024,CloudSecurityAlliance.Allrightsreserved.11
Definitionandsignificanceofeachoftheabovelistedassetswithinthecontextoforchestratedservicesfollowsbelow.
1.CachingServices:
CachingServicesrefertosystemsorcomponentsthatfacilitatethecachingofmodelpredictions,inputs,orotherdatatoenhanceperformancebyreducingredundantcomputations.Bytemporarilystoring
frequentlyaccesseddata,cachingserviceshelpminimizeresponsetimesandalleviatecomputationalstrainonLLMs.
2.SecurityGateways(LLMGateways):
SecurityGateways,alsoknownasLLMGateways,arespecializedcomponentsthatserveas
intermediariesbetweenLLMsandexternalsystems.Thesegatewaysbolstersecuritybyimplementingaccesscontrolmeasures,inputvalidation,filteringmaliciouscontent(suchaspromptinjections),
PII/privacyinformation,andsafeguardsagainstpotentialthreatsormisuse,ensuringtheintegrityandconfidentialityofdataprocessedbyLLMs.
3.DeploymentServices:
DeploymentServicesstreamlinethedeploymentandscalingofLLMsacrossdiverseenvironments,includingcloudplatformsandon-premisesinfrastructure.Theseservicesautomatedeployment
processes,facilitateversionmanagement,andoptimizeresourceallocationtoensureefficientandseamlessLLMdeployment.
4.MonitoringServices:
MonitoringServicesarepivotalinoverseeingLLMsecurity,performance,health,andusage.These
servicesemploymonitoringtoolsandtechniquestogatherreal-timeinsights,detectanomalies,misuse(suchaspromptinjections)andissuealerts,enablingsecurity,proactivemaintenance,andtimely
interventiontoupholdtheoptimaloperationofLLMs.
5.OptimizationServices:
OptimizationServicesaregearedtowardsoptimizingtheperformanceandresourceutilizationofLLMs.Theseservicesemployarangeoftechniquessuchasmodelquantization,pruning,efficientinference
strategiestoenhanceLLMefficiency,reductionofcomputationaloverhead,andimprovementofoverallperformanceacrossdiversedeploymentscenarios.
6.Plug-insforSecurity:
Securityplug-insextendLLMsecuritybyprovidingdataencryption,accesscontrolmechanisms,threatdetectioncapabilities,andcomplianceenforcementmeasures,thusincreasingcyberresiliency.
7.Plug-insforCustomizationandIntegration:
Plug-insforCustomizationandIntegrationenablethecustomizationofLLMbehaviorandseamless
integrationwithothersystems,applications,ordatasources.Theseplug-insprovideflexibilityintailoring
LLMfunctionalitiestospecificusecasesordomainsandfacilitateinteroperabilitywithexistinginfrastructure,fosteringenhancedversatilityandutilityofLLMdeployments.
?Copyright2024,CloudSecurityAlliance.Allrightsreserved.12
8.LLMGeneralAgents:
LLMGeneralAgentsareintelligentagentsorcomponentscollaboratingwithLLMstoaugmenttheirfunctionalitiesandcapabilities.Theseagentsmayperformvarioustasks,suchas
●planning,
●reflection,
●functioncalling,
●monitoring,
●dataprocessing,
●explainability,
●optimization,
●scaling,andcollaboration,
●andenhancingtheversatilityandadaptabilityofLLMdeploymentsindiverseoperationalcontexts.
1.5.AIApplications
AIapplicationshavebecomeubiquitous,permeatingvariousfacetsofourdailylivesandbusiness
operations.Fromcontentgenerationtolanguagetranslationandbeyond,AIapplicationsfueledbyLLMshaverevolutionizedindustriesandreshapedhowweinteractwithinformationandtechnology.However,withtheproliferationofAIapplicationscomestheimperativeneedforeffectivecontrolframeworksto
governtheirdevelopment,deployment,andusage.
AIapplicationsrepresentthepinnacleofinnovation,offeringmanycapabilitiesthatcatertodiverse
businessdomainsandusecases.TheseapplicationsleveragethepowerofLLMstodecipherandprocessnaturallanguageinputs,enablingfunctionalitiessuchascontentgeneration,questionanswering,
sentimentanalysis,languagetranslation,andmore.Essentially,AIapplicationsserveastheinterface
throughwhichusersinteractwiththeunderlyingintelligenceofLLMs,facilitatingseamlesscommunicationandtaskautomationacrossvariousdomains.
AsdownstreamapplicationsofLLMs,AIapplicationsareoneofthemostimportantassetstoconsiderinanAIcontrolframework.TheyrepresentthedirecttouchpointbetweenLLMtechnologyandend-users,shapinghowusersperceiveandinteractwithAIsystems.Assuch,AIapplicationshavethepotentialtoamplifythebenefitsorrisksassociatedwithLLMs.
AIapplicationscanhavesignificanteconomicimpacts.AsbusinessesincreasinglyrelyonAIapplicationstodriveinnovation,streamlineoperations,andgaincompetitiveadvantages,theresponsible
developmentanddeploymentoftheseapplicationsbecomecrucialformaintainingmarketintegrityandfosteringalevelplayingfield.
Giventheseconsiderations,anAIcontrolframeworkmustprioritizethegovernanceandoversightofAIapplications.ThisincludesestablishingguidelinesandstandardsforAIapplicationdevelopment,testing,deployment,operation,andmaintenance,ensuringcompliancewithrelevantregulations,andpromotingtransparencyandaccountabilitythroughouttheAIapplicationlifecycle.Additionally,theframework
shouldfacilitatecontinuousmonitoringandevaluationofAIapplications,enablingtimelyidentificationandmitigationofpotentialrisksorunintendedconsequences.
?Copyright2024,CloudSecurityAlliance.Allrightsreserved.13
ByprioritizingAIapplicationsintheAIcontrolframework,organizationscanproactivelyaddressthechallengesandrisksassociatedwithLLM-poweredapplicationswhileunlockingtheirtransformativepotentialtodriveinnovationandimprovelives.
AIapplicationcardsarefilesthatmaintaintheAIcontextoftheapplicationwhichisessentialfor
governanceoftheapplication.AIapplicationcardsconveytheAIdataoftheapplications,including
modelsused,datasetsused,applicationandAIusecases,applicationowners(seedifferentkindsof
ownersfromtheRACImodelinthenextsection),andguardians.AIapplicationcardsareaneasywayto
conveyandshareAIdataforapplications,tohelpAIgovernanceexecutives,AIcouncils,andregulatorstounderstandtheapplicationandtheAIituses.TheAIapplicationcardsmayinturnpointtomodeland
datacards.
?Copyright2024,CloudSecurityAlliance.Allrightsreserved.14
2.LLM-ServiceLifecycle
TheLLM-ServiceLifecycleoutlinesdistinctphases,eachcrucialinensuringtheservice'sefficiency,
reliability,andrelevancethroughoutitslifespan.Fromthepreparatorystagesofconceptualizationand
planningtotheeventualarchivinganddisposal,eachphaseisintricatelyintegratedintoacomprehensiveframeworkdesignedtoimproveservicedeliveryandmaintainalignmentwithevolvingneedsand
standards.Organizationscanmanageservicedevelopment,evaluation,deployment,delivery,andretirementthroughthisstructuredapproachwithclarityandeffectiveness.
DrawinguponemergingstandardslikeISO/IEC5338onAIsystemlifecycles,andreviewsfrom
organizationsliketheUK'sCentreforDataEthicsandInnovation(CDEI),thislifecyclecoverstheend-to-endprocess,fromearlypreparationanddesignthroughtraining,evaluation,deployment,operation,andeventuallyretirement.
Thefollowingisthehigh-levelbreakdownofthelifecyclewewilldefineinthissection.
●Preparation:
。Datacollection
。Datacuration
。Datastorage
。Resourceprovisioning。Teamandexpertise
●Development:
。Design。Training
。Keyconsiderationsduringdevelopment。Guardrails
●Evaluation/Validation:
。Evaluation
。Validation/RedTeaming。Re-evaluation
。Keyconsiderationsduringevaluation/validation
●Deployment:
。Orchestration
。AIServicessupplychain。AIapplications
●Delivery:
。Operations。Maintenance
。Continuousmonitoring。Continuousimprovement
?Copyright2024,CloudS
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度環(huán)境風險評估與咨詢服務合同
- 遂寧四川遂寧市公共資源交易服務中心招聘編外人員筆試歷年參考題庫附帶答案詳解
- 福建2025年福建寧德師范學院招聘博士高層次人才15人筆試歷年參考題庫附帶答案詳解
- 舟山2025年浙江舟山市銀齡醫(yī)師招募6人筆試歷年參考題庫附帶答案詳解
- 湖南2024年湖南省文聯(lián)網(wǎng)絡文藝發(fā)展中心招聘筆試歷年參考題庫附帶答案詳解
- 泰州2025年江蘇泰州市教育科學研究院招聘教研人員3人筆試歷年參考題庫附帶答案詳解
- 新疆2025年新疆伊犁師范大學引進高層次人才70人筆試歷年參考題庫附帶答案詳解
- 2025年中國前置內(nèi)卡式預應力千斤頂市場調(diào)查研究報告
- 2025年紡織設備配件項目可行性研究報告
- 2025年電池轉(zhuǎn)換器項目可行性研究報告
- GB/T 22328-2008動植物油脂1-單甘酯和游離甘油含量的測定
- 錄用offer模板參考范本
- FZ/T 25001-1992工業(yè)用毛氈
- 《上消化道出血診療指南》講稿
- 電商部售后客服績效考核表
- 小提琴協(xié)奏曲《梁祝》譜
- 人教版高中化學必修一第一章《物質(zhì)及其變化》教學課件
- 復工復產(chǎn)工作方案范本【復產(chǎn)復工安全工作方案】
- HyperMesh100基礎培訓教程
- 奧太焊機維修教材MZ系列
- 財務會計實務教學課件匯總全套電子教案(完整版)
評論
0/150
提交評論