版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
Chapter7TheoremofMomentofMomentumMainContents§7.1Momentofmomentumofaparticleandasystemofparticles§7.2Momentofinertiaofarigidbodywithrespecttotheaxis§7.3Momentofmomentumtheorem§7.4Differentialequationsfortherotationofarigidbodyaroundafixed-axis§7.5Momentofmomentumtheoremforasystemwithrespecttoitscenterofmass§7.6Differentialequationsofplanemotionofarigidbody1.Forexamplewhenasymmetricalcircularwheelrotatesaroundaunmovingcenterofmass,nomatterhowfasttheroundwheelrotates,nomatterwhatchangestherotatingstatehave,itsmomentumisalwaysequaltozero,somomentumcannotcharacterizeormeasurethemotion.2.Theoremofmomentumandtheoremofmotionofthecenterofmassdiscussedtherelationshipbetweenprincipalvectoroftheexternalforcesystemandthemotionchangeofasystemofparticles,butdidnotdiscusstheinfluenceoftheprincipalmomentoftheexternalforcesystemonthemotionchangeofthesystemofparticles.MomentofmomentumtheoremTheoremofmomentumdescribedinthepreviouschaptercannotcompletelydescribethemotionstateofasystemofparticles.Therefore,wemusthavenewconcepttodescribethesimilarmotion.Momentofmomentumtheoremisthetheoryofthedescriptionofparticlesrelativetoapoint(orafixedaxis)orthecenterofmassmotion.Assumingaparticleinaninstanthasthemomentum
,thepositionoftheparticlerelativetopointisrespectedthroughpositionvector,asshowninfigure.§7.1Momentofmomentumofaparticleandasystemofparticles1.Momentofmomentumofaparticle
Themomentofmomentumofaparticleaboutpointisdefinedasthe“moment”oftheparticle’smomentumaboutpoint,thatisEstablisharectangularcoordinatesystembyafixedpointastheorigin,thecoordinateofaparticleis,thentheanalysisofprojectiontypeofthepositionvectorandthevelocityoftheparticleare:ThemomentofmomentumofaparticlewithrespecttoapointOcanbewrittenasadeterminantform:
Themomentofmomentumofaparticlewithrespecttoafixedpointisavector,
thevectorisperpendiculartotheplaneformedbythepositionvectorandthevelocity,itsmagnitudeisequaltotheareaofparallelogramcomposedofthepositionvectorandthemomentum,itssenseisgovernedbytheright-handrule,
andthemomentofmomentumoftheparticlewithrespecttoafixedpointisanpositioningvector,whichshouldbedrawnonthecenterofmomentO.§7.1MomentofmomentumofaparticleandasystemofparticlesThemomentofmomentumofaparticlewithrespecttothepointOisprojectedtotherectangularcoordinateaxis,
accordingtotherelationshipbetweenthemomentofthevectoraboutthepointandthemomentabouttheaxisthroughthepointweknown,
momentsofmomentumoftheparticleabouteachcoordinateaxisthroughthepointOarerespectively:ThatisTheprojectionofmomentofmomentumaboutafixedpointinanyaxisthroughthepointisequaltomomentofmomentumabouttheaxis.Momentofmomentumaboutanaxisisanalgebraicquantity,theregulationofitssymbolisthesameastheregulationofthesymbolofmomentofforceaboutanaxis,afterprovidingthepositiveoftheaxis,bytheright-handruletodeterminethepositivedirection.TheunitofmomentofmomentuminSIunitsis
or§7.1Momentofmomentumofaparticleandasystemofparticles§7.1Momentofmomentumofaparticleandasystemofparticles2.MomentofmomentumofasystemofparticlesAndthereisThevectorsumofmomentofmomentumofalltheparticlesinasystemaboutpointiscalledthemomentofmomentumofthesystemofparticlesaboutthepoint,thatisThescalarsumofmomentofmomentumofallparticlesinasystemaboutanyaxisiscalledthemomentofmomentumofthesystemofparticlesabouttheaxis.Theprojectionofmomentofmomentumofasystemofparticlesaboutpointintherectangularcoordinateaxisthroughthepointisthemomentofmomentumofthesystemofparticlesabouttheaxisthroughthepoint:wheredenotesthemomentummomentoftheithparticleinthesystemforthepointO.3.Calculationofmomentofmomentumofseveralkindsofrigidbody(1)momentofmomentumofarigidbodyintranslationalmotionwithrespecttoafixedpointCalculationofmomentofmomentumofarigidbodyintranslationalmotionissimilartocalculationformulaofmomentofmomentumofaparticle,whenwecalculatemomentofmomentumofarigidbodyintranslationalmotion,therigidbodycanberegardedasaparticle,whichhasthewholemassoftherigidbodyintranslationalmotion,locatedinthecenterofmassoftherigidbody,andmovingwiththecenterofmassoftherigidbody.§7.1Momentofmomentumofaparticleandasystemofparticles3.Calculationofmomentofmomentumofseveralkindsofrigidbody(2)momentofmomentumofarigidbodyinfixed-axisrotationwithrespecttotheaxisofrotation:
Themomentofmomentumoftheentirerigidbodytothez-axisisMomentofmomentumofarigidbodyinfixed-axisrotationwithrespecttotheaxisofrotationisequaltotheproductofthemassmomentofinertiaoftherigidbodyabouttheaxisanditstheangularvelocity.Lettherigidbodyrotatearoundafixedaxiswithangularvelocity.Themassofthethmassontherigidbodyis,thedistancefromthemasstothez-axisis,andthevelocityofthemassiswhere,
isdefinedasthemassmomentofinertiaoftherigidbodyaboutthez-axis.§7.1Momentofmomentumofaparticleandasystemofparticles§7.2Momentofinertiaofarigidbodywithrespecttoanaxis1.Conceptofthemassmomentofinertia(1)definition:thesumoftheproductofeachparticlemassofabodyandthesquareofeachparticletoanaxisdistanceiscalledthemassmomentofinertiaoftherigidbodyabouttheaxis.Forarigidbodyofcontinuousmassdistribution,then(2)Calculationofthemassmomentofinertiaofsimpleshapedbody(a)ahomogeneousslenderrodAssuminglineardensityofarodis,
consideringmicro-segment,thenthemassofthemicro-segmentis,
thusthemassmomentofinertiaoftherodaboutz-axisisMassoftherodis,
then(b)homogeneousthincircularringAssumingmassofacircularringis,thedistancebetweenmassandthecentralaxisisequaltoradius,thusthemassmomentofinertiaofthecircularringaboutthecentralaxisis(c)ahomogeneousdiskAssumingradiusofthediskis,
massis,Thecircularplateisdividedintoaninfinitenumberofconcentricthinrings,theradiusofanyringisandthewidthis.Themassofthethinringiswhere,isthemassperunitareaofthehomogeneouscircularplate,sotherotationalinertiaofthecircularplatetothecentralaxisis§7.2Momentofinertiaofarigidbodywithrespecttoanaxis(d)homogeneousrectangularplate2.RadiusofgyrationRadiusofgyrationisdefinedasthus3.Theparallel-axistheoremTheorem:themassmomentofinertiaofarigidbodywithrespecttoanyaxisisequaltothemassmomentofinertiaoftherigidbodywithrespecttoaparallelaxisthroughthemasscenterofthebodyplustheproductofthemassofthebodyandthesquareofthedistancebetweenthetwoaxes.Thatis§7.2Momentofinertiaofarigidbodywithrespecttoanaxis§7.2MomentofinertiaofarigidbodywithrespecttoanaxisExample
7-1Figureshowsahomogeneousslenderrodofmassandlength.Determinethemassmomentofinertiaoftherodabouttheaxisthatpassesthoughthemasscenterandisperpendiculartotherodaxis.Solution:themassmomentofinertiaofthehomogeneousslenderrodaboutthez-axisthatpassesthroughitsleftendandisperpendiculartotherodaxisisUsingtheparallel-axistheorem,themassmomentofinertiaabouttheaxisisOCExample
7-2Thependulumissimplifiedasfollows.Weknownmassofhomogeneousslenderrodisandmassofhomogeneousdiskis,lengthofrodis,diameterofdiskis.Determinethemassmomentofinertiaofthependulumaboutthehorizontalaxisthatpassesthroughthesuspensionpoint.Solution:themassmomentofinertiaofthependulumaboutthehorizontalaxisOiswhereAssumingisthemassmomentofinertiaofthediskaboutthecenterC,then
Thus
§7.2MomentofinertiaofarigidbodywithrespecttoanaxisThefirstderivativeofmomentofmomentumwithrespecttotime1.MomentofmomentumtheoremofaparticleAssumingmomentofmomentumofaparticleaboutafixedpointis,themomentoftheforceaboutthesamepointis,asshowninfigureAccordingtotheoremofmomentumofaparticleandHencetheaboveequationbecomessinceHenceweobtain§7.3MomentofmomentumtheoremMomentofmomentumofaparticle:thefirstderivativeofmomentofmomentumofaparticleaboutafixedpointwithrespecttotimeisequaltothemomentaboutthesamepointoftheresultantforceactingontheparticle.Makingaprojectionoftheaboveequationontherectangularcoordinateaxiswhichtakesthecenterofmomentfortheorigin,andnotingtheprojectionofthemomentofmomentumandforceaboutapointonanaxisisequaltomomentofmomentumandforceabouttheaxis,weobtain:2.MomentofmomentumtheoremofasystemofparticlesWeassumeasystemofparticlesthatisaclosedsystemofparticles,thearbitraryithparticleissubjectedtoaresultantinternalforceandaresultantexternalforceaccordingtomomentofmomentumofaparticleweobtain§7.3MomentofmomentumtheoremTherearensameequations,addedtogetherSincetheinternalforcesoccurinequalbutoppositecollinear,thefirsttermontherightsideoftheaboveequationTheleftsideoftheaboveequationhence§7.3MomentofmomentumtheoremMomentofmomentumtheoremofasystemofparticles:thetime–derivativeofmomentofmomentumofasystemofparticlesaboutafixedpointisequaltothevectorsumofthemomentsoftheexternalforcesactingonthesystemaboutthesamepoint.TheprojectionformulaisItmustbepointedoutthat,theabovetheoremofmomentofmomentumexpressionformisonlyapplicabletoafixedpointorafixedaxis.Forageneralmovingpointormovingaxis,thetheoremofmomentofmomentumhasmorecomplicatedexpressions.3.Conservationlawofmomentofmomentum(1)Ifthemomentoftheforceactingontheparticleaboutafixedpointiszero,themomentofmomentumoftheparticleaboutthepointisconstant,thatis(2)Ifthemomentoftheforceactingontheparticleaboutafixedaxisiszero,themomentofmomentumoftheparticleabouttheaxisisconstant,thatis§7.3MomentofmomentumtheoremExample
7-3Asthepictureshows,asmoothballofmassmisplacedinsideafixedcirculartubeofradiusR.Theballisgivenaninitialsmallperturbation,anddeterminethelawofmotionofthesmallball.§7.3MomentofmomentumtheoremSolution:Thetrajectoryoftheballisaknowncirculararc,sothenaturalmethodcanbeusedtodescribethemotionoftheball.Thevelocityoftheballisalwaysalongthetangentdirectionofthearc,soitissuitabletoapplythemomentummomenttheoremtosolvetheproblem.First,thesmallballischosenastheobjectofstudy.TheballisplacedinageneralpositionofmotionwiththeforceofgravitymgandthereactionforceNofthetube,withthedirectionofpointingtothecenterO.ApplyingthemomentummomenttheoremaboutpointO(i.e.,abouttheaxispassingthroughpointOandperpendiculartotheplaneofthecirculartube),wehaveorExample
7-3§7.3MomentofmomentumtheoremConsiderorExample
7-3Substitutingtheaboveequation,yieldsThisisthedifferentialequationofmotionoftheball.Thelawofmotionoftheballisdescribedbythevariableθ.Consideringthatθissmallwhensmallmoving,sosinθ≈θ,andthentheequationcanbesimplifiedasItcanbeseenthattheballdoessimpleharmonicmotion.Thearbitraryconstantsθandαintheequationcanbedeterminedbytheinitialconditionsofmotion.TheSolutionofthisdifferentialequationis§7.3MomentofmomentumtheoremMExample
7-4Windlassofblastfurnacewhichtransportsore,showninfigure.TheradiusofdrumisR,themassism1,thedrumrotatesaboutaxisO.Thetotalmassofthecarandtheoreism2.ThemomentofcoupleactingonthedrumisM,themassmomentofinertiaofthedrumabouttherotatingaxisisJ,dipangleofthetrackisθ.Neglectthemassoftheropeandvariousfriction,determinetheacceleration
aofthecar.§7.3MomentofmomentumtheoremExample
7-4§7.3MomentofmomentumtheoremMSolution:consideringthesystemofboththecarandthedrum,consideringthecarasaparticle.Clockwiseispositive.Themomentofmomentumofasystemofparticlesaboutaxisisand
,ThemomentoftheexternalforceofthesystemisTheexternalforcesactingonthesystemofparticlesincludecouple,gravity;reactionforceofbearingand
constraintforceoftrackactingonthecar.Themomentofforceaboutaxisiszero.Decomposeintoandalongthetrackandvertically,andoffseteachother.since
,we
obtainExample
7-4ApplyingmomentofmomentumofasystemofparticlesaboutaxisO,wehaveIf,then,theaccelerationofthecarupalongtheslope.§7.3MomentofmomentumtheoremMOA
Example
7-5Trytousemomentofmomentumtheoremtoderivethedifferentialequationofmotionofsimplependulum(mathematicalpendulum).§7.3MomentofmomentumtheoremOA
,Example
7-5Solution:consideringthependulumasaparticleAmovingin
thearc,themassofthependulumism,thelengthofthecycloidisl.AssuminginanytransienttheparticleAhavethevelocityv
,theangleofthecycloid
OAandtheplumbline
is
.Choosethefixedaxis
zwhichisthroughsuspensionpointOandperpendiculartotheplaneofmotion
asmomentaxis,applyingmomentofmomentumtheoremofaparticleabouttheaxis.SincemomentofmomentumandmomentofforceareThusweobtainSimplyit,weobtaindifferentialequationofmotionofthependulum.§7.3MomentofmomentumtheoremzaallABzaaθθllABExample
7-6SmallballAandBare
connectedtothestring.Themassofeveryballism,neglecttheothercomponentmassandfriction,thesystemrotatesfreelyaroundaxisz,theinitialangularvelocityofthesystemisω0.Whenthestringisbroken,theangleofeachbarandtheplumblineisθ,determinetheangularvelocityω
ofthesystem.§7.3MomentofmomentumtheoremzaallABzaaθθllABExample
7-6Solution:themomentsofthegravityactingonthesystemandreactionforceofbearingabouttherotatingaxisarezero,soconservationofmomentofmomentumofthesystemabouttheaxis.Whenθ=0,momentofmomentumWhenθ≠0,momentofmomentumBecauseLz1=Lz2,weobtain§7.3MomentofmomentumtheoremorororAssumingtheforcesactingonarigidbodywhichrotatesaroundafixed-axisincludetheactiveforcesand
thereactionforcesofbearingshowninfigure,theseforcesareallexternalforces.Themassmomentofinertiaoftherigidbodyabouttheaxisis,theangularvelocityis,momentofmomentumaboutaxisis.Ifneglectfrictionofbearing,momentsofreactionforcesofbearingaboutaxisarezero,accordingtomomentofmomentumtheoremofthesystemofparticlesaboutaxiswehaveTheaboveequationsarecalleddifferentialequationsfortherotationofarigidbodyaroundafixed-axis.§7.4Differentialequationsfortherotationofarigidbodyaroundafixed-axisExample
7-7Themagnitudeofthemassmomentofinertiaoftherigidbodyshowswhetheritisdifficultoreasyfortherotationalstateofarigidbodytobechanged,thatis:themassmomentofinertiaisameasureofarigidbody’sinertiaconcerningitsrotationalmotion.RαOShowninfigure,weknowntheradiusofpulleyisR,themassmomentofinertiaisJ,belttensionswhichdrivepulleyareF1andF2.Determinetheangularaccelerationofpulleyα
.§7.4Differentialequationsfortherotationofarigidbodyaroundafixed-axisExample
7-7RαOSolution:accordingtodifferentialequationsforrotationofarigidbodyaroundafixed-axiswehavehence
Fromtheaboveequationwesee,onlywhenthefixedpulleyrotatesataconstantspeedor(includingstatic)ataunconstantspeed,butneglectingthemassmomentofinertiaofthepulley,belttensionwhichcrossthefixedpulleyisequal.§7.4Differentialequationsfortherotationofarigidbodyaroundafixed-axisOCbExample
7-8Compoundpendulumcomposesofarigidbodyrotatingaroundthehorizontalaxis.Weknownthemassofcompoundpendulumism,thedistancebetweencenterofgravityCandtherotatingaxisOisOC=b,themassmomentofinertiaofcompoundpendulumabouttherotatingaxisOisJO.WhenswingingstartstheslipanglebetweenOCand
theplumb
lineis
0,andinitialangularvelocityofcompoundpendulumiszero,determinetheslightswinglawofcompoundpendulum.Neglectbearingfrictionandairresistance.§7.4Differentialequationsfortherotationofarigidbodyaroundafixed-axisOCbF1F2mgExample
7-8Solution:forceasshowninfigure.Assumingangleinthecounterclockwisedirectionispositive.Whensmallangleispositive,themomentofgravityaboutpointisnegative.Accordingtodifferentialequationsfortherotationofarigidbodyaroundafixed-axiswehavehenceWhencompoundpendulumswingsslightly,makingsin
≈
.Thenafterlinearizingtheaboveequation,weobtaindifferentialequationofcompoundpendulumwhichswingsslightly.Thisisthestandarddifferentialequationofsimpleharmonicmotion.Wecanseemicro-amplitudevibrationofcompoundpendulumisalsosimpleharmonicmotion.§7.4Differentialequationsfortherotationofarigidbodyaroundafixed-axisExample
7-8OCbF1F2mgConsideringtheinitialconditionsofthemotionofcompoundpendulum:whent=0ThenmotionlawofcompoundpendulumcanbewrittenasSwingingfrequencyω0
andperiodTisrespectivelyUsingtherelationship(b)wecandeterminethemassmomentofinertiaoftherigidbody.Therefore,weputtherigidbodyintoacompoundpendulumandmeasureitsperiodTofswingbyusingtest,thenusingequation(b)wedeterminethemassmomentofinertia§7.4Differentialequationsfortherotationofarigidbodyaroundafixed-axisMomentofmomentumtheoremexpressedaboveisonlyapplicabletofixedpointorfixedaxisintheinertiareferencesystem,thenwhencenterofmomentmoves,howtoapplymomentofmomentumtheorem?Furtherstudiesshowedthat,undercertainconditions,theformofmomentofmomentumtheoremremainsthesame.Oneofthemostimportantcaseis:inthetranslationalcoordinatesystemmovingwiththecenterofmass,takingcenterofmassascenterofmoment,thentheformofmomentofmomentumtheoremremainsthesame.Takingmass
centerCastheorigin,amovingreferencesystemshowninfigure.Inthemovingreferencesystem,therelativeradiusvectorofanymassis,
relativevelocityis.§7.5MomentofmomentumtheoremforasystemwithrespecttoitscenterofmassMomentofmomentumofthesystemwithrespecttothemasscenterCisInfact,momentofmomentumofthesystemaboutthemasscentercalculatedthroughtherelativevelocityoftheparticleorthoughtheabsolutevelocitytheresultisequal,
thatisThepositionvectorofaparticle,aboutfixedpointOis,
theabsolutevelocityis,
thenmomentofmomentumofthesystemaboutfixedpointOisThefigureshows§7.5MomentofmomentumtheoremforasystemwithrespecttoitscenterofmassThusAccordingtotheoremofcompositionofvelocities,wehaveBycalculationformulaofmomentumofasystemofparticlesWheremis
thetotalmassofthesystem,
isvelocityofthemasscenterC.Substitutingtheabovetwoequations,momentofmomentumofthesystemaboutfixedpointOcanbewrittenasThelasttermofaboveequationis,
accordingtotheformulaofmasscentercoordinateispositionvectorofmasscenterCaboutmovingsystem.Cistheoriginofthemovingsystem,
obviously,
thatis,
thenthemiddletermofaboveequationiszero,
and
§7.5MomentofmomentumtheoremforasystemwithrespecttoitscenterofmassTheaboveequationshows,momentofmomentumofasystemofparticlesaboutanypointOisequaltomomentofmomentumwhichfocusesonmasscenterofthesystemaboutpointOplusmomentofmomentumofthesystemaboutmasscenterC.(vectorsum)MomentofmomentumtheoremforasystemofparticlesaboutfixedpointOcanbewrittenasExpandingtheaboveequationinbrackets,
notingtherightside,thustheaboveequationcanbewrittenasthus
Thentheaboveequationbecomes§7.5MomentofmomentumtheoremforasystemwithrespecttoitscenterofmassTherightsideofaboveequationistheprincipalmomentofexternalforceaboutcenterofmass.ThenweobtainThefirstorderderivativeabouttimeofmomentofmomentumofasystemofparticlesaboutmasscenterisequaltotheprincipalmomentofexternalforceactingonthesystemofparticlesaboutmasscenter.Thatismomentofmomentumtheoremforasystemwithrespecttoitscenterofmass.Thetheoremintheformisthesameasmomentofmomentumofasystemofparticleswithrespecttofixedpoint.§7.5Momentofmomentumtheoremforasystemwithrespecttoitscenterofmass§7.6DifferentialequationsofplanemotionofarigidbodyThepositionofrigidbodyinplanemotioncanbedeterminedbypositionofthebasepointandrotationangleofrigidbodyaroundbasepoint.ChoosemasscenterCasbasepoint,
showninfigure,itsordinatesare.AssumingDisanypointontherigidbody,
theangleofCDandx-axisis,thenpositionofrigidbodycanbedeterminedbyand.Motionofrigidbodyisdecomposedintotranslationwiththemasscenterandrotationaroundthemasscenter.ShowninfigureistranslationreferencesystemfixedtomasscenterC,
themotionofrigidbodyinplanemotionwithrespecttothemovingsystemisrotationaroundmasscenterC,
thenmomentofmomentumofrigidbodyaboutmasscenterisisthemassmomentofinertiaofarigidbodywithrespecttoanaxiswhichpassesthroughthecenterofmassandisverticaltothemotionplane,
istheangularvelocity.Assumingtheexternalforcesactingontherigidbodycanbesimplifiedasaplaneforcesystemtothemovingplaneofthemasscenter,
thenapplyingtheoremofmotionofthecenterofmassandmomentofmomentumtheoremwithrespecttothecenterofmass,weobtainisthemassofrigidbody,
isaccelerationofthemasscenter,
isangularvelocityoftherigidbody.TheaboveequationcanbewrittenasTheabovetwoequationsarecalleddifferentialequationsofplanemotionofrigidbody.§7.6DifferentialequationsofplanemotionofarigidbodyThisistheprojectionexpressionofthedifferentialequationofplanemotionofarigidbodyinarectangularcoordinatesystem.§7.6DifferentialequationsofplanemotionofarigidbodyMCrxExample
7-9Ahomogeneousroundwheelofradiusrandmassmrollsalongahorizontalline,showninfigure.AssumingradiusofgyrationofwheelisρC,momentofcoupleactingonthewheelisM.Determinetheaccelerationofthecenterofwheel.Assumingthecoefficientofthestaticslidingfrictionofthewheelonthegroundisfs,whatconditionsmustmomentofcoupleMmeet,thewheeldoesn’tslide?§7.6DifferentialequationsofplanemotionofarigidbodyaC=
rαMCrxαExample
7-9Solution:accordingtodifferentialequationsofplanemotionofarigidbody,wecanwritethefollowingthreeequations:Mandαinaclockwisedirectionispositive.sinceaCy=0,thenaCx=aC.Accordingtotheconditionofroundwheelrollingwithoutsliding,wehave§7.6DifferentialequationsofplanemotionofarigidbodyExample
7-9Simultaneoussolution,weobtain:Inordertomakeroundwheelfromstaticrollswithoutsliding,theremustbeF≤fsFN,orF≤fsmg.Thenweobtaintheconditionofroundwheelrollingwithoutsliding§7.6DifferentialequationsofplanemotionofarigidbodyMCrxαRθCExample
7-10Afterahomogeneousroundwheelofradiusrandmassmsubjectedtoaslightdisturbance,itrollsbackandforthinacirculararcofradiusR,showninfigure.Assumingthesurfaceisroughenough,roundwheelrollswithoutsliding.DeterminethelawofmotionofthemasscenterC.§7.6Differentialequationsofplanemotionofarigidbody(b)(c)(a)Example
7-10RθCr(+)αSolution
:roundwheelmakeplanemotiononthesurface,theexternalforcesincludegravity
mg,thenormalreactionforceofthearcsurfaceFNandfrictionF.
Assumingangleθinacounterclockwisedirectionispositive,takingthetan
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025版事業(yè)單位聘用合同書(二零二五年度)修訂本3篇
- 2025年水庫水面旅游開發(fā)合作協(xié)議3篇
- 2025年采摘果園休閑農(nóng)業(yè)項(xiàng)目承包經(jīng)營合同3篇
- 2025年鐵路旅客承運(yùn)人服務(wù)質(zhì)量提升與旅客滿意度合同3篇
- 二零二五版跨區(qū)域二手房產(chǎn)權(quán)轉(zhuǎn)移協(xié)助合同
- 2025版烏笑與配偶離婚后子女教育費(fèi)用支付調(diào)整協(xié)議3篇
- 萬科物業(yè)2024全年服務(wù)細(xì)則協(xié)議版
- 三方借款協(xié)作協(xié)議2024年適用版版B版
- 美容院綠色環(huán)保材料采購與2025年度股份合作協(xié)議4篇
- 2025年版餐飲服務(wù)消費(fèi)者免責(zé)條款協(xié)議3篇
- 招標(biāo)師《招標(biāo)采購項(xiàng)目管理》近年考試真題題庫(含答案解析)
- 微生物組與唾液腺免疫反應(yīng)-洞察分析
- 2024公共數(shù)據(jù)授權(quán)運(yùn)營實(shí)施方案
- 2024年國家焊工職業(yè)技能理論考試題庫(含答案)
- 《向心力》 教學(xué)課件
- 結(jié)構(gòu)力學(xué)數(shù)值方法:邊界元法(BEM):邊界元法的基本原理與步驟
- 北師大版物理九年級(jí)全一冊(cè)課件
- 2024年第三師圖木舒克市市場(chǎng)監(jiān)督管理局招錄2人《行政職業(yè)能力測(cè)驗(yàn)》高頻考點(diǎn)、難點(diǎn)(含詳細(xì)答案)
- RFJ 006-2021 RFP型人防過濾吸收器制造與驗(yàn)收規(guī)范(暫行)
- 盆腔炎教學(xué)查房課件
- 110kv各類型變壓器的計(jì)算單
評(píng)論
0/150
提交評(píng)論