版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2024屆江蘇省蘇州市高新區(qū)中考數(shù)學適應性模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.據(jù)統(tǒng)計,2015年廣州地鐵日均客運量均為人次,將用科學記數(shù)法表示為()A. B. C. D.2.下列幾何體中,俯視圖為三角形的是()A. B. C. D.3.3的倒數(shù)是()A. B. C. D.4.“山西八分鐘,驚艷全世界”.2019年2月25日下午,在外交部藍廳隆重舉行山西全球推介活動.山西經(jīng)濟結(jié)構從“一煤獨大”向多元支撐轉(zhuǎn)變,三年累計退出煤炭過剩產(chǎn)能8800余萬噸,煤層氣產(chǎn)量突破56億立方米.數(shù)據(jù)56億用科學記數(shù)法可表示為()A.56×108 B.5.6×108 C.5.6×109 D.0.56×10105.將二次函數(shù)y=x2的圖象向右平移1個單位,再向上平移2個單位后,所得圖象的函數(shù)表達式是()A.y=(x-1)2+2 B.y=(x+1)2+2 C.y=(x-1)2-2 D.y=(x+1)2-26.在一組數(shù)據(jù):1,2,4,5中加入一個新數(shù)3之后,新數(shù)據(jù)與原數(shù)據(jù)相比,下列說法正確的是()A.中位數(shù)不變,方差不變 B.中位數(shù)變大,方差不變C.中位數(shù)變小,方差變小 D.中位數(shù)不變,方差變小7.對于兩組數(shù)據(jù)A,B,如果sA2>sB2,且,則()A.這兩組數(shù)據(jù)的波動相同 B.數(shù)據(jù)B的波動小一些C.它們的平均水平不相同 D.數(shù)據(jù)A的波動小一些8.的相反數(shù)是A. B.2 C. D.9.如圖數(shù)軸的A、B、C三點所表示的數(shù)分別為a、b、c.若|a﹣b|=3,|b﹣c|=5,且原點O與A、B的距離分別為4、1,則關于O的位置,下列敘述何者正確?()A.在A的左邊 B.介于A、B之間C.介于B、C之間 D.在C的右邊10.若代數(shù)式的值為零,則實數(shù)x的值為()A.x=0 B.x≠0 C.x=3 D.x≠3二、填空題(共7小題,每小題3分,滿分21分)11.因式分解:______.12.如圖Rt△ABC中,∠C=90°,AC=6,BC=8,D是AB的中點,P是直線BC上一點,把△BDP沿PD所在直線翻折后,點B落在點Q處,如果QD⊥BC,那么點P和點B間的距離等于____.13.某次數(shù)學測試,某班一個學習小組的六位同學的成績?nèi)缦拢?4、75、75、92、86、99,則這六位同學成績的中位數(shù)是_____.14.三個小伙伴各出資a元,共同購買了價格為b元的一個籃球,還剩下一點錢,則剩余金額為__元(用含a、b的代數(shù)式表示)15.下圖是在正方形網(wǎng)格中按規(guī)律填成的陰影,根據(jù)此規(guī)律,則第n個圖中陰影部分小正方形的個數(shù)是.16.一個多邊形的內(nèi)角和是,則它是______邊形.17.如圖1,在Rt△ABC中,∠ACB=90°,點P以每秒2cm的速度從點A出發(fā),沿折線AC﹣CB運動,到點B停止.過點P作PD⊥AB,垂足為D,PD的長y(cm)與點P的運動時間x(秒)的函數(shù)圖象如圖2所示.當點P運動5秒時,PD的長的值為_____.三、解答題(共7小題,滿分69分)18.(10分)如圖,在平行四邊形ABCD中,E、F分別在AD、BC邊上,且AE=CF.求證:(1)△ABE≌△CDF;四邊形BFDE是平行四邊形.19.(5分)咸寧市某中學為了解本校學生對新聞、體育、動畫、娛樂四類電視節(jié)目的喜愛情況,隨機抽取了部分學生進行問卷調(diào)查,根據(jù)調(diào)查結(jié)果繪制了如下圖所示的兩幅不完整統(tǒng)計圖,請你根據(jù)圖中信息解答下列問題:=1\*GB2⑴補全條形統(tǒng)計圖,“體育”對應扇形的圓心角是度;=2\*GB2⑵根據(jù)以上統(tǒng)計分析,估計該校名學生中喜愛“娛樂”的有人;=3\*GB2⑶在此次問卷調(diào)查中,甲、乙兩班分別有人喜愛新聞節(jié)目,若從這人中隨機抽取人去參加“新聞小記者”培訓,請用列表法或者畫樹狀圖的方法求所抽取的人來自不同班級的概率20.(8分)某市教育局為了了解初一學生第一學期參加社會實踐活動的情況,隨機抽查了本市部分初一學生第一學期參加社會實踐活動的天數(shù),并將得到的數(shù)據(jù)繪制成了下面兩幅不完整的統(tǒng)計圖.請根據(jù)圖中提供的信息,回答下列問題:扇形統(tǒng)計圖中a的值為%,該扇形圓心角的度數(shù)為;補全條形統(tǒng)計圖;如果該市共有初一學生20000人,請你估計“活動時間不少于5天”的大約有多少人?21.(10分)在△ABC中,∠A,∠B都是銳角,且sinA=,tanB=,AB=10,求△ABC的面積.22.(10分)給出如下定義:對于⊙O的弦MN和⊙O外一點P(M,O,N三點不共線,且點P,O在直線MN的異側(cè)),當∠MPN+∠MON=180°時,則稱點P是線段MN關于點O的關聯(lián)點.圖1是點P為線段MN關于點O的關聯(lián)點的示意圖.在平面直角坐標系xOy中,⊙O的半徑為1.(1)如圖2,已知M(,),N(,﹣),在A(1,0),B(1,1),C(,0)三點中,是線段MN關于點O的關聯(lián)點的是;(2)如圖3,M(0,1),N(,﹣),點D是線段MN關于點O的關聯(lián)點.①∠MDN的大小為;②在第一象限內(nèi)有一點E(m,m),點E是線段MN關于點O的關聯(lián)點,判斷△MNE的形狀,并直接寫出點E的坐標;③點F在直線y=﹣x+2上,當∠MFN≥∠MDN時,求點F的橫坐標x的取值范圍.23.(12分)如圖,在△ABC中,BC=12,tanA=,∠B=30°;求AC和AB的長.24.(14分)如圖1,直角梯形OABC中,BC∥OA,OA=6,BC=2,∠BAO=45°.(1)OC的長為;(2)D是OA上一點,以BD為直徑作⊙M,⊙M交AB于點Q.當⊙M與y軸相切時,sin∠BOQ=;(3)如圖2,動點P以每秒1個單位長度的速度,從點O沿線段OA向點A運動;同時動點D以相同的速度,從點B沿折線B﹣C﹣O向點O運動.當點P到達點A時,兩點同時停止運動.過點P作直線PE∥OC,與折線O﹣B﹣A交于點E.設點P運動的時間為t(秒).求當以B、D、E為頂點的三角形是直角三角形時點E的坐標.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】
科學記數(shù)法就是將一個數(shù)字表示成(a×10的n次冪的形式),其中1≤|a|<10,n表示整數(shù).n為整數(shù)位數(shù)減1,即從左邊第一位開始,在首位非零的后面加上小數(shù)點,再乘以10的n次冪.【詳解】解:6
590
000=6.59×1.故選:D.【點睛】本題考查學生對科學記數(shù)法的掌握,一定要注意a的形式,以及指數(shù)n的確定方法.2、C【解析】
俯視圖是從上面所看到的圖形,可根據(jù)各幾何體的特點進行判斷.【詳解】A.圓錐的俯視圖是圓,中間有一點,故本選項不符合題意,B.幾何體的俯視圖是長方形,故本選項不符合題意,C.三棱柱的俯視圖是三角形,故本選項符合題意,D.圓臺的俯視圖是圓環(huán),故本選項不符合題意,故選C.【點睛】此題主要考查了由幾何體判斷三視圖,正確把握觀察角度是解題關鍵.3、C【解析】根據(jù)倒數(shù)的定義可知.解:3的倒數(shù)是.主要考查倒數(shù)的定義,要求熟練掌握.需要注意的是:倒數(shù)的性質(zhì):負數(shù)的倒數(shù)還是負數(shù),正數(shù)的倒數(shù)是正數(shù),0沒有倒數(shù).倒數(shù)的定義:若兩個數(shù)的乘積是1,我們就稱這兩個數(shù)互為倒數(shù).4、C【解析】
科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值是易錯點,由于56億有10位,所以可以確定n=10﹣1=1.【詳解】56億=56×108=5.6×101,故選C.【點睛】此題考查科學記數(shù)法表示較大的數(shù)的方法,準確確定a與n值是關鍵.5、A【解析】試題分析:根據(jù)函數(shù)圖象右移減、左移加,上移加、下移減,可得答案.解:將二次函數(shù)y=x2的圖象向右平移1個單位,再向上平移2個單位后,所得圖象的函數(shù)表達式是y=(x﹣1)2+2,故選A.考點:二次函數(shù)圖象與幾何變換.6、D【解析】
根據(jù)中位數(shù)和方差的定義分別計算出原數(shù)據(jù)和新數(shù)據(jù)的中位數(shù)和方差,從而做出判斷.【詳解】∵原數(shù)據(jù)的中位數(shù)是2+42=3,平均數(shù)為1+2+4+54=3,
∴方差為14×[(1-3)2+(2-3)2+(4-3)2+(5-3)2]=52;
∵新數(shù)據(jù)的中位數(shù)為3,平均數(shù)為1+2+3+【點睛】本題考查了中位數(shù)和方差,解題的關鍵是掌握中位數(shù)和方差的定義.7、B【解析】試題解析:方差越小,波動越小.數(shù)據(jù)B的波動小一些.故選B.點睛:本題考查方差的意義.方差是用來衡量一組數(shù)據(jù)波動大小的量,方差越大,表明這組數(shù)據(jù)偏離平均數(shù)越大,即波動越大,數(shù)據(jù)越不穩(wěn)定;反之,方差越小,表明這組數(shù)據(jù)分布比較集中,各數(shù)據(jù)偏離平均數(shù)越小,即波動越小,數(shù)據(jù)越穩(wěn)定.8、B【解析】
根據(jù)相反數(shù)的性質(zhì)可得結(jié)果.【詳解】因為-2+2=0,所以﹣2的相反數(shù)是2,故選B.【點睛】本題考查求相反數(shù),熟記相反數(shù)的性質(zhì)是解題的關鍵.9、C【解析】分析:由A、B、C三點表示的數(shù)之間的關系結(jié)合三點在數(shù)軸上的位置即可得出b=a+3,c=b+5,再根據(jù)原點O與A、B的距離分別為1、1,即可得出a=±1、b=±1,結(jié)合a、b、c間的關系即可求出a、b、c的值,由此即可得出結(jié)論.解析:∵|a﹣b|=3,|b﹣c|=5,∴b=a+3,c=b+5,∵原點O與A、B的距離分別為1、1,∴a=±1,b=±1,∵b=a+3,∴a=﹣1,b=﹣1,∵c=b+5,∴c=1.∴點O介于B、C點之間.故選C.點睛:本題考查了數(shù)值以及絕對值,解題的關鍵是確定a、b、c的值.本題屬于基礎題,難度不大,解決該題型題目時,根據(jù)數(shù)軸上點的位置關系分別找出各點代表的數(shù)是關鍵.10、A【解析】
根據(jù)分子為零,且分母不為零解答即可.【詳解】解:∵代數(shù)式的值為零,∴x=0,此時分母x-3≠0,符合題意.故選A.【點睛】本題考查了分式的值為零的條件.若分式的值為零,需同時具備兩個條件:①分子的值為0,②分母的值不為0,這兩個條件缺一不可.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】
先提取公因式x,再對余下的多項式利用完全平方公式繼續(xù)分解.【詳解】xy1+1xy+x,=x(y1+1y+1),=x(y+1)1.故答案為:x(y+1)1.【點睛】本題考查了用提公因式法和公式法進行因式分解,一個多項式有公因式首先提取公因式,然后再用其他方法進行因式分解,同時因式分解要徹底,直到不能分解為止.12、2.1或2【解析】
在Rt△ACB中,根據(jù)勾股定理可求AB的長,根據(jù)折疊的性質(zhì)可得QD=BD,QP=BP,根據(jù)三角形中位線定理可得DE=AC,BD=AB,BE=BC,再在Rt△QEP中,根據(jù)勾股定理可求QP,繼而可求得答案.【詳解】如圖所示:在Rt△ACB中,∠C=90°,AC=6,BC=8,
AB==2,
由折疊的性質(zhì)可得QD=BD,QP=BP,
又∵QD⊥BC,
∴DQ∥AC,
∵D是AB的中點,
∴DE=AC=3,BD=AB=1,BE=BC=4,
①當點P在DE右側(cè)時,
∴QE=1-3=2,
在Rt△QEP中,QP2=(4-BP)2+QE2,
即QP2=(4-QP)2+22,
解得QP=2.1,
則BP=2.1.
②當點P在DE左側(cè)時,同①知,BP=2
故答案為:2.1或2.【點睛】考查了折疊的性質(zhì)、直角三角形的性質(zhì)以及勾股定理.此題難度適中,注意數(shù)形結(jié)合思想的應用,注意折疊中的對應關系.13、85【解析】
根據(jù)中位數(shù)求法,將學生成績從小到大排列,取中間兩數(shù)的平均數(shù)即可解題.【詳解】解:將六位同學的成績按從小到大進行排列為:75,75,84,86,92,99,中位數(shù)為中間兩數(shù)84和86的平均數(shù),∴這六位同學成績的中位數(shù)是85.【點睛】本題考查了中位數(shù)的求法,屬于簡單題,熟悉中位數(shù)的概念是解題關鍵.14、(3a﹣b)【解析】解:由題意可得,剩余金額為:(3a-b)元,故答案為:(3a-b).點睛:本題考查列代數(shù)式,解答本題的關鍵是明確題意,列出相應的代數(shù)式.15、n1+n+1.【解析】試題解析:仔細觀察圖形知道:每一個陰影部分由左邊的正方形和右邊的矩形構成,分別為:第一個圖有:1+1+1個,第二個圖有:4+1+1個,第三個圖有:9+3+1個,…第n個為n1+n+1.考點:規(guī)律型:圖形的變化類.16、六【解析】試題分析:這個正多邊形的邊數(shù)是n,則(n﹣2)?180°=720°,解得:n=1.則這個正多邊形的邊數(shù)是六,故答案為六.考點:多邊形內(nèi)角與外角.17、2.4cm【解析】分析:根據(jù)圖2可判斷AC=3,BC=4,則可確定t=5時BP的值,利用sin∠B的值,可求出PD.詳解:由圖2可得,AC=3,BC=4,∴AB=.當t=5時,如圖所示:,此時AC+CP=5,故BP=AC+BC-AC-CP=2,∵sin∠B==,∴PD=BP·sin∠B=2×==1.2(cm).故答案是:1.2cm.點睛:本題考查了動點問題的函數(shù)圖象,勾股定理,銳角三角函數(shù)等知識,解答本題的關鍵是根據(jù)圖形得到AC、BC的長度,此題難度一般.三、解答題(共7小題,滿分69分)18、(1)見解析;(2)見解析;【解析】
(1)由四邊形ABCD是平行四邊形,根據(jù)平行四邊形的對邊相等,對角相等的性質(zhì),即可證得∠A=∠C,AB=CD,又由AE=CF,利用SAS,即可判定△ABE≌△CDF.(2)由四邊形ABCD是平行四邊形,根據(jù)平行四邊形對邊平行且相等,即可得AD∥BC,AD=BC,又由AE=CF,即可證得DE=BF.根據(jù)對邊平行且相等的四邊形是平行四邊形,即可證得四邊形BFDE是平行四邊形.【詳解】證明:(1)∵四邊形ABCD是平行四邊形,∴∠A=∠C,AB=CD,在△ABE和△CDF中,∵AB=CD,∠A=∠C,AE=CF,∴△ABE≌△CDF(SAS).(2)∵四邊形ABCD是平行四邊形,∴AD∥BC,AD=BC.∵AE=CF,∴AD﹣AE=BC﹣CF,即DE=BF.∴四邊形BFDE是平行四邊形.19、(1)72;(2)700;(3).【解析】試題分析:(1)根據(jù)動畫類人數(shù)及其百分比求得總?cè)藬?shù),總?cè)藬?shù)減去其他類型人數(shù)可得體育類人數(shù),用360度乘以體育類人數(shù)所占比例即可得;(2)用樣本估計總體的思想解決問題;(3)根據(jù)題意先畫出樹狀圖,得出所有情況數(shù),再根據(jù)概率公式即可得出答案.試題解析:(1)調(diào)查的學生總數(shù)為60÷30%=200(人),則體育類人數(shù)為200﹣(30+60+70)=40,補全條形圖如下:“體育”對應扇形的圓心角是360°×=72°;(2)估計該校2000名學生中喜愛“娛樂”的有:2000×=700(人),(3)將兩班報名的學生分別記為甲1、甲2、乙1、乙2,樹狀圖如圖所示:所以P(2名學生來自不同班)=.考點:扇形統(tǒng)計圖;條形統(tǒng)計圖;列表法與樹狀圖法;用樣本估計總體.20、(1)25,90°;(2)見解析;(3)該市“活動時間不少于5天”的大約有1.【解析】試題分析:(1)根據(jù)扇形統(tǒng)計圖的特征即可求得的值,再乘以360°即得扇形的圓心角;(2)先算出總?cè)藬?shù),再乘以“活動時間為6天”對應的百分比即得對應的人數(shù);(3)先求得“活動時間不少于5天”的學生人數(shù)的百分比,再乘以20000即可.(1)由圖可得該扇形圓心角的度數(shù)為90°;(2)“活動時間為6天”的人數(shù),如圖所示:(3)∵“活動時間不少于5天”的學生人數(shù)占75%,20000×75%=1∴該市“活動時間不少于5天”的大約有1人.考點:統(tǒng)計的應用點評:統(tǒng)計的應用初中數(shù)學的重點,在中考中極為常見,一般難度不大.21、【解析】
根據(jù)已知得該三角形為直角三角形,利用三角函數(shù)公式求出各邊的值,再利用三角形的面積公式求解.【詳解】如圖:由已知可得:∠A=30°,∠B=60°,∴△ABC為直角三角形,且∠C=90°,AB=10,∴BC=AB·sin30°=10=5,AC=AB·cos30°=10=,∴S△ABC=.【點睛】本題考查了解直角三角形:在直角三角形中,由已知元素求未知元素的過程就是解直角三角形.22、(1)C;(2)①60;②E(,1);③點F的橫坐標x的取值范圍≤xF≤.【解析】
(1)由題意線段MN關于點O的關聯(lián)點的是以線段MN的中點為圓心,為半徑的圓上,所以點C滿足條件;
(2)①如圖3-1中,作NH⊥x軸于H.求出∠MON的大小即可解決問題;
②如圖3-2中,結(jié)論:△MNE是等邊三角形.由∠MON+∠MEN=180°,推出M、O、N、E四點共圓,可得∠MNE=∠MOE=60°,由此即可解決問題;
③如圖3-3中,由②可知,△MNE是等邊三角形,作△MNE的外接圓⊙O′,首先證明點E在直線y=-x+2上,設直線交⊙O′于E、F,可得F(,),觀察圖形即可解決問題;【詳解】(1)由題意線段MN關于點O的關聯(lián)點的是以線段MN的中點為圓心,為半徑的圓上,所以點C滿足條件,
故答案為C.
(2)①如圖3-1中,作NH⊥x軸于H.
∵N(,-),
∴tan∠NOH=,
∴∠NOH=30°,
∠MON=90°+30°=120°,
∵點D是線段MN關于點O的關聯(lián)點,
∴∠MDN+∠MON=180°,
∴∠MDN=60°.
故答案為60°.
②如圖3-2中,結(jié)論:△MNE是等邊三角形.
理由:作EK⊥x軸于K.
∵E(,1),
∴tan∠EOK=,
∴∠EOK=30°,
∴∠MOE=60°,
∵∠MON+∠MEN=180°,
∴M、O、N、E四點共圓,
∴∠MNE=∠MOE=60°,
∵∠MEN=60°,
∴∠MEN=∠MNE=∠NME=60°,
∴△MNE是等邊三角形.③如圖3-3中,由②可知,△MNE是等邊三角形,作△MNE的外接圓⊙O′,
易知E(,1),
∴點E在直線y=-x+2上,設直線交⊙O′于E、F,可得F(,),
觀察圖象可知滿足條件的點F的橫坐標x的取值范圍≤xF≤.【點睛】此題考查一次函數(shù)綜合題,直線與圓的位置關系,等邊三角形的判定和性質(zhì),銳角三角函數(shù),解題的關鍵是理解題意,靈活運用所學知識解決問題,屬于中考壓軸題.23、8+6.【解析】
如圖作CH⊥AB于H.在Rt△BHC求出CH、BH,在Rt△ACH中求出AH、AC即可解決問題;【詳解】解:如圖作CH⊥AB于H.在Rt△BCH中,∵BC=12,∠B=30°,∴CH=BC=6,BH==6,在Rt△ACH中,tanA==,∴AH=8,∴AC==10,【點睛】本題考查解直角三角形,銳角三角函數(shù)等知識,解題的關鍵是學會添加常用輔助線,構造直角三角形解決問題,屬于中考??碱}型.24、(4)4;(2);(4)點E的坐標為(4,2)、(,)、(4,2).【解析】分析:(4)過點B作BH⊥OA于H,如圖4(4),易證四邊形OCBH是矩形,從而有OC=BH,只需在△AHB中運用三角函數(shù)求出BH即可.(2)過點B作BH⊥OA于H,過點G作GF⊥OA于F,過點B作BR⊥OG于R,連接MN、DG,如圖4(2),則有OH=2,BH=4,MN⊥OC.設圓的半徑為r,則MN=MB=MD=r.在Rt△BHD中運用勾股定理可求出r=2,從而得到點D與點H重合.易證△AFG∽△ADB,從而可求出AF、GF、OF、OG、OB、AB、BG.設OR=x,利用BR2=OB2﹣OR2=BG2﹣RG2可求出x,進而可求出BR.在Rt△ORB中運用三角函數(shù)就可解決問題.(4)由于△BDE的直角不確定,故需分情況討論,可分三種情況(①∠BDE=90°,②∠BED=90°,③∠DBE=90°)討論,然后運用相似三角形的性質(zhì)及三角函數(shù)等知識建立關于t的方程就可解決問題.詳解:(4)過點B作BH⊥OA于H,如圖4(4),則有∠BHA=90°=∠COA,∴OC∥BH.∵BC∥OA,∴四邊形OCBH是矩形,∴OC=BH,BC=OH.∵OA=6,BC=2,∴AH=0A﹣OH=OA﹣BC=6﹣2=4.∵∠BHA=90°,∠BAO=45°,∴tan∠BAH==4,∴BH=HA=4,∴OC=BH=4.故答案為4.(2)過點B作BH⊥OA于H,過點G作GF⊥OA于F,過點B作BR⊥OG于R,連接MN、DG,如圖4(2).由(4)得:OH=2,BH=4.∵OC與⊙M相切于N,∴MN⊥OC.設圓的半徑為r,則MN=MB=MD=r.∵BC⊥OC,OA⊥OC,∴BC∥MN∥OA.∵BM=DM,∴CN=ON,∴MN=(BC+OD),∴OD=2r﹣2,∴DH==.在Rt△BHD中,∵∠BHD=90°,∴BD2=BH2+DH2,∴(2r)2=42+(2r﹣4)2.解得:r=2,∴DH=0,即點D與點H重合,∴BD⊥0A,BD=AD.∵BD是⊙M的直徑,∴∠BGD=90°,即DG⊥AB,∴BG=AG.∵GF⊥OA,BD⊥OA
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 課題申報參考:教育科技人才一體化理論與實踐研究
- 2025版工業(yè)換熱站設備檢修及改造合同3篇
- 2025版押金房屋買賣合同:智能家居系統(tǒng)定制版合同2篇
- 2025年度個人虛擬現(xiàn)實體驗服務合同范本2篇
- 2024運輸工程居間合同范本
- 二零二五年度倉儲物流園區(qū)租賃合同模板3篇
- 二零二五年度旅行社脫團游客應急處理與責任免除合同4篇
- 二零二五年度專業(yè)賽事車輛臨時駕駛員用工合同4篇
- 2025年度智能溫室大棚建設及維護服務合同3篇
- 2025年度新型消防器材研發(fā)與采購合作協(xié)議3篇
- 醫(yī)學脂質(zhì)的構成功能及分析專題課件
- 高技能人才培養(yǎng)的策略創(chuàng)新與實踐路徑
- 廣東省湛江市廉江市2023-2024學年八年級上學期期末考試數(shù)學試卷(含答案)
- 2024年湖北省知名中小學教聯(lián)體聯(lián)盟中考語文一模試卷
- 燃氣行業(yè)有限空間作業(yè)安全管理制度
- 污水土地處理系統(tǒng)中雙酚A和雌激素的去除及微生物研究
- 氣胸病人的護理幻燈片
- 《地下建筑結(jié)構》第二版(朱合華)中文(2)課件
- JB T 7946.1-2017鑄造鋁合金金相
- 包裝過程質(zhì)量控制
- 通用電子嘉賓禮薄
評論
0/150
提交評論