2022年江蘇省無錫市南長實驗中學九年級數(shù)學第一學期期末質(zhì)量跟蹤監(jiān)視試題含解析_第1頁
2022年江蘇省無錫市南長實驗中學九年級數(shù)學第一學期期末質(zhì)量跟蹤監(jiān)視試題含解析_第2頁
2022年江蘇省無錫市南長實驗中學九年級數(shù)學第一學期期末質(zhì)量跟蹤監(jiān)視試題含解析_第3頁
2022年江蘇省無錫市南長實驗中學九年級數(shù)學第一學期期末質(zhì)量跟蹤監(jiān)視試題含解析_第4頁
2022年江蘇省無錫市南長實驗中學九年級數(shù)學第一學期期末質(zhì)量跟蹤監(jiān)視試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每題4分,共48分)1.能說明命題“關于的方程一定有實數(shù)根”是假命題的反例為()A. B. C. D.2.下列汽車標志中,既是軸對稱圖形又是中心對稱圖形的是A. B. C. D.3.如圖,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D,AF平分∠CAB,交CD于點E,交CB于點F,若AC=3,AB=5,則CE的長為()A. B. C. D.4.拋物線的對稱軸是()A.直線=-1 B.直線=1 C.直線=-2 D.直線=25.已知是關于的反比例函數(shù),則()A. B. C. D.為一切實數(shù)6.已知反比例函數(shù),則下列結論正確的是()A.點(1,2)在它的圖象上B.其圖象分別位于第一、三象限C.隨的增大而減小D.如果點在它的圖象上,則點也在它的圖象上7.已知,則下列各式不成立的是()A. B. C. D.8.一人乘雪橇沿坡度為1:的斜坡滑下,滑下距離S(米)與時間t(秒)之間的關系為S=10t+2t2,若滑動時間為4秒,則他下降的垂直高度為()A.72米 B.36米 C.米 D.米9.如圖,⊙O是△ABC的外接圓,若∠AOB=100°,則∠ACB的度數(shù)是()A.60° B.50° C.40° D.30°10.如圖,DE是的中位線,則與的面積的比是A.1:2B.1:3C.1:4D.1:911.如圖,△ABC中,∠ACB=90°,∠A=30°,將△ABC繞C點按逆時針方向旋轉角(0°<<90°)得到△DEC,設CD交AB于點F,連接AD,當旋轉角度數(shù)為________,△ADF是等腰三角形.A.20° B.40° C.10° D.20°或40°12.在四張完全相同的卡片上.分別畫有等腰三角形、矩形、菱形、圓,現(xiàn)從中隨機抽取一張,卡片上的圖形恰好是中心對稱圖形的概率是()A. B. C. D.1二、填空題(每題4分,共24分)13.二次函數(shù)y=x2+4x+a圖象上的最低點的橫坐標為_____.14.繞著A點旋轉后得到,若,,則旋轉角等于_____.15.如圖,AB為半圓的直徑,點D在半圓弧上,過點D作AB的平行線與過點A半圓的切線交于點C,點E在AB上,若DE垂直平分BC,則=______.16.方程的一次項系數(shù)是________.17.如圖,在平面直角坐標系中,原點O是等邊三角形ABC的重心,若點A的坐標是(0,3),將△ABC繞點O逆時針旋轉,每秒旋轉60°,則第2018秒時,點A的坐標為.18.已知2是關于x方程x2-2a=0的一個解,則2a-1的值是______________.三、解答題(共78分)19.(8分)已知,正方形中,點是邊延長線上一點,連接,過點作,垂足為點,與交于點.

(1)如圖甲,求證:;(2)如圖乙,連接,若,,求的值.20.(8分)為了提高教學質(zhì)量,促進學生全面發(fā)展,某中學計劃投入99000元購進一批多媒體設備和電腦顯示屏,且準備購進電腦顯示屏的數(shù)量是多媒體設備數(shù)量的6倍.現(xiàn)從商家了解到,一套多媒體設備和一個電腦顯示屏的售價分別為3000元和600元.(1)求最多能購進多媒體設備多少套?(2)恰逢“雙十一”活動,每套多媒體設備的售價下降,每個電腦顯示屏的售價下降元,學校決定多媒體設備和電腦顯示屏的數(shù)量在(1)中購進最多量的基礎上都增加,實際投入資金與計劃投入資金相同,求的值.21.(8分)一艘運沙船裝載著5000m3沙子,到達目的地后開始卸沙,設平均卸沙速度為v(單位:m3/小時),卸沙所需的時間為t(單位:小時).(1)求v關于t的函數(shù)表達式,并用列表描點法畫出函數(shù)的圖象;(2)若要求在20小時至25小時內(nèi)(含20小時和25小時)卸完全部沙子,求卸沙的速度范圍.22.(10分)在△ABC中,AB=6cm,AC=8cm,BC=10cm,P為邊BC上一動點,PE⊥AB于E,PF⊥AC于F,連接EF,則EF的最小值為多少cm?23.(10分)已知拋物線C1:y1=a(x﹣h)2+2,直線1:y2=kx﹣kh+2(k≠0).(1)求證:直線l恒過拋物線C的頂點;(2)若a>0,h=1,當t≤x≤t+3時,二次函數(shù)y1=a(x﹣h)2+2的最小值為2,求t的取值范圍.(3)點P為拋物線的頂點,Q為拋物線與直線l的另一個交點,當1≤k≤3時,若線段PQ(不含端點P,Q)上至少存在一個橫坐標為整數(shù)的點,求a的取值范圍.24.(10分)定義:若函數(shù)與軸的交點的橫坐標為,,與軸交點的縱坐標為,若,中至少存在一個值,滿足(或),則稱該函數(shù)為友好函數(shù).如圖,函數(shù)與軸的一個交點的橫坐標為-3,與軸交點的縱坐標為-3,滿足,稱為友好函數(shù).(1)判斷是否為友好函數(shù),并說明理由;(2)請?zhí)骄坑押煤瘮?shù)表達式中的與之間的關系;(3)若是友好函數(shù),且為銳角,求的取值范圍.25.(12分)計算:﹣12119+|﹣2|+2cos31°+(2﹣tan61°)1.26.如圖,某高速公路建設中需要確定隧道AB的長度.已知在離地面1500m高度C處的飛機上,測量人員測得正前方A、B兩點處的俯角分別為60°和45°.求隧道AB的長(≈1.73).

參考答案一、選擇題(每題4分,共48分)1、D【分析】利用m=5使方程x2-4x+m=0沒有實數(shù)解,從而可把m=5作為說明命題“關于x的方程x2-4x+m=0一定有實數(shù)根”是假命題的反例.【詳解】當m=5時,方程變形為x2-4x+m=5=0,因為△=(-4)2-4×5<0,所以方程沒有實數(shù)解,所以m=5可作為說明命題“關于x的方程x2-4x+m=0一定有實數(shù)根”是假命題的反例.故選D.【點睛】本題考查了命題與定理:命題的“真”“假”是就命題的內(nèi)容而言.任何一個命題非真即假.要說明一個命題的正確性,一般需要推理、論證,而判斷一個命題是假命題,只需舉出一個反例即可.2、D【解析】試題分析:根據(jù)軸對稱圖形與中心對稱圖形的概念,軸對稱圖形兩部分沿對稱軸折疊后可重合;中心對稱圖形是圖形沿對稱中心旋轉180度后與原圖重合.因此,A、是軸對稱圖形,不是中心對稱圖形,故本選項錯誤;B、既不是中心對稱圖形,也不是軸對稱圖形,故本選項錯誤;C、不是軸對稱圖形,是中心對稱圖形,故本選項錯誤;D、是中心對稱圖形,也是軸對稱圖形,故本選項正確.故選D.3、A【分析】根據(jù)三角形的內(nèi)角和定理得出∠CAF+∠CFA=90°,∠FAD+∠AED=90°,根據(jù)角平分線和對頂角相等得出∠CEF=∠CFE,即可得出EC=FC,再利用相似三角形的判定與性質(zhì)得出答案.【詳解】過點F作FG⊥AB于點G,∵∠ACB=90°,CD⊥AB,∴∠CDA=90°,∴∠CAF+∠CFA=90°,∠FAD+∠AED=90°,∵AF平分∠CAB,∴∠CAF=∠FAD,∴∠CFA=∠AED=∠CEF,∴CE=CF,∵AF平分∠CAB,∠ACF=∠AGF=90°,∴FC=FG,∵∠B=∠B,∠FGB=∠ACB=90°,∴△BFG∽△BAC,∴,∵AC=3,AB=5,∠ACB=90°,∴BC=4,∴,∵FC=FG,∴,解得:FC=,即CE的長為.故選A.【點睛】本題考查了直角三角形性質(zhì)、等腰三角形的性質(zhì)和判定,三角形的內(nèi)角和定理以及相似三角形的判定與性質(zhì)等知識,關鍵是推出∠CEF=∠CFE.4、B【分析】根據(jù)題目所給的二次函數(shù)的頂點式直接得到函數(shù)圖象的對稱軸.【詳解】解:∵解析式為,∴對稱軸是直線.故選:B.【點睛】本題考查二次函數(shù)的頂點式,解題的關鍵是根據(jù)二次函數(shù)的頂點式得到函數(shù)圖象的性質(zhì).5、B【分析】根據(jù)題意得,,即可解得m的值.【詳解】∵是關于的反比例函數(shù)∴解得故答案為:B.【點睛】本題考查了反比例函數(shù)的性質(zhì)以及定義,掌握反比例函數(shù)的指數(shù)等于是解題的關鍵.6、D【分析】根據(jù)反比例函數(shù)圖象上點的坐標特征以及反比例函數(shù)的性質(zhì)解答即可.【詳解】解:∵∴圖象在二、四象限,y隨x的增大而增大,選項A、B、C錯誤;∵點在函數(shù)的圖象上,∴∵點橫縱坐標的乘積∴則點也在函數(shù)的圖象上,選項D正確.故選:D.【點睛】本題考查的知識點是反比例函數(shù)的的性質(zhì),掌握反比例函數(shù)圖象的特征及其性質(zhì)是解此題的關鍵.7、D【分析】利用比例的性質(zhì)進行逐一變形,比較是否與題目一致,即可得出答案.【詳解】A:因為所以ab=cd,故A正確;B:因為所以ab=cd,故B正確;C:因為所以(a+c)b=(d+b)c,化簡得ab=cd,故選項C正確;D:因為所以(a+1)(b+1)=(d+1)(c+1),化簡得ab+a+b=cd+d+c,故選項D錯誤;故答案選擇D.【點睛】本題考查的是比例的性質(zhì),難度不大,需要熟練掌握相關基礎知識,重點需要熟練掌握去括號法則.8、B【分析】求滑下的距離,設出下降的高度,表示出水平高度,利用勾股定理即可求解.【詳解】當時,,設此人下降的高度為米,過斜坡頂點向地面作垂線,在直角三角形中,由勾股定理得:,解得.故選:.【點睛】此題主要考查了坡角問題,理解坡比的意義,使用勾股定理,設未知數(shù),列方程求解是解題關鍵.9、B【分析】直接利用圓周角定理可求得∠ACB的度數(shù).【詳解】∵⊙O是△ABC的外接圓,∠AOB=100°,

∴∠ACB=∠AOB=100°=50.

故選:B.【點睛】本題主要考查了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角是所對的圓心角的一半.10、C【分析】由中位線可知DE∥BC,且DE=BC;可得△ADE∽△ABC,相似比為1:2;根據(jù)相似三角形的面積比是相似比的平方,即得結果.【詳解】解:∵DE是△ABC的中位線,∴DE∥BC,且DE=BC,∴△ADE∽△ABC,相似比為1:2,∵相似三角形的面積比是相似比的平方,∴△ADE與△ABC的面積的比為1:4.故選C.【點睛】本題要熟悉中位線的性質(zhì)及相似三角形的判定及性質(zhì),牢記相似三角形的面積比是相似比的平方.11、D【分析】根據(jù)旋轉的性質(zhì)可得AC=CD,根據(jù)等腰三角形的兩底角相等求出∠ADF=∠DAC,再表示出∠DAF,根據(jù)三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和表示出∠AFD,然后分①∠ADF=∠DAF,②∠ADF=∠AFD,③∠DAF=∠AFD三種情況討論求解.【詳解】∵△ABC繞C點逆時針方向旋轉得到△DEC,∴AC=CD,∴∠ADF=∠DAC=(180°-α),∴∠DAF=∠DAC-∠BAC=(180°-α)-30°,根據(jù)三角形的外角性質(zhì),∠AFD=∠BAC+∠DCA=30°+α,△ADF是等腰三角形,分三種情況討論,①∠ADF=∠DAF時,(180°-α)=(180°-α)-30°,無解,②∠ADF=∠AFD時,(180°-α)=30°+α,解得α=40°,③∠DAF=∠AFD時,(180°-α)-30°=30°+α,解得α=20°,綜上所述,旋轉角α度數(shù)為20°或40°.故選:D.【點睛】本題考查了旋轉的性質(zhì),等邊對等角的性質(zhì),三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和的性質(zhì),難點在于要分情況討論.12、C【分析】在等腰三角形、矩形、菱形、圓中是中心對稱圖形的有矩形、菱形、圓,直接利用概率公式求解即可求得答案.【詳解】∵等腰三角形、矩形、菱形、圓中是中心對稱圖形的有矩形、菱形、圓,∴現(xiàn)從中隨機抽取一張,卡片上畫的圖形恰好是中心對稱圖形的概率是:.故選:C.【點睛】此題考查概率的求法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結果,那么事件A的概率P(A)=.也考查了中心對稱圖形的定義.二、填空題(每題4分,共24分)13、﹣1.【解析】直接利用二次函數(shù)最值求法得出函數(shù)頂點式,進而得出答案.【詳解】解:∵二次函數(shù)y=x1+4x+a=(x+1)1﹣4+a,∴二次函數(shù)圖象上的最低點的橫坐標為:﹣1.故答案為﹣1.【點睛】此題主要考查了二次函數(shù)的最值,正確得出二次函數(shù)頂點式是解題關鍵.14、50°或210°【分析】首先根據(jù)題意作圖,然后由∠BAC′=130°,∠BAC=80°,即可求得答案.【詳解】解:∵∠BAC′=130°,∠BAC=80°,

∴如圖1,∠CAC′=∠BAC′-∠BAC=50°,

如圖2,∠CAC′=∠BAC′+∠BAC=210°.

∴旋轉角等于50°或210°.

故答案為:50°或210°.【點睛】本題考查了旋轉的性質(zhì).注意掌握數(shù)形結合思想與分類討論思想的應用.15、【分析】連接CE,過點B作BH⊥CD交CD的延長線于點H,可證四邊形ACHB是矩形,可得AC=BH,AB=CH,由垂直平分線的性質(zhì)可得BE=CE,CD=BD,可證CE=BE=CD=DB,通過證明Rt△ACE≌Rt△HBD,可得AE=DH,通過證明△ACD∽△DHB,可得AC2=AE?BE,由勾股定理可得BE2﹣AE2=AC2,可得關于BE,AE的方程,即可求解.【詳解】解:連接CE,過點B作BH⊥CD交CD的延長線于點H,∵AC是半圓的切線∴AC⊥AB,∵CD∥AB,∴AC⊥CD,且BH⊥CD,AC⊥AB,∴四邊形ACHB是矩形,∴AC=BH,AB=CH,∵DE垂直平分BC,∴BE=CE,CD=BD,且DE⊥BC,∴∠BED=∠CED,∵AB∥CD,∴∠BED=∠CDE=∠CED,∴CE=CD,∴CE=BE=CD=DB,∵AC=BH,CE=BD,∴Rt△ACE≌Rt△HBD(HL)∴AE=DH,∵CE2﹣AE2=AC2,∴BE2﹣AE2=AC2,∵AB是直徑,∴∠ADB=90°,∴∠ADC+∠BDH=90°,且∠ADC+∠CAD=90°,∴∠CAD=∠BDH,且∠ACD=∠BHD,∴△ACD∽△DHB,∴,∴AC2=AE?BE,∴BE2﹣AE2=AE?BE,∴BE=AE,∴故答案為:.【點睛】本題考察垂直平分線的性質(zhì)、矩形的性質(zhì)和相似三角形,解題關鍵是連接CE,過點B作BH⊥CD交CD的延長線于點H,證明出四邊形ACHB是矩形.16、-3【解析】對于一元二次方程的一般形式:,其中叫做二次項,叫做一次項,為常數(shù)項,進而直接得出答案.【詳解】方程的一次項是,∴一次項系數(shù)是:故答案是:.【點睛】本題主要考查了一元二次方程的一般形式,正確得出一次項系數(shù)是解題關鍵.17、【分析】△ABC繞點O逆時針旋轉一周需6秒,而2018=6×336+2,所以第2018秒時,點A旋轉到點A′,∠AOA′=120°,OA=OA′=3,作A′H⊥x軸于H,然后通過解直角三角形求出A′H和OH即可得到A′點的坐標.【詳解】解:∵360°÷60°=6,2018=6×336+2,∴第2018秒時,點A旋轉到點B,如圖,∠AOA′=120°,OA=OA′=3,作A′H⊥x軸于H,∵∠A′OH=30°,∴A′H=OA′=,OH=A′H=,∴A′(﹣,﹣).故答案為(﹣,﹣).【點睛】考核知識點:解直角三角形.結合旋轉和解直角三角形知識解決問題是關鍵.18、5.【分析】把x=2代入已知方程可以求得2a=6,然后將其整體代入所求的代數(shù)式進行解答.【詳解】解:∵x=2是關于x的方程x2-2a=0的一個解,∴×22-2a=0,即6-2a=0,則2a=6,∴2a-1=6-1=5.故答案為5..【點睛】本題考查了一元二次方程的解的定義.一元二次方程的根就是一元二次方程的解,就是能夠使方程左右兩邊相等的未知數(shù)的值.即用這個數(shù)代替未知數(shù)所得式子仍然成立.三、解答題(共78分)19、(1)證明見解析;(2).【分析】(1)由正方形的性質(zhì)得出BC=DC,∠BCG=∠DCE=90°,利用角邊角證明△BGC≌△DEC,然后可得出CG=CE;

(2)由線段的和差,正方形的性質(zhì)求出正方形的邊長為3,根據(jù)勾股定理求出線段BD=6,過點G作GH⊥DB,根據(jù)勾股定理可得出HG=DH=2,進而求出BH=4,BG=2,在Rt△HBG中可求出cos∠DBG的值.【詳解】解:(1)∵四邊形ABCD是正方形,

∴BC=DC,∠BCG=∠DCE=90°,

又∵BF⊥DE,

∴∠GFD=90°,

又∵∠GBC+∠BGC+∠GCB=180°,

∠GFD+∠FDG+∠DGF=180°,

∠BGC=∠DGF,∴∠CBG=∠CDE,

在△BGC和△DEC中,,∴△BGC≌△DEC(ASA),

∴CG=CE;

(2)過點G作GH⊥BD,設CE=x,∵CG=CE,∴CG=x,

又∵BE=BC+CE,DC=DG+GC,BC=DC,

BE=4,DG=2,

∴4?x=2+x,解得:x=,∴BC=3,

在Rt△BCD中,由勾股定理得:,又易得△DHG為等腰直角三角形,∴根據(jù)勾股定理可得HD=HG=2,

又∵BD=BH+HD,

∴BH=6-2=4,

在Rt△HBG中,由勾股定理得:,.【點睛】本題綜合考查了正方形的性質(zhì),全等三角形的判定與性質(zhì),同角的余角相等,勾股定理,解直角三角形等知識點,重點掌握全等三角形的判定與性質(zhì),難點構建直角三角形求角的余弦值.20、(1)15套;(2)37.5【分析】(1)設購買A種設備x套,則購買B種設備6x套,根據(jù)總價=單價×數(shù)量結合計劃投入99000元,即可得出關于x的一元一次不等式,解之取其最大值即可得出結論;(2)根據(jù)總價=單價×數(shù)量結合實際投入資金與計劃投入資金相同,即可得出關于a的一元二次方程,解之取其正值即可得出結論.【詳解】(1)設能購買多媒體設備套,則購買顯示屏6x套,根據(jù)題意得:解得:答:最多能購買多媒體設備15套.(2)由題意得:設,則原方程為:整理得:解得:,(不合題意舍去)∴.答:的值是37.5.【點睛】本題考查了一元一次不等式的應用以及一元二次方程的應用,解題的關鍵是:(1)根據(jù)各數(shù)量之間的關系,找出關于x的一元一次不等式;(2)找準等量關系,正確列出一元二次方程.21、(1)v=,見解析;(2)200≤v≤1【分析】(1)直接利用反比例函數(shù)解析式求法得出答案;(2)直接利用(1)中所求解析式得出v的取值范圍.【詳解】(1)由題意可得:v=,列表得:v…1011625…t…246…描點、連線,如圖所示:;(2)當t=20時,v==1,當t=25時,v==200,故卸沙的速度范圍是:200≤v≤1.【點睛】本題主要考查了反比例函數(shù)的應用,正確得出函數(shù)解析式是解題關鍵.22、4.8cm【分析】連接AP,先利用勾股定理的逆定理證明△ABC為直角三角形,∠A=90°,可知四邊形AEPF為矩形,則AP=EF,當AP的值最小時,EF的值最小,利用垂線段最短得到AP⊥BC時,AP的值最小,然后利用面積法計算此時AP的長即可.【詳解】解:連接AP,∵AB=6cm,AC=8cm,BC=10cm,∴AB2+AC2=BC2,∴△ABC是直角三角形,∴∠A=90°,又∵PE⊥AB,PF⊥AC,∴四邊形AEPF是矩形,∴AP=EF,當AP⊥BC時,EF的值最小,∵,∴.解得AP=4.8cm.∴EF的最小值是4.8cm.【點睛】此題考查了直角三角形的判定及性質(zhì)、矩形的判定與性質(zhì).關于矩形,應從平行四邊形的內(nèi)角的變化上認識其特殊性:一個內(nèi)角是直角的平行四邊形,進一步研究其特有的性質(zhì):是軸對稱圖形、內(nèi)角都是直角、對角線相等.同時平行四邊形的性質(zhì)矩形也都具有.利用矩形對角線線段對線段進行轉換求解是解題關鍵.23、(1)證明見解析;(2)﹣2≤t≤1;(3)﹣1<a<0或0<a<1.【解析】(1)利用二次函數(shù)的性質(zhì)找出拋物線的頂點坐標,將x=h代入一次函數(shù)解析式中可得出點(h,2)在直線1上,進而可證出直線l恒過拋物線C1的頂點;(2)由a>0可得出當x=h=1時y1=a(x﹣h)2+2取得最小值2,結合當t≤x≤t+3時二次函數(shù)y1=a(x﹣h)2+2的最小值為2,可得出關于t的一元一次不等式組,解之即可得出結論;(3)令y1=y(tǒng)2可得出關于x的一元二次方程,解之可求出點P,Q的橫坐標,由線段PQ(不含端點P,Q)上至少存在一個橫坐標為整數(shù)的點,可得出>1或<﹣1,再結合1≤k≤3,即可求出a的取值范圍.【詳解】(1)∵拋物線C1的解析式為y1=a(x﹣h)2+2,∴拋物線的頂點為(h,2),當x=h時,y2=kx﹣kh+2=2,∴直線l恒過拋物線C1的頂點;(2)∵a>0,h=1,∴當x=1時,y1=a(x﹣h)2+2取得最小值2,又∵當t≤x≤t+3時,二次函數(shù)y1=a(x﹣h)2+2的最小值為2,∴,∴﹣2≤t≤1;(3)令y1=y(tǒng)2,則a(x﹣h)2+2=k(x﹣h)+2,解得:x1=h,x2=h+,∵線段PQ(不含端點P,Q)上至少存在一個橫坐標為整數(shù)的點,∴>1或<﹣1,∵k>0,∴0<a<k或﹣k<a<0,又∵1≤k≤3,∴﹣1<a<0或0<a<1.【點睛】本題考查了二次函

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論