生物化學(xué)筆記打印版1_第1頁
生物化學(xué)筆記打印版1_第2頁
生物化學(xué)筆記打印版1_第3頁
生物化學(xué)筆記打印版1_第4頁
生物化學(xué)筆記打印版1_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

生物化學(xué)筆記(打印版)第一章緒論

一、生物化學(xué)的的概念:

生物化學(xué)(biochemistry)是利用化學(xué)的原理與方法去探討生命的一門科學(xué),它是介于化學(xué)、生物學(xué)與物理學(xué)之間的一門邊緣學(xué)科。

二、生物化學(xué)的發(fā)展:

1.?dāng)⑹錾锘瘜W(xué)階段:是生物化學(xué)發(fā)展的萌芽階段,其主要的工作是分析和研究生物體的組成成分以與生物體的分泌物和排泄物。

2.動態(tài)生物化學(xué)階段:是生物化學(xué)蓬勃發(fā)展的時(shí)期。就在這一時(shí)期,人們基本上弄清了生物體內(nèi)各種主要化學(xué)物質(zhì)的代謝途徑。

3.分子生物學(xué)階段:這一階段的主要研究工作就是探討各種生物大分子的結(jié)構(gòu)與其功能之間的關(guān)系。

三、生物化學(xué)研究的主要方面:

1.生物體的物質(zhì)組成:高等生物體主要由蛋白質(zhì)、核酸、糖類、脂類以與水、無機(jī)鹽等組成,此外還含有一些低分子物質(zhì)。

2.物質(zhì)代謝:物質(zhì)代謝的基本過程主要包括三大步驟:消化、吸收→中間代謝→排泄。其中,中間代謝過程是在細(xì)胞內(nèi)進(jìn)行的,最為復(fù)雜的化學(xué)變化過程,它包括合成代謝,分解代謝,物質(zhì)互變,代謝調(diào)控,能量代謝幾方面的內(nèi)容。

3.細(xì)胞信號轉(zhuǎn)導(dǎo):細(xì)胞內(nèi)存在多條信號轉(zhuǎn)導(dǎo)途徑,而這些途徑之間通過一定的方式方式相互交織在一起,從而構(gòu)成了非常復(fù)雜的信號轉(zhuǎn)導(dǎo)網(wǎng)絡(luò),調(diào)控細(xì)胞的代謝、生理活動與生長分化。

4.生物分子的結(jié)構(gòu)與功能:通過對生物大分子結(jié)構(gòu)的理解,揭示結(jié)構(gòu)與功能之間的關(guān)系。

5.遺傳與繁殖:對生物體遺傳與繁殖的分子機(jī)制的研究,也是現(xiàn)代生物化學(xué)與分子生物學(xué)研究的一個(gè)重要內(nèi)容。

第二章蛋白質(zhì)的結(jié)構(gòu)與功能

一、氨基酸:

1.結(jié)構(gòu)特點(diǎn):氨基酸(aminoacid)是蛋白質(zhì)分子的基本組成單位。構(gòu)成天然蛋白質(zhì)分子的氨基酸約有20種,除脯氨酸為α-亞氨基酸、甘氨酸不含手性碳原子外,其余氨基酸均為L-α-氨基酸。

2.分類:根據(jù)氨基酸的R基團(tuán)的極性大小可將氨基酸分為四類:①非極性中性氨基酸(8種);②極性中性氨基酸(7種);③酸性氨基酸(Glu和Asp);④堿性氨基酸(Lys、Arg和His)。

二、肽鍵與肽鏈:

肽鍵(peptidebond)是指由一分子氨基酸的α-羧基與另一分子氨基酸的α-氨基經(jīng)脫水而形成的共價(jià)鍵(-CO-NH-)。氨基酸分子在參與形成肽鍵之后,由于脫水而結(jié)構(gòu)不完整,稱為氨基酸殘基。每條多肽鏈都有兩端:即自由氨基端(N端)與自由羧基端(C端),肽鏈的方向是N端→C端。

三、肽鍵平面(肽單位):

肽鍵具有部分雙鍵的性質(zhì),不能自由旋轉(zhuǎn);組成肽鍵的四個(gè)原子與其相鄰的兩個(gè)α碳原子處在同一個(gè)平面上,為剛性平面結(jié)構(gòu),稱為肽鍵平面。

四、蛋白質(zhì)的分子結(jié)構(gòu):

蛋白質(zhì)的分子結(jié)構(gòu)可人為分為一級、二級、三級和四級結(jié)構(gòu)等層次。一級結(jié)構(gòu)為線狀結(jié)構(gòu),二、三、四級結(jié)構(gòu)為空間結(jié)構(gòu)。

1.一級結(jié)構(gòu):指多肽鏈中氨基酸的排列順序,其維系鍵是肽鍵。蛋白質(zhì)的一級結(jié)構(gòu)決定其空間結(jié)構(gòu)。

2.二級結(jié)構(gòu):指多肽鏈主鏈骨架盤繞折疊而形成的構(gòu)象,借氫鍵維系。主要有以下幾種類型:

⑴α-螺旋:其結(jié)構(gòu)特征為:①主鏈骨架圍繞中心軸盤繞形成右手螺旋;②螺旋每上升一圈是3.6個(gè)氨基酸殘基,螺距為0.54nm;③相鄰螺旋圈之間形成許多氫鍵;④側(cè)鏈基團(tuán)位于螺旋的外側(cè)。

影響α-螺旋形成的因素主要是:①存在側(cè)鏈基團(tuán)較大的氨基酸殘基;②連續(xù)存在帶相同電荷的氨基酸殘基;③存在脯氨酸殘基。

⑵β-折疊:其結(jié)構(gòu)特征為:①若干條肽鏈或肽段平行或反平行排列成片;②所有肽鍵的C=O和N—H形成鏈間氫鍵;③側(cè)鏈基團(tuán)分別交替位于片層的上、下方。

⑶β-轉(zhuǎn)角:多肽鏈180°回折部分,通常由四個(gè)氨基酸殘基構(gòu)成,借1、4殘基之間形成氫鍵維系。

⑷無規(guī)卷曲:主鏈骨架無規(guī)律盤繞的部分。

3.三級結(jié)構(gòu):指多肽鏈所有原子的空間排布。其維系鍵主要是非共價(jià)鍵(次級鍵):氫鍵、疏水鍵、范德華力、離子鍵等,也可涉與二硫鍵。

4.四級結(jié)構(gòu):指亞基之間的立體排布、接觸部位的布局等,其維系鍵為非共價(jià)鍵。亞基是指參與構(gòu)成蛋白質(zhì)四級結(jié)構(gòu)的而又具有獨(dú)立三級結(jié)構(gòu)的多肽鏈。

五、蛋白質(zhì)的理化性質(zhì):

1.兩性解離與等電點(diǎn):蛋白質(zhì)分子中仍然存在游離的氨基和游離的羧基,因此蛋白質(zhì)與氨基酸一樣具有兩性解離的性質(zhì)。蛋白質(zhì)分子所帶正、負(fù)電荷相等時(shí)溶液的pH值稱為蛋白質(zhì)的等電點(diǎn)。

2.蛋白質(zhì)的膠體性質(zhì):蛋白質(zhì)具有親水溶膠的性質(zhì)。蛋白質(zhì)分子表面的水化膜和表面電荷是穩(wěn)定蛋白質(zhì)親水溶膠的兩個(gè)重要因素。

3.蛋白質(zhì)的紫外吸收:蛋白質(zhì)分子中的色氨酸、酪氨酸和苯丙氨酸殘基對紫外光有吸收,以色氨酸吸收最強(qiáng),最大吸收峰為280nm。

4.蛋白質(zhì)的變性:蛋白質(zhì)在某些理化因素的作用下,其特定的空間結(jié)構(gòu)被破壞而導(dǎo)致其理化性質(zhì)改變與生物活性喪失,這種現(xiàn)象稱為蛋白質(zhì)的變性。引起蛋白質(zhì)變性的因素有:高溫、高壓、電離輻射、超聲波、紫外線與有機(jī)溶劑、重金屬鹽、強(qiáng)酸強(qiáng)堿等。絕大多數(shù)蛋白質(zhì)分子的變性是不可逆的。

六、蛋白質(zhì)的分離與純化:

1.鹽析與有機(jī)溶劑沉淀:在蛋白質(zhì)溶液中加入大量中性鹽,以破壞蛋白質(zhì)的膠體性質(zhì),使蛋白質(zhì)從溶液中沉淀析出,稱為鹽析。常用的中性鹽有:硫酸銨、氯化鈉、硫酸鈉等。鹽析時(shí),溶液的pH在蛋白質(zhì)的等電點(diǎn)處效果最好。凡能與水以任意比例混合的有機(jī)溶劑,如乙醇、甲醇、丙酮等,均可引起蛋白質(zhì)沉淀。

2.電泳:蛋白質(zhì)分子在高于或低于其pI的溶液中帶凈的負(fù)或正電荷,因此在電場中可以移動。電泳遷移率的大小主要取決于蛋白質(zhì)分子所帶電荷量以與分子大小。

3.透析:利用透析袋膜的超濾性質(zhì),可將大分子物質(zhì)與小分子物質(zhì)分離開。

4.層析:利用混合物中各組分理化性質(zhì)的差異,在相互接觸的兩相(固定相與流動相)之間的分布不同而進(jìn)行分離。主要有離子交換層析,凝膠層析,吸附層析與親和層析等,其中凝膠層析可用于測定蛋白質(zhì)的分子量。

5.超速離心:利用物質(zhì)密度的不同,經(jīng)超速離心后,分布于不同的液層而分離。超速離心也可用來測定蛋白質(zhì)的分子量,蛋白質(zhì)的分子量與其沉降系數(shù)S成正比。

七、氨基酸順序分析:

蛋白質(zhì)多肽鏈的氨基酸順序分析,即蛋白質(zhì)一級結(jié)構(gòu)的測定,主要有以下幾個(gè)步驟:

1.分離純化蛋白質(zhì),得到一定量的蛋白質(zhì)純品;

2.取一定量的樣品進(jìn)行完全水解,再測定蛋白質(zhì)的氨基酸組成;

3.分析蛋白質(zhì)的N-端和C-端氨基酸;

4.采用特異性的酶(如胰凝乳蛋白酶)或化學(xué)試劑(如溴化氰)將蛋白質(zhì)處理為若干條肽段;

5.分離純化單一肽段;

6.測定各條肽段的氨基酸順序。一般采用Edman降解法,用異硫氰酸苯酯進(jìn)行反應(yīng),將氨基酸降解后,逐一進(jìn)行測定;

7.至少用兩種不同的方法處理蛋白質(zhì),分別得到其肽段的氨基酸順序;

8.將兩套不同肽段的氨基酸順序進(jìn)行比較,以獲得完整的蛋白質(zhì)分子的氨基酸順序。

第三章核酸的結(jié)構(gòu)與功能

一、核酸的化學(xué)組成:

1.含氮堿:參與核酸和核苷酸構(gòu)成的含氮堿主要分為嘌呤堿和嘧啶堿兩大類。組成核苷酸的嘧啶堿主要有三種——尿嘧啶(U)、胞嘧啶(C)和胸腺嘧啶(T),它們都是嘧啶的衍生物。組成核苷酸的嘌呤堿主要有兩種——腺嘌呤(A)和鳥嘌呤(G),它們都是嘌呤的衍生物。

2.戊糖:核苷酸中的戊糖主要有兩種,即β-D-核糖與β-D-2-脫氧核糖,由此構(gòu)成的核苷酸也分為核糖核苷酸與脫氧核糖核酸兩大類。

3.核苷:核苷是由戊糖與含氮堿基經(jīng)脫水縮合而生成的化合物。通常是由核糖或脫氧核糖的C1’β-羥基與嘧啶堿N1或嘌呤堿N9進(jìn)行縮合,故生成的化學(xué)鍵稱為β,N糖苷鍵。其中由D-核糖生成者稱為核糖核苷,而由脫氧核糖生成者則稱為脫氧核糖核苷。由“稀有堿基”所生成的核苷稱為“稀有核苷”。假尿苷(ψ)就是由D-核糖的C1’與尿嘧啶的C5相連而生成的核苷。

二、核苷酸的結(jié)構(gòu)與命名:

核苷酸是由核苷與磷酸經(jīng)脫水縮合后生成的磷酸酯類化合物,包括核糖核苷酸和脫氧核糖核酸兩大類。最常見的核苷酸為5’-核苷酸(5’常被省略)。5’-核苷酸又可按其在5’位縮合的磷酸基的多少,分為一磷酸核苷(核苷酸)、二磷酸核苷和三磷酸核苷。

此外,生物體內(nèi)還存在一些特殊的環(huán)核苷酸,常見的為環(huán)一磷酸腺苷(cAMP)和環(huán)一磷酸鳥苷(cGMP),它們通常是作為激素作用的第二信使。核苷酸通常使用縮寫符號進(jìn)行命名。第一位符號用小寫字母d代表脫氧,第二位用大寫字母代表堿基,第三位用大寫字母代表磷酸基的數(shù)目,第四位用大寫字母P代表磷酸。

三、核酸的一級結(jié)構(gòu):

核苷酸通過3’,5’-磷酸二酯鍵連接起來形成的不含側(cè)鏈的多核苷酸長鏈化合物就稱為核酸。核酸具有方向性,5’-位上具有自由磷酸基的末端稱為5’-端,3’-位上具有自由羥基的末端稱為3’-端。

DNA由dAMP、dGMP、dCMP和dTMP四種脫氧核糖核苷酸所組成。DNA的一級結(jié)構(gòu)就是指DNA分子中脫氧核糖核苷酸的種類、數(shù)目、排列順序與連接方式。RNA由AMP,GMP,CMP,UMP四種核糖核苷酸組成。RNA的一級結(jié)構(gòu)就是指RNA分子中核糖核苷酸的種類、數(shù)目、排列順序與連接方式。

四、DNA的二級結(jié)構(gòu):

DNA雙螺旋結(jié)構(gòu)是DNA二級結(jié)構(gòu)的一種重要形式,它是Watson和Crick兩位科學(xué)家于1953年提出來的一種結(jié)構(gòu)模型,其主要實(shí)驗(yàn)依據(jù)是Chargaff研究小組對DNA的化學(xué)組成進(jìn)行的分析研究,即DNA分子中四種堿基的摩爾百分比為A=T、G=C、A+G=T+C(Chargaff原則),以與由Wilkins研究小組完成的DNA晶體X線衍射圖譜分析。

天然DNA的二級結(jié)構(gòu)以B型為主,其結(jié)構(gòu)特征為:①為右手雙螺旋,兩條鏈以反平行方式排列;②主鏈位于螺旋外側(cè),堿基位于內(nèi)側(cè);③兩條鏈間存在堿基互補(bǔ),通過氫鍵連系,且A-T、G-C(堿基互補(bǔ)原則);④螺旋的穩(wěn)定因素為氫鍵和堿基堆砌力;⑤螺旋的螺距為3.4nm,直徑為2nm。

五、DNA的超螺旋結(jié)構(gòu):

雙螺旋的DNA分子進(jìn)一步盤旋形成的超螺旋結(jié)構(gòu)稱為DNA的三級結(jié)構(gòu)。

絕大多數(shù)原核生物的DNA都是共價(jià)封閉的環(huán)狀雙螺旋,其三級結(jié)構(gòu)呈麻花狀。

在真核生物中,雙螺旋的DNA分子圍繞一蛋白質(zhì)八聚體進(jìn)行盤繞,從而形成特殊的串珠狀結(jié)構(gòu),稱為核小體。核小體結(jié)構(gòu)屬于DNA的三級結(jié)構(gòu)。六、DNA的功能:

DNA的基本功能是作為遺傳信息的載體,為生物遺傳信息復(fù)制以與基因信息的轉(zhuǎn)錄提供模板。

DNA分子中具有特定生物學(xué)功能的片段稱為基因(gene)。一個(gè)生物體的全部DNA序列稱為基因組(genome)?;蚪M的大小與生物的復(fù)雜性有關(guān)。

七、RNA的空間結(jié)構(gòu)與功能:

RNA分子的種類較多,分子大小變化較大,功能多樣化。RNA通常以單鏈存在,但也可形成局部的雙螺旋結(jié)構(gòu)。

1.mRNA的結(jié)構(gòu)與功能:mRNA是單鏈核酸,其在真核生物中的初級產(chǎn)物稱為HnRNA。大多數(shù)真核成熟的mRNA分子具有典型的5’-端的7-甲基鳥苷三磷酸(m7GTP)帽子結(jié)構(gòu)和3’-端的多聚腺苷酸(polyA)尾巴結(jié)構(gòu)。mRNA的功能是為蛋白質(zhì)的合成提供模板,分子中帶有遺傳密碼。mRNA分子中每三個(gè)相鄰的核苷酸組成一組,在蛋白質(zhì)翻譯合成時(shí)代表一個(gè)特定的氨基酸,這種核苷酸三聯(lián)體稱為遺傳密碼(coden)。

2.tRNA的結(jié)構(gòu)與功能:tRNA是分子最小,但含有稀有堿基最多的RNA。tRNA的二級結(jié)構(gòu)由于局部雙螺旋的形成而表現(xiàn)為“三葉草”形,故稱為“三葉草”結(jié)構(gòu),可分為五個(gè)部分:①氨基酸臂:由tRNA的5’-端和3’-端構(gòu)成的局部雙螺旋,3’-端都帶有-CCA-OH順序,可與氨基酸結(jié)合而攜帶氨基酸。②DHU臂:含有二氫尿嘧啶核苷,與氨基酰tRNA合成酶的結(jié)合有關(guān)。③反密碼臂:其反密碼環(huán)中部的三個(gè)核苷酸組成三聯(lián)體,在蛋白質(zhì)生物合成中,可以用來識別mRNA上相應(yīng)的密碼,故稱為反密碼(anticoden)。④TψC臂:含保守的TψC順序,可以識別核蛋白體上的rRNA,促使tRNA與核蛋白體結(jié)合。⑤可變臂:位于TψC臂和反密碼臂之間,功能不詳。

3.rRNA的結(jié)構(gòu)與功能:rRNA是細(xì)胞中含量最多的RNA,可與蛋白質(zhì)一起構(gòu)成核蛋白體,作為蛋白質(zhì)生物合成的場所。原核生物中的rRNA有三種:5S,16S,23S。真核生物中的rRNA有四種:5S,5.8S,18S,28S。

八、核酶:

具有自身催化作用的RNA稱為核酶(ribozyme),核酶通常具有特殊的分子結(jié)構(gòu),如錘頭結(jié)構(gòu)。

九、核酸的一般理化性質(zhì):

核酸具有酸性;粘度大;能吸收紫外光,最大吸收峰為260nm。

十、DNA的變性:

在理化因素作用下,DNA雙螺旋的兩條互補(bǔ)鏈松散而分開成為單鏈,從而導(dǎo)致DNA的理化性質(zhì)與生物學(xué)性質(zhì)發(fā)生改變,這種現(xiàn)象稱為DNA的變性。

引起DNA變性的因素主要有:①高溫,②強(qiáng)酸強(qiáng)堿,③有機(jī)溶劑等。DNA變性后的性質(zhì)改變:①增色效應(yīng):指DNA變性后對260nm紫外光的光吸收度增加的現(xiàn)象;②旋光性下降;③粘度降低;④生物功能喪失或改變。

加熱DNA溶液,使其對260nm紫外光的吸收度突然增加,達(dá)到其最大值一半時(shí)的溫度,就是DNA的變性溫度(融解溫度,Tm)。Tm的高低與DNA分子中G+C的含量有關(guān),G+C的含量越高,則Tm越高。

十一、DNA的復(fù)性與分子雜交:

將變性DNA經(jīng)退火處理,使其重新形成雙螺旋結(jié)構(gòu)的過程,稱為DNA的復(fù)性。

兩條來源不同的單鏈核酸(DNA或RNA),只要它們有大致相同的互補(bǔ)堿基順序,以退火處理即可復(fù)性,形成新的雜種雙螺旋,這一現(xiàn)象稱為核酸的分子雜交。核酸雜交可以是DNA-DNA,也可以是DNA-RNA雜交。不同來源的,具有大致相同互補(bǔ)堿基順序的核酸片段稱為同源順序。

常用的核酸分子雜交技術(shù)有:原位雜交、斑點(diǎn)雜交、Southern雜交與Northern雜交等。

在核酸雜交分析過程中,常將已知順序的核酸片段用放射性同位素或生物素進(jìn)行標(biāo)記,這種帶有一定標(biāo)記的已知順序的核酸片段稱為探針。

十二、核酸酶:

凡是能水解核酸的酶都稱為核酸酶。凡能從多核苷酸鏈的末端開始水解核酸的酶稱為核酸外切酶,凡能從多核苷酸鏈中間開始水解核酸的酶稱為核酸內(nèi)切酶。能識別特定的核苷酸順序,并從特定位點(diǎn)水解核酸的內(nèi)切酶稱為限制性核酸內(nèi)切酶(限制酶)

第四章酶

一、酶的概念:

酶(enzyme)是由活細(xì)胞產(chǎn)生的生物催化劑,這種催化劑具有極高的催化效率和高度的底物特異性,其化學(xué)本質(zhì)是蛋白質(zhì)。酶按照其分子結(jié)構(gòu)可分為單體酶、寡聚酶和多酶體系(多酶復(fù)合體和多功能酶)三大類。

二、酶的分子組成:

酶分子可根據(jù)其化學(xué)組成的不同,可分為單純酶和結(jié)合酶(全酶)兩類。結(jié)合酶則是由酶蛋白和輔助因子兩部分構(gòu)成,酶蛋白部分主要與酶的底物特異性有關(guān),輔助因子則與酶的催化活性有關(guān)。

與酶蛋白疏松結(jié)合并與酶的催化活性有關(guān)的耐熱低分子有機(jī)化合物稱為輔酶。與酶蛋白牢固結(jié)合并與酶的催化活性有關(guān)的耐熱低分子有機(jī)化合物稱為輔基。

三、輔酶與輔基的來源與其生理功用:

輔酶與輔基的生理功用主要是:⑴運(yùn)載氫原子或電子,參與氧化還原反應(yīng)。⑵運(yùn)載反應(yīng)基團(tuán),如酰基、氨基、烷基、羧基與一碳單位等,參與基團(tuán)轉(zhuǎn)移。大部分的輔酶與輔基衍生于維生素。

維生素(vitamin)是指一類維持細(xì)胞正常功能所必需的,但在許多生物體內(nèi)不能自身合成而必須由食物供給的小分子有機(jī)化合物。

維生素可按其溶解性的不同分為脂溶性維生素和水溶性維生素兩大類。脂溶性維生素有VitA、VitD、VitE和VitK四種;水溶性維生素有VitB1,VitB2,VitPP,VitB6,VitB12,VitC,泛酸,生物素,葉酸等。

1.TPP:即焦磷酸硫胺素,由硫胺素(VitB1)焦磷酸化而生成,是脫羧酶的輔酶,在體內(nèi)參與糖代謝過程中α-酮酸的氧化脫羧反應(yīng)。

2.FMN和FAD:即黃素單核苷酸(FMN)和黃素腺嘌呤二核苷酸(FAD),是核黃素(VitB2)的衍生物。FMN或FAD通常作為脫氫酶的輔基,在酶促反應(yīng)中作為遞氫體(雙遞氫體)。

3.NAD+和NADP+:即尼克酰胺腺嘌呤二核苷酸(NAD+,輔酶Ⅰ)和尼克酰胺腺嘌呤二核苷酸磷酸(NADP+,輔酶Ⅱ),是VitPP的衍生物。NAD+和NADP+主要作為脫氫酶的輔酶,在酶促反應(yīng)中起遞氫體的作用,為單遞氫體。

4.磷酸吡哆醛和磷酸吡哆胺:是VitB6的衍生物。磷酸吡哆醛和磷酸吡哆胺可作為氨基轉(zhuǎn)移酶,氨基酸脫羧酶,半胱氨酸脫硫酶等的輔酶。

5.CoA:泛酸(遍多酸)在體內(nèi)參與構(gòu)成輔酶A(CoA)。CoA中的巰基可與羧基以高能硫酯鍵結(jié)合,在糖、脂、蛋白質(zhì)代謝中起傳遞酰基的作用,是?;傅妮o酶。

6.生物素:是羧化酶的輔基,在體內(nèi)參與CO2的固定和羧化反應(yīng)。

7.FH4:由葉酸衍生而來。四氫葉酸是體內(nèi)一碳單位基團(tuán)轉(zhuǎn)移酶系統(tǒng)中的輔酶。

8.VitB12衍生物:VitB12分子中含金屬元素鈷,故又稱為鈷胺素。VitB12在體內(nèi)有多種活性形式,如5'-脫氧腺苷鈷胺素、甲基鈷胺素等。其中,5'-脫氧腺苷鈷胺素參與構(gòu)成變位酶的輔酶,甲基鈷胺素則是甲基轉(zhuǎn)移酶的輔酶。

四、金屬離子的作用:

1.穩(wěn)定構(gòu)象:穩(wěn)定酶蛋白催化活性所必需的分子構(gòu)象;

2.構(gòu)成酶的活性中心:作為酶的活性中心的組成成分,參與構(gòu)成酶的活性中心;

3.連接作用:作為橋梁,將底物分子與酶蛋白螯合起來。

五、酶的活性中心:

酶分子上具有一定空間構(gòu)象的部位,該部位化學(xué)基團(tuán)集中,直接參與將底物轉(zhuǎn)變?yōu)楫a(chǎn)物的反應(yīng)過程,這一部位就稱為酶的活性中心。

參與構(gòu)成酶的活性中心的化學(xué)基團(tuán),有些是與底物相結(jié)合的,稱為結(jié)合基團(tuán),有些是催化底物反應(yīng)轉(zhuǎn)變成產(chǎn)物的,稱為催化基團(tuán),這兩類基團(tuán)統(tǒng)稱為活性中心內(nèi)必需基團(tuán)。在酶的活性中心以外,也存在一些化學(xué)基團(tuán),主要與維系酶的空間構(gòu)象有關(guān),稱為酶活性中心外必需基團(tuán)。

六、酶促反應(yīng)的特點(diǎn):

1.具有極高的催化效率:酶的催化效率可比一般催化劑高106~1020倍。酶能與底物形成ES中間復(fù)合物,從而改變化學(xué)反應(yīng)的進(jìn)程,使反應(yīng)所需活化能閾大大降低,活化分子的數(shù)目大大增加,從而加速反應(yīng)進(jìn)行。

2.具有高度的底物特異性:一種酶只作用于一種或一類化合物,以促進(jìn)一定的化學(xué)變化,生成一定的產(chǎn)物,這種現(xiàn)象稱為酶作用的特異性。

⑴絕對特異性:一種酶只能作用于一種化合物,以催化一種化學(xué)反應(yīng),稱為絕對特異性,如琥珀酸脫氫酶。

⑵相對特異性:一種酶只能作用于一類化合物或一種化學(xué)鍵,催化一類化學(xué)反應(yīng),稱為相對特異性,如脂肪酶。

⑶立體異構(gòu)特異性:一種酶只能作用于一種立體異構(gòu)體,或只能生成一種立體異構(gòu)體,稱為立體異構(gòu)特異性,如L-精氨酸酶。

3.酶的催化活性是可以調(diào)節(jié)的:如代謝物可調(diào)節(jié)酶的催化活性,對酶分子的共價(jià)修飾可改變酶的催化活性,也可通過改變酶蛋白的合成來改變其催化活性。

七、酶促反應(yīng)的機(jī)制:

1.中間復(fù)合物學(xué)說與誘導(dǎo)契合學(xué)說:酶催化時(shí),酶活性中心首先與底物結(jié)合生成一種酶-底物復(fù)合物(ES),此復(fù)合物再分解釋放出酶,并生成產(chǎn)物,即為中間復(fù)合物學(xué)說。當(dāng)?shù)孜锱c酶接近時(shí),底物分子可以誘導(dǎo)酶活性中心的構(gòu)象以生改變,使之成為能與底物分子密切結(jié)合的構(gòu)象,這就是誘導(dǎo)契合學(xué)說。

2.與酶的高效率催化有關(guān)的因素:①趨近效應(yīng)與定向作用;②張力作用;③酸堿催化作用;④共價(jià)催化作用;⑤酶活性中心的低介電區(qū)(表面效應(yīng))。

八、酶促反應(yīng)動力學(xué):

酶反應(yīng)動力學(xué)主要研究酶催化的反應(yīng)速度以與影響反應(yīng)速度的各種因素。在探討各種因素對酶促反應(yīng)速度的影響時(shí),通常測定其初始速度來代表酶促反應(yīng)速度,即底物轉(zhuǎn)化量<5%時(shí)的反應(yīng)速度。

1.底物濃度對反應(yīng)速度的影響:

⑴底物對酶促反應(yīng)的飽和現(xiàn)象:由實(shí)驗(yàn)觀察到,在酶濃度不變時(shí),不同的底物濃度與反應(yīng)速度的關(guān)系為一矩形雙曲線,即當(dāng)?shù)孜餄舛容^低時(shí),反應(yīng)速度的增加與底物濃度的增加成正比(一級反應(yīng));此后,隨底物濃度的增加,反應(yīng)速度的增加量逐漸減少(混合級反應(yīng));最后,當(dāng)?shù)孜餄舛仍黾拥揭欢繒r(shí),反應(yīng)速度達(dá)到一最大值,不再隨底物濃度的增加而增加(零級反應(yīng))。

⑵米氏方程與米氏常數(shù):根據(jù)上述實(shí)驗(yàn)結(jié)果,Michaelis&Menten于1913年推導(dǎo)出了上述矩形雙曲線的數(shù)學(xué)表達(dá)式,即米氏方程:ν=Vmax[S]/(Km+[S])。其中,Vmax為最大反應(yīng)速度,Km為米氏常數(shù)。

⑶Km和Vmax的意義:

①當(dāng)ν=Vmax/2時(shí),Km=[S]。因此,Km等于酶促反應(yīng)速度達(dá)最大值一半時(shí)的底物濃度。

②當(dāng)k-1>>k+2時(shí),Km=k-1/k+1=Ks。因此,Km可以反映酶與底物親和力的大小,即Km值越小,則酶與底物的親和力越大;反之,則越小。

③Km可用于判斷反應(yīng)級數(shù):當(dāng)[S]<0.01Km時(shí),ν=(Vmax/Km)[S],反應(yīng)為一級反應(yīng),即反應(yīng)速度與底物濃度成正比;當(dāng)[S]>100Km時(shí),ν=Vmax,反應(yīng)為零級反應(yīng),即反應(yīng)速度與底物濃度無關(guān);當(dāng)0.01Km<[S]<100Km時(shí),反應(yīng)處于零級反應(yīng)和一級反應(yīng)之間,為混合級反應(yīng)。

④Km是酶的特征性常數(shù):在一定條件下,某種酶的Km值是恒定的,因而可以通過測定不同酶(特別是一組同工酶)的Km值,來判斷是否為不同的酶。

⑤Km可用來判斷酶的最適底物:當(dāng)酶有幾種不同的底物存在時(shí),Km值最小者,為該酶的最適底物。

⑥Km可用來確定酶活性測定時(shí)所需的底物濃度:當(dāng)[S]=10Km時(shí),ν=91%Vmax,為最合適的測定酶活性所需的底物濃度。

⑦Vmax可用于酶的轉(zhuǎn)換數(shù)的計(jì)算:當(dāng)酶的總濃度和最大速度已知時(shí),可計(jì)算出酶的轉(zhuǎn)換數(shù),即單位時(shí)間內(nèi)每個(gè)酶分子催化底物轉(zhuǎn)變?yōu)楫a(chǎn)物的分子數(shù)。

⑷Km和Vmax的測定:主要采用Lineweaver-Burk雙倒數(shù)作圖法和Hanes作圖法。

2.酶濃度對反應(yīng)速度的影響:當(dāng)反應(yīng)系統(tǒng)中底物的濃度足夠大時(shí),酶促反應(yīng)速度與酶濃度成正比,即ν=k[E]。

3.溫度對反應(yīng)速度的影響:一般來說,酶促反應(yīng)速度隨溫度的增高而加快,但當(dāng)溫度增加達(dá)到某一點(diǎn)后,由于酶蛋白的熱變性作用,反應(yīng)速度迅速下降。酶促反應(yīng)速度隨溫度升高而達(dá)到一最大值時(shí)的溫度就稱為酶的最適溫度。酶的最適溫度與實(shí)驗(yàn)條件有關(guān),因而它不是酶的特征性常數(shù)。低溫時(shí)由于活化分子數(shù)目減少,反應(yīng)速度降低,但溫度升高后,酶活性又可恢復(fù)。

4.pH對反應(yīng)速度的影響:觀察pH對酶促反應(yīng)速度的影響,通常為一鐘形曲線,即pH過高或過低均可導(dǎo)致酶催化活性的下降。酶催化活性最高時(shí)溶液的pH值就稱為酶的最適pH。人體內(nèi)大多數(shù)酶的最適pH在6.5~8.0之間。酶的最適pH不是酶的特征性常數(shù)。

5.抑制劑對反應(yīng)速度的影響:

凡是能降低酶促反應(yīng)速度,但不引起酶分子變性失活的物質(zhì)統(tǒng)稱為酶的抑制劑。按照抑制劑的抑制作用,可將其分為不可逆抑制作用和可逆抑制作用兩大類。

⑴不可逆抑制作用:

抑制劑與酶分子的必需基團(tuán)共價(jià)結(jié)合引起酶活性的抑制,且不能采用透析等簡單方法使酶活性恢復(fù)的抑制作用就是不可逆抑制作用。如果以ν~[E]作圖,就可得到一組斜率相同的平行線,隨抑制劑濃度的增加而平行向右移動。酶的不可逆抑制作用包括專一性抑制(如有機(jī)磷農(nóng)藥對膽堿酯酶的抑制)和非專一性抑制(如路易斯氣對巰基酶的抑制)兩種。

⑵可逆抑制作用:

抑制劑以非共價(jià)鍵與酶分子可逆性結(jié)合造成酶活性的抑制,且可采用透析等簡單方法去除抑制劑而使酶活性完全恢復(fù)的抑制作用就是可逆抑制作用。如果以ν~[E]作圖,可得到一組隨抑制劑濃度增加而斜率降低的直線。可逆抑制作用包括競爭性、反競爭性和非競爭性抑制幾種類型。

①競爭性抑制:抑制劑與底物競爭與酶的同一活性中心結(jié)合,從而干擾了酶與底物的結(jié)合,使酶的催化活性降低,這種作用就稱為競爭性抑制作用。其特點(diǎn)為:a.競爭性抑制劑往往是酶的底物類似物或反應(yīng)產(chǎn)物;b.抑制劑與酶的結(jié)合部位與底物與酶的結(jié)合部位相同;c.抑制劑濃度越大,則抑制作用越大;但增加底物濃度可使抑制程度減小;d.動力學(xué)參數(shù):Km值增大,Vm值不變。典型的例子是丙二酸對琥珀酸脫氫酶(底物為琥珀酸)的競爭性抑制和磺胺類藥物(對氨基苯磺酰胺)對二氫葉酸合成酶(底物為對氨基苯甲酸)的競爭性抑制。

②反競爭性抑制:抑制劑不能與游離酶結(jié)合,但可與ES復(fù)合物結(jié)合并阻止產(chǎn)物生成,使酶的催化活性降低,稱酶的反競爭性抑制。其特點(diǎn)為:a.抑制劑與底物可同時(shí)與酶的不同部位結(jié)合;b.必須有底物存在,抑制劑才能對酶產(chǎn)生抑制作用;c.動力學(xué)參數(shù):Km減小,Vm降低。

③非競爭性抑制:抑制劑既可以與游離酶結(jié)合,也可以與ES復(fù)合物結(jié)合,使酶的催化活性降低,稱為非競爭性抑制。其特點(diǎn)為:a.底物和抑制劑分別獨(dú)立地與酶的不同部位相結(jié)合;b.抑制劑對酶與底物的結(jié)合無影響,故底物濃度的改變對抑制程度無影響;c.動力學(xué)參數(shù):Km值不變,Vm值降低。

6.激活劑對反應(yīng)速度的影響:能夠促使酶促反應(yīng)速度加快的物質(zhì)稱為酶的激活劑。酶的激活劑大多數(shù)是金屬離子,如K+、Mg2+、Mn2+等,唾液淀粉酶的激活劑為Cl-。

九、酶的調(diào)節(jié):

可以通過改變其催化活性而使整個(gè)代謝反應(yīng)的速度或方向發(fā)生改變的酶就稱為限速酶或關(guān)鍵酶。

酶活性的調(diào)節(jié)可以通過改變其結(jié)構(gòu)而使其催化活性以生改變,也可以通過改變其含量來改變其催化活性,還可以通過以不同形式的酶在不同組織中的分布差異來調(diào)節(jié)代謝活動。

1.酶結(jié)構(gòu)的調(diào)節(jié):通過對現(xiàn)有酶分子結(jié)構(gòu)的影響來改變酶的催化活性。這是一種快速調(diào)節(jié)方式。

⑴變構(gòu)調(diào)節(jié):又稱別構(gòu)調(diào)節(jié)。某些代謝物能與變構(gòu)酶分子上的變構(gòu)部位特異性結(jié)合,使酶的分子構(gòu)發(fā)生改變,從而改變酶的催化活性以與代謝反應(yīng)的速度,這種調(diào)節(jié)作用就稱為變構(gòu)調(diào)節(jié)。具有變構(gòu)調(diào)節(jié)作用的酶就稱為變構(gòu)酶。凡能使酶分子變構(gòu)并使酶的催化活性發(fā)生改變的代謝物就稱為變構(gòu)劑。當(dāng)變構(gòu)酶的一個(gè)亞基與其配體(底物或變構(gòu)劑)結(jié)合后,能夠通過改變相鄰亞基的構(gòu)象而使其對配體的親和力發(fā)生改變,這種效應(yīng)就稱為變構(gòu)酶的協(xié)同效應(yīng)。變構(gòu)劑一般以反饋方式對代謝途徑的起始關(guān)鍵酶進(jìn)行調(diào)節(jié),常見的為負(fù)反饋調(diào)節(jié)。變構(gòu)調(diào)節(jié)的特點(diǎn):①酶活性的改變通過酶分子構(gòu)象的改變而實(shí)現(xiàn);②酶的變構(gòu)僅涉與非共價(jià)鍵的變化;③調(diào)節(jié)酶活性的因素為代謝物;④為一非耗能過程;⑤無放大效應(yīng)。

⑵共價(jià)修飾調(diào)節(jié):酶蛋白分子中的某些基團(tuán)可以在其他酶的催化下發(fā)生共價(jià)修飾,從而導(dǎo)致酶活性的改變,稱為共價(jià)修飾調(diào)節(jié)。共價(jià)修飾方式有:磷酸化-脫磷酸化等。共價(jià)修飾調(diào)節(jié)一般與激素的調(diào)節(jié)相聯(lián)系,其調(diào)節(jié)方式為級聯(lián)反應(yīng)。共價(jià)修飾調(diào)節(jié)的特點(diǎn)為:①酶以兩種不同修飾和不同活性的形式存在;②有共價(jià)鍵的變化;③受其他調(diào)節(jié)因素(如激素)的影響;④一般為耗能過程;⑤存在放大效應(yīng)。

⑶酶原的激活:處于無活性狀態(tài)的酶的前身物質(zhì)就稱為酶原。酶原在一定條件下轉(zhuǎn)化為有活性的酶的過程稱為酶原的激活。酶原的激活過程通常伴有酶蛋白一級結(jié)構(gòu)的改變。酶原分子一級結(jié)構(gòu)的改變導(dǎo)致了酶原分子空間結(jié)構(gòu)的改變,使催化活性中心得以形成,故使其從無活性的酶原形式轉(zhuǎn)變?yōu)橛谢钚缘拿?。酶原激活的生理意義在于:保護(hù)自身組織細(xì)胞不被酶水解消化。

2.酶含量的調(diào)節(jié):是指通過改變細(xì)胞中酶蛋白合成或降解的速度來調(diào)節(jié)酶分子的絕對含量,影響其催化活性,從而調(diào)節(jié)代謝反應(yīng)的速度。這是機(jī)體內(nèi)遲緩調(diào)節(jié)的重要方式。

⑴酶蛋白合成的調(diào)節(jié):酶蛋白的合成速度通常通過一些誘導(dǎo)劑或阻遏劑來進(jìn)行調(diào)節(jié)。凡能促使基因轉(zhuǎn)錄增強(qiáng),從而使酶蛋白合成增加的物質(zhì)就稱為誘導(dǎo)劑;反之,則稱為阻遏劑。常見的誘導(dǎo)劑或阻遏劑包括代謝物、藥物和激素等。

⑵酶蛋白降解的調(diào)節(jié):如饑餓時(shí),精氨酸酶降解減慢,故酶活性增高,有利于氨基酸的分解供能。

3.同工酶的調(diào)節(jié):在同一種屬中,催化活性相同而酶蛋白的分子結(jié)構(gòu),理化性質(zhì)與免疫學(xué)性質(zhì)不同的一組酶稱為同工酶。同工酶在體內(nèi)的生理意義主要在于適應(yīng)不同組織或不同細(xì)胞器在代謝上的不同需要。因此,同工酶在體內(nèi)的生理功能是不同的。

乳酸脫氫酶同工酶(LDHs)為四聚體,在體內(nèi)共有五種分子形式,即LDH1(H4),LDH2(H3M1),LDH3(H2M2),LDH4(H1M3)和LDH5(M4)。心肌中以LDH1含量最多,LDH1對乳酸的親和力較高,因此它的主要作用是催化乳酸轉(zhuǎn)變?yōu)楸嵩龠M(jìn)一步氧化分解,以供應(yīng)心肌的能量。在骨骼肌中含量最多的是LDH5,LDH5對丙酮酸的親和力較高,因此它的主要作用是催化丙酮酸轉(zhuǎn)變?yōu)槿樗幔源龠M(jìn)糖酵解的進(jìn)行。十、酶的命名與分類:

1.酶的命名:主要有習(xí)慣命名法與系統(tǒng)命名法兩種,但常用者為習(xí)慣命名法。

2.酶的分類:根據(jù)1961年國際酶學(xué)委員會(IEC)的分類法,將酶分為六大類:①氧化還原酶類:催化氧化還原反應(yīng);②轉(zhuǎn)移酶類:催化一個(gè)基團(tuán)從某種化合物至另一種化合物;③水解酶類:催化化合物的水解反應(yīng);④裂合酶類:催化從雙鍵上去掉一個(gè)基團(tuán)或加上一個(gè)基團(tuán)至雙鍵上;⑤異構(gòu)酶類:催化分子內(nèi)基團(tuán)重排;⑥合成酶類:催化兩分子化合物的締合反應(yīng)。第五章糖代謝

一、糖類的生理功用:

①氧化供能:糖類是人體最主要的供能物質(zhì),占全部供能物質(zhì)供能量的70%;與供能有關(guān)的糖類主要是葡萄糖和糖原,前者為運(yùn)輸和供能形式,后者為貯存形式。②作為結(jié)構(gòu)成分:糖類可與脂類形成糖脂,或與蛋白質(zhì)形成糖蛋白,糖脂和糖蛋白均可參與構(gòu)成生物膜、神經(jīng)組織等。③作為核酸類化合物的成分:核糖和脫氧核糖參與構(gòu)成核苷酸,DNA,RNA等。④轉(zhuǎn)變?yōu)槠渌镔|(zhì):糖類可經(jīng)代謝而轉(zhuǎn)變?yōu)橹净虬被岬然衔铩?/p>

二、糖的無氧酵解:

糖的無氧酵解是指葡萄糖在無氧條件下分解生成乳酸并釋放出能量的過程。其全部反應(yīng)過程在胞液中進(jìn)行,代謝的終產(chǎn)物為乳酸,一分子葡萄糖經(jīng)無氧酵解可凈生成兩分子ATP。

糖的無氧酵解代謝過程可分為四個(gè)階段:

1.活化(己糖磷酸酯的生成):葡萄糖經(jīng)磷酸化和異構(gòu)反應(yīng)生成1,6-雙磷酸果糖(FBP),即葡萄糖→6-磷酸葡萄糖→6-磷酸果糖→1,6-雙磷酸果糖(F-1,6-BP)。這一階段需消耗兩分子ATP,己糖激酶(肝中為葡萄糖激酶)和6-磷酸果糖激酶-1是關(guān)鍵酶。

2.裂解(磷酸丙糖的生成):一分子F-1,6-BP裂解為兩分子3-磷酸甘油醛,包括兩步反應(yīng):F-1,6-BP→磷酸二羥丙酮+3-磷酸甘油醛和磷酸二羥丙酮→3-磷酸甘油醛。

3.放能(丙酮酸的生成):3-磷酸甘油醛經(jīng)脫氫、磷酸化、脫水與放能等反應(yīng)生成丙酮酸,包括五步反應(yīng):3-磷酸甘油醛→1,3-二磷酸甘油酸→3-磷酸甘油酸→2-磷酸甘油酸→磷酸烯醇式丙酮酸→丙酮酸。此階段有兩次底物水平磷酸化的放能反應(yīng),共可生成2×2=4分子ATP。丙酮酸激酶為關(guān)鍵酶。

4.還原(乳酸的生成):利用丙酮酸接受酵解代謝過程中產(chǎn)生的NADH,使NADH重新氧化為NAD+。即丙酮酸→乳酸。

三、糖無氧酵解的調(diào)節(jié):

主要是對三個(gè)關(guān)鍵酶,即己糖激酶(葡萄糖激酶)、6-磷酸果糖激酶-1、丙酮酸激酶進(jìn)行調(diào)節(jié)。己糖激酶的變構(gòu)抑制劑是G-6-P;肝中的葡萄糖激酶是調(diào)節(jié)肝細(xì)胞對葡萄糖吸收的主要因素,受長鏈脂酰CoA的反饋抑制;6-磷酸果糖激酶-1是調(diào)節(jié)糖酵解代謝途徑流量的主要因素,受ATP和檸檬酸的變構(gòu)抑制,AMP、ADP、1,6-雙磷酸果糖和2,6-雙磷酸果糖的變構(gòu)激活;丙酮酸激酶受1,6-雙磷酸果糖的變構(gòu)激活,受ATP的變構(gòu)抑制,肝中還受到丙氨酸的變構(gòu)抑制。

四、糖無氧酵解的生理意義:

1.在無氧和缺氧條件下,作為糖分解供能的補(bǔ)充途徑:⑴骨骼肌在劇烈運(yùn)動時(shí)的相對缺氧;⑵從平原進(jìn)入高原初期;⑶嚴(yán)重貧血、大量失血、呼吸障礙、肺與心血管疾患所致缺氧。

2.在有氧條件下,作為某些組織細(xì)胞主要的供能途徑:如表皮細(xì)胞,紅細(xì)胞與視網(wǎng)膜等,由于無線粒體,故只能通過無氧酵解供能。

五、糖的有氧氧化:

葡萄糖在有氧條件下徹底氧化分解生成C2O和H2O,并釋放出大量能量的過程稱為糖的有氧氧化。絕大多數(shù)組織細(xì)胞通過糖的有氧氧化途徑獲得能量。此代謝過程在細(xì)胞胞液和線粒體內(nèi)進(jìn)行,一分子葡萄糖徹底氧化分解可產(chǎn)生36/38分子ATP。糖的有氧氧化代謝途徑可分為三個(gè)階段:

1.葡萄糖經(jīng)酵解途徑生成丙酮酸:

此階段在細(xì)胞胞液中進(jìn)行,與糖的無氧酵解途徑相同,涉與的關(guān)鍵酶也相同。一分子葡萄糖分解后生成兩分子丙酮酸,兩分子(NADH+H+)并凈生成2分子ATP。NADH在有氧條件下可進(jìn)入線粒體產(chǎn)能,共可得到2×2或2×3分子ATP。故第一階段可凈生成6/8分子ATP。

2.丙酮酸氧化脫羧生成乙酰CoA:

丙酮酸進(jìn)入線粒體,在丙酮酸脫氫酶系的催化下氧化脫羧生成(NADH+H+)和乙酰CoA。此階段可由兩分子(NADH+H+)

產(chǎn)生2×3分子ATP。丙酮酸脫氫酶系為關(guān)鍵酶,該酶由三種酶單體構(gòu)成,涉與六種輔助因子,即NAD+、FAD、CoA、TPP、硫辛酸和Mg2+。

3.經(jīng)三羧酸循環(huán)徹底氧化分解:

生成的乙酰CoA可進(jìn)入三羧酸循環(huán)徹底氧化分解為CO2和H2O,并釋放能量合成ATP。一分子乙酰CoA氧化分解后共可生成12分子ATP,故此階段可生成2×12=24分子ATP。

三羧酸循環(huán)是指在線粒體中,乙酰CoA首先與草酰乙酸縮合生成檸檬酸,然后經(jīng)過一系列的代謝反應(yīng),乙?;谎趸纸猓蒗R宜嵩偕难h(huán)反應(yīng)過程。這一循環(huán)反應(yīng)過程又稱為檸檬酸循環(huán)或Krebs循環(huán)。

三羧酸循環(huán)由八步反應(yīng)構(gòu)成:草酰乙酸+乙酰CoA→檸檬酸→異檸檬酸→α-酮戊二酸→琥珀酰CoA→琥珀酸→延胡索酸→蘋果酸→草酰乙酸。

三羧酸循環(huán)的特點(diǎn):

①循環(huán)反應(yīng)在線粒體中進(jìn)行,為不可逆反應(yīng)。

②每完成一次循環(huán),氧化分解掉一分子乙?;?,可生成12分子ATP。

③循環(huán)的中間產(chǎn)物既不能通過此循環(huán)反應(yīng)生成,也不被此循環(huán)反應(yīng)所消耗。

④循環(huán)中有兩次脫羧反應(yīng),生成兩分子CO2。

⑤循環(huán)中有四次脫氫反應(yīng),生成三分子NADH和一分子FADH2。

⑥循環(huán)中有一次直接產(chǎn)能反應(yīng),生成一分子GTP。

⑦三羧酸循環(huán)的關(guān)鍵酶是檸檬酸合酶、異檸檬酸脫氫酶和α-酮戊二酸脫氫酶系,且α-酮戊二酸脫氫酶系的結(jié)構(gòu)與丙酮酸脫氫酶系相似,輔助因子完全相同。

六、糖有氧氧化的生理意義:

1.是糖在體內(nèi)分解供能的主要途徑:⑴生成的ATP數(shù)目遠(yuǎn)遠(yuǎn)多于糖的無氧酵解生成的ATP數(shù)目;⑵機(jī)體內(nèi)大多數(shù)組織細(xì)胞均通過此途徑氧化供能。

2.是糖、脂、蛋白質(zhì)氧化供能的共同途徑:糖、脂、蛋白質(zhì)的分解產(chǎn)物主要經(jīng)此途徑徹底氧化分解供能。

3.是糖、脂、蛋白質(zhì)相互轉(zhuǎn)變的樞紐:有氧氧化途徑中的中間代謝物可以由糖、脂、蛋白質(zhì)分解產(chǎn)生,某些中間代謝物也可以由此途徑逆行而相互轉(zhuǎn)變。

七、有氧氧化的調(diào)節(jié)和巴斯德效應(yīng):

丙酮酸脫氫酶系受乙酰CoA、ATP和NADH的變構(gòu)抑制,受AMP、ADP和NAD+的變構(gòu)激活。異檸檬酸脫氫酶是調(diào)節(jié)三羧酸循環(huán)流量的主要因素,ATP是其變構(gòu)抑制劑,AMP和ADP是其變構(gòu)激活劑。巴斯德效應(yīng):糖的有氧氧化可以抑制糖的無氧酵解的現(xiàn)象。有氧時(shí),由于酵解產(chǎn)生的NADH和丙酮酸進(jìn)入線粒體而產(chǎn)能,故糖的無氧酵解受抑制。八、磷酸戊糖途徑:

磷酸戊糖途徑是指從G-6-P脫氫反應(yīng)開始,經(jīng)一系列代謝反應(yīng)生成磷酸戊糖等中間代謝物,然后再重新進(jìn)入糖氧化分解代謝途徑的一條旁路代謝途徑。該旁路途徑的起始物是G-6-P,返回的代謝產(chǎn)物是3-磷酸甘油醛和6-磷酸果糖,其重要的中間代謝產(chǎn)物是5-磷酸核糖和NADPH。整個(gè)代謝途徑在胞液中進(jìn)行。關(guān)鍵酶是6-磷酸葡萄糖脫氫酶。

九、磷酸戊糖途徑的生理意義:

1.是體內(nèi)生成NADPH的主要代謝途徑:NADPH在體內(nèi)可用于:⑴作為供氫體,參與體內(nèi)的合成代謝:如參與合成脂肪酸、膽固醇等。⑵參與羥化反應(yīng):作為加單氧酶的輔酶,參與對代謝物的羥化。⑶維持巰基酶的活性。⑷使氧化型谷胱甘肽還原。⑸維持紅細(xì)胞膜的完整性:由于6-磷酸葡萄糖脫氫酶遺傳性缺陷可導(dǎo)致蠶豆病,表現(xiàn)為溶血性貧血。

2.是體內(nèi)生成5-磷酸核糖的唯一代謝途徑:體內(nèi)合成核苷酸和核酸所需的核糖或脫氧核糖均以5-磷酸核糖的形式提供,其生成方式可以由G-6-P脫氫脫羧生成,也可以由3-磷酸甘油醛和F-6-P經(jīng)基團(tuán)轉(zhuǎn)移的逆反應(yīng)生成。

十、糖原的合成與分解:

糖原是由許多葡萄糖分子聚合而成的帶有分支的高分子多糖類化合物。糖原分子的直鏈部分借α-1,4-糖苷鍵而將葡萄糖殘基連接起來,其支鏈部分則是借α-1,6-糖苷鍵而形成分支。糖原是一種無還原性的多糖。糖原的合成與分解代謝主要發(fā)生在肝、腎和肌肉組織細(xì)胞的胞液中。

1.糖原的合成代謝:糖原合成的反應(yīng)過程可分為三個(gè)階段。

⑴活化:由葡萄糖生成尿苷二磷酸葡萄糖:葡萄糖→6-磷酸葡萄糖→1-磷酸葡萄糖→UDPG。此階段需使用UTP,并消耗相當(dāng)于兩分子的ATP。

⑵縮合:在糖原合酶催化下,UDPG所帶的葡萄糖殘基通過α-1,4-糖苷鍵與原有糖原分子的非還原端相連,使糖鏈延長。糖原合酶是糖原合成的關(guān)鍵酶。

⑶分支:當(dāng)直鏈長度達(dá)12個(gè)葡萄糖殘基以上時(shí),在分支酶的催化下,將距末端6~7個(gè)葡萄糖殘基組成的寡糖鏈由α-1,4-糖苷鍵轉(zhuǎn)變?yōu)棣?1,6-糖苷鍵,使糖原出現(xiàn)分支,同時(shí)非還原端增加。

2.糖原的分解代謝:糖原的分解代謝可分為三個(gè)階段,是一非耗能過程。

⑴水解:糖原→1-磷酸葡萄糖。此階段的關(guān)鍵酶是糖原磷酸化酶,并需脫支酶協(xié)助。

⑵異構(gòu):1-磷酸葡萄糖→6-磷酸葡萄糖。

⑶脫磷酸:6-磷酸葡萄糖→葡萄糖。此過程只能在肝和腎進(jìn)行。

十一、糖原合成與分解的生理意義:

1.貯存能量:葡萄糖可以糖原的形式貯存。

2.調(diào)節(jié)血糖濃度:血糖濃度高時(shí)可合成糖原,濃度低時(shí)可分解糖原來補(bǔ)充血糖。

3.利用乳酸:肝中可經(jīng)糖異生途徑利用糖無氧酵解產(chǎn)生的乳酸來合成糖原。這就是肝糖原合成的三碳途徑或間接途徑。

十二、糖異生:

由非糖物質(zhì)轉(zhuǎn)變?yōu)槠咸烟腔蛱窃倪^程稱為糖異生。該代謝途徑主要存在于肝與腎中。糖異生主要沿酵解途徑逆行,但由于有三步反應(yīng)(己糖激酶、磷酸果糖激酶-1、丙酮酸激酶)為不可逆反應(yīng),故需經(jīng)另外的反應(yīng)繞行。

1.G-6-P→G:由葡萄糖-6-磷酸酶催化進(jìn)行水解,該酶是糖異生的關(guān)鍵酶之一,不存在于肌肉組織中,故肌肉組織不能生成自由葡萄糖。

2.F-1,6-BP→F-6-P:由果糖1,6-二磷酸酶-1催化進(jìn)行水解,該酶也是糖異生的關(guān)鍵酶之一。

3.丙酮酸→磷酸烯醇式丙酮酸:經(jīng)由丙酮酸羧化支路完成,即丙酮酸進(jìn)入線粒體,在丙酮酸羧化酶(需生物素)的催化下生成草酰乙酸,后者轉(zhuǎn)變?yōu)樘O果酸穿出線粒體并回復(fù)為草酰乙酸,再在磷酸烯醇式丙酮酸羧激酶的催化下轉(zhuǎn)變?yōu)榱姿嵯┐际奖?,這兩個(gè)酶都是關(guān)鍵酶。

糖異生的原料主要來自于生糖氨基酸、甘油和乳酸。

十三、糖異生的生理意義:

1.在饑餓情況下維持血糖濃度的相對恒定:在較長時(shí)間饑餓的情況下,機(jī)體需要靠糖異生作用生成葡萄糖以維持血糖濃度的相對恒定。

2.回收乳酸分子中的能量:由于乳酸主要是在肌肉組織經(jīng)糖的無氧酵解產(chǎn)生,但肌肉組織糖異生作用很弱,且不能生成自由葡萄糖,故需將產(chǎn)生的乳酸轉(zhuǎn)運(yùn)至肝臟重新生成葡萄糖后再加以利用。

葡萄糖在肌肉組織中經(jīng)糖的無氧酵解產(chǎn)生的乳酸,可經(jīng)血循環(huán)轉(zhuǎn)運(yùn)至肝臟,再經(jīng)糖的異生作用生成自由葡萄糖后轉(zhuǎn)運(yùn)至肌肉組織加以利用,這一循環(huán)過程就稱為乳酸循環(huán)(Cori循環(huán))。

3.維持酸堿平衡:腎臟中生成的α-酮戊二酸可轉(zhuǎn)變?yōu)椴蒗R宜?,然后?jīng)糖異生途徑生成葡萄糖,這一過程可促進(jìn)腎臟中的谷氨酰胺脫氨基,生成NH3,后者可用于中和H+,故有利于維持酸堿平衡。

十四、血糖:

血液中的葡萄糖含量稱為血糖。按真糖法測定,正常空腹血糖濃度為3.89~6.11mmol/L(70~100mg%)。

1.血糖的來源與去路:正常情況下,血糖濃度的相對恒定是由其來源與去路兩方面的動態(tài)平衡所決定的。血糖的主要來源有:①消化吸收的葡萄糖;②肝臟的糖異生作用;③肝糖原的分解。血糖的主要去路有:①氧化分解供能;②合成糖原(肝、肌、腎);③轉(zhuǎn)變?yōu)橹净虬被?;④轉(zhuǎn)變?yōu)槠渌穷愇镔|(zhì)。

2.血糖水平的調(diào)節(jié):調(diào)節(jié)血糖濃度相對恒定的機(jī)制有:

⑴組織器官:①肝臟:通過加快將血中的葡萄糖轉(zhuǎn)運(yùn)入肝細(xì)胞,以與通過促進(jìn)肝糖原的合成,以降低血糖濃度;通過促進(jìn)肝糖原的分解,以與促進(jìn)糖的異生作用,以增高血糖濃度。②肌肉等外周組織:通過促進(jìn)其對葡萄糖的氧化利用以降低血糖濃度。

⑵激素:①降低血糖濃度的激素——胰島素。②升高血糖濃度的激素——胰高血糖素、腎上腺素、糖皮質(zhì)激素、生長激素、甲狀腺激素。

⑶神經(jīng)系統(tǒng)。

第六章脂類代謝

一、脂類的分類和生理功用:

脂類是脂肪和類脂的總稱,是一大類不溶于水而易溶于有機(jī)溶劑的化合物。其中,脂肪主要是指甘油三酯,類脂則包括磷脂(甘油磷脂和鞘磷脂)、糖脂(腦苷脂和神經(jīng)節(jié)苷脂)、膽固醇與膽固醇酯。

脂類物質(zhì)具有下列生理功用:

①供能貯能:主要是甘油三酯具有此功用,體內(nèi)20%~30%的能量由甘油三酯提供。

②構(gòu)成生物膜:主要是磷脂和膽固醇具有此功用。

③協(xié)助脂溶性維生素的吸收,提供必需脂肪酸。必需脂肪酸是指機(jī)體需要,但自身不能合成,必須要靠食物提供的一些多烯脂肪酸。

④保護(hù)和保溫作用:大網(wǎng)膜和皮下脂肪具有此功用。

二、甘油三酯的分解代謝:

1.脂肪動員:貯存于脂肪細(xì)胞中的甘油三酯在激素敏感脂肪酶的催化下水解并釋放出脂肪酸,供給全身各組織細(xì)胞攝取利用的過程稱為脂肪動員。激素敏感脂肪酶(HSL)是脂肪動員的關(guān)鍵酶。HSL的激活劑是腎上腺素、去甲腎上腺素和胰高血糖素;抑制劑是胰島素、前列腺素E2和煙酸。脂肪動員的過程為:激素+膜受體→腺苷酸環(huán)化酶↑→cAMP↑→蛋白激酶↑→激素敏感脂肪酶(HSL,甘油三酯酶)↑→甘油三酯分解↑。

脂肪動員的結(jié)果是生成三分子的自由脂肪酸(FFA)和一分子的甘油。脂肪酸進(jìn)入血液循環(huán)后須與清蛋白結(jié)合成為復(fù)合體再轉(zhuǎn)運(yùn),甘油則轉(zhuǎn)運(yùn)至肝臟再磷酸化為3-磷酸甘油后進(jìn)行代謝。

2.脂肪酸的β氧化:體內(nèi)大多數(shù)的組織細(xì)胞均可以此途徑氧化利用脂肪酸。其代謝反應(yīng)過程可分為三個(gè)階段:

(1)活化:在線粒體外膜或內(nèi)質(zhì)網(wǎng)進(jìn)行此反應(yīng)過程。由脂肪酸硫激酶(脂酰CoA合成酶)催化生成脂酰CoA。每活化一分子脂肪酸,需消耗兩分子ATP。

(2)進(jìn)入:借助于兩種肉堿脂肪酰轉(zhuǎn)移酶(酶Ⅰ和酶Ⅱ)催化的移換反應(yīng),脂酰CoA由肉堿(肉毒堿)攜帶進(jìn)入線粒體。肉堿脂肪酰轉(zhuǎn)移酶Ⅰ是脂肪酸β-氧化的關(guān)鍵酶。

(3)β-氧化:由四個(gè)連續(xù)的酶促反應(yīng)組成:①脫氫:脂肪酰CoA在脂肪酰CoA脫氫酶的催化下,生成FADH2和α,β-烯脂肪酰CoA。②水化:在水化酶的催化下,生成L-β-羥脂肪酰CoA。③再脫氫:在L-β-羥脂肪酰CoA脫氫酶的催化下,生成β-酮脂肪酰CoA和NADH+H+。④硫解:在硫解酶的催化下,分解生成1分子乙酰CoA和1分子減少了兩個(gè)碳原子的脂肪酰CoA。后者可繼續(xù)氧化分解,直至全部分解為乙酰CoA。

3.三羧酸循環(huán):生成的乙酰CoA進(jìn)入三羧酸循環(huán)徹底氧化分解。

三、脂肪酸氧化分解時(shí)的能量釋放:

以16C的軟脂酸為例來計(jì)算,則生成ATP的數(shù)目為:一分子軟脂酸可經(jīng)七次β-氧化全部分解為八分子乙酰CoA,故β-氧化可得5×7=35分子ATP,八分子乙酰CoA可得12×8=96分子ATP,故一共可得131分子ATP,減去活化時(shí)消耗的兩分子ATP,故軟脂酸可凈生成129分子ATP。

對于偶數(shù)碳原子的長鏈脂肪酸,可按下式計(jì)算:ATP凈生成數(shù)目=(碳原子數(shù)÷2-1)×5+(碳原子數(shù)÷2)×12-2。

四、酮體的生成與利用:

脂肪酸在肝臟中氧化分解所生成的乙酰乙酸、β-羥丁酸和丙酮三種中間代謝產(chǎn)物,統(tǒng)稱為酮體。

1.酮體的生成:酮體主要在肝臟的線粒體中生成,其合成原料為乙酰CoA,關(guān)鍵酶是HMG-CoA合成酶。

其過程為:乙酰CoA→乙酰乙酰CoA→HMG-CoA→乙酰乙酸。生成的乙酰乙酸再通過加氫反應(yīng)轉(zhuǎn)變?yōu)棣?羥丁酸或經(jīng)自發(fā)脫羧生成丙酮。

2.酮體的利用:利用酮體的酶有兩種,即琥珀酰CoA轉(zhuǎn)硫酶(主要存在于心、腎、腦和骨骼肌細(xì)胞的線粒體中,不消耗ATP)和乙酰乙酸硫激酶(主要存在于心、腎、腦細(xì)胞線粒體中,需消耗2分子ATP)。

其氧化利用酮體的過程為:β-羥丁酸→乙酰乙酸→乙酰乙酰CoA→乙酰CoA→三羧酸循環(huán)。

3.酮體生成與利用的生理意義:

(1)在正常情況下,酮體是肝臟輸出能源的一種形式:由于酮體的分子較小,故被肝外組織氧化利用,成為肝臟向肝外組織輸出能源的一種形式。(2)在饑餓或疾病情況下,為心、腦等重要器官提供必要的能源:在長期饑餓或某些疾病情況下,由于葡萄糖供應(yīng)不足,心、腦等器官也可轉(zhuǎn)變來利用酮體氧化分解供能。

五、甘油三酯的合成代謝:

肝臟、小腸和脂肪組織是主要的合成脂肪的組織器官,其合成的亞細(xì)胞部位主要在胞液。脂肪合成時(shí),首先需要合成長鏈脂肪酸和3-磷酸甘油,然后再將二者縮合起來形成甘油三酯(脂肪)。

1.脂肪酸的合成:脂肪酸合成的原料是葡萄糖氧化分解后產(chǎn)生的乙酰CoA,其合成過程由胞液中的脂肪酸合成酶系催化,不是β-氧化過程的逆反應(yīng)。脂肪酸合成的直接產(chǎn)物是軟脂酸,然后再將其加工成其他種類的脂肪酸。

⑴乙酰CoA轉(zhuǎn)運(yùn)出線粒體:線粒體內(nèi)產(chǎn)生的乙酰CoA,與草酰乙酸縮合生成檸檬酸,穿過線粒體內(nèi)膜進(jìn)入胞液,裂解后重新生成乙酰CoA,產(chǎn)生的草酰乙酸轉(zhuǎn)變?yōu)楸岷笾匦逻M(jìn)入線粒體,這一過程稱為檸檬酸-丙酮酸穿梭作用。

⑵丙二酸單酰CoA的合成:在乙酰CoA羧化酶(需生物素)的催化下,將乙酰CoA羧化為丙二酸單酰CoA。乙酰CoA羧化酶是脂肪酸合成的關(guān)鍵酶,屬于變構(gòu)酶,其活性受檸檬酸和異檸檬酸的變構(gòu)激活,受長鏈脂酰CoA的變構(gòu)抑制。

⑶脂肪酸合成循環(huán):脂肪酸合成時(shí)碳鏈的縮合延長過程是一類似于β-氧化逆反應(yīng)的循環(huán)反應(yīng)過程,即縮合→加氫→脫水→再加氫。所需氫原子來源于NADPH,故對磷酸戊糖旁路有依賴。每經(jīng)過一次循環(huán)反應(yīng),延長兩個(gè)碳原子。但該循環(huán)反應(yīng)過程由胞液中的脂肪酸合成酶系所催化。

脂肪酸合成酶系在低等生物中是一種由一分子脂?;d體蛋白(ACP)和七種酶單體所構(gòu)成的多酶復(fù)合體;但在高等動物中,則是由一條多肽鏈構(gòu)成的多功能酶,通常以二聚體形式存在,每個(gè)亞基都含有一ACP結(jié)構(gòu)域。

⑷軟脂酸的碳鏈延長和不飽和脂肪酸的生成:此過程在線粒體/微粒體內(nèi)進(jìn)行。使用丙二酸單酰CoA與軟脂酰CoA縮合,使碳鏈延長,最長可達(dá)二十四碳。不飽和鍵由脂類加氧酶系催化形成。

2.3-磷酸甘油的生成:合成甘油三酯所需的3-磷酸甘油主要由下列兩條途徑生成:①由糖代謝生成(脂肪細(xì)胞、肝臟):磷酸二羥丙酮加氫生成3-磷酸甘油。②由脂肪動員生成(肝):脂肪動員生成的甘油轉(zhuǎn)運(yùn)至肝臟經(jīng)磷酸化后生成3-磷酸甘油。

3.甘油三酯的合成:2×脂酰CoA+3-磷酸甘油→磷脂酸→甘油三酯。

六、甘油磷脂的代謝:

甘油磷脂由一分子的甘油,兩分子的脂肪酸,一分子的磷酸和X基團(tuán)構(gòu)成。其X基團(tuán)因不同的磷脂而不同,卵磷脂(磷脂酰膽堿)為膽堿,腦磷脂(磷脂酰乙醇胺)為膽胺,磷脂酰絲氨酸為絲氨酸,磷脂酰肌醇為肌醇。

1.甘油磷脂的合成代謝:甘油磷脂的合成途徑有兩條。

⑴甘油二酯合成途徑:磷脂酰膽堿和磷脂酰乙醇胺通過此代謝途徑合成。合成過程中需消耗CTP,所需膽堿與乙醇胺以CDP-膽堿和CDP-乙醇胺的形式提供。

⑵CDP-甘油二酯合成途徑:磷脂酰肌醇、磷脂酰絲氨酸和心磷脂通過此途徑合成。合成過程中需消耗CTP,所需甘油二酯以CDP-甘油二酯的活性形式提供。

2.甘油磷脂的分解代謝:甘油磷脂的分解靠存在于體內(nèi)的各種磷脂酶將其分解為脂肪酸、甘油、磷酸等,然后再進(jìn)一步降解。

磷脂酶A1存在于蛇毒中,其降解產(chǎn)物為溶血磷脂2,后者有很強(qiáng)的溶血作用。溶血磷脂2可被磷脂酶B2降解而失去其溶血作用。

七、鞘磷脂的代謝:

鞘脂類化合物中不含甘油,其脂質(zhì)部分為鞘氨醇或N-脂酰鞘氨醇(神經(jīng)酰胺)。鞘氨醇可在全身各組織細(xì)胞的內(nèi)質(zhì)網(wǎng)合成,合成所需的原料主要是軟脂酰CoA和絲氨酸,并需磷酸吡哆醛、NADPH與FAD等輔助因子參與。體內(nèi)含量最多的鞘磷脂是神經(jīng)鞘磷脂,是構(gòu)成生物膜的重要磷脂;合成時(shí),在相應(yīng)轉(zhuǎn)移酶的催化下,將CDP-膽堿或CDP-乙醇胺攜帶的磷酸膽堿或磷酸乙醇胺轉(zhuǎn)移至N-脂酰鞘氨醇上,生成神經(jīng)鞘磷脂。

八、膽固醇的代謝:

膽固醇的基本結(jié)構(gòu)為環(huán)戊烷多氫菲。膽固醇的酯化在C3位羥基上進(jìn)行,由兩種不同的酶催化。存在于血漿中的是卵磷脂膽固醇?;D(zhuǎn)移酶(LCAT),而主要存在于組織細(xì)胞中的是脂肪酰CoA膽固醇?;D(zhuǎn)移酶(ACAT)。

1.膽固醇的合成:膽固醇合成部位主要是在肝臟和小腸的胞液和微粒體。其合成所需原料為乙酰CoA。每合成一分子的膽固醇需18分子乙酰CoA,54分子ATP和10分子NADPH。

⑴乙酰CoA縮合生成甲羥戊酸(MVA):此過程在胞液和微粒體進(jìn)行。2×乙酰CoA→乙酰乙酰CoA→HMG-CoA→MVA。HMG-CoA還原酶是膽固醇合成的關(guān)鍵酶。

⑵甲羥戊酸縮合生成鯊烯:此過程在胞液和微粒體進(jìn)行。MVA→二甲丙烯焦磷酸→焦磷酸法呢酯→鯊烯。

⑶鯊烯環(huán)化為膽固醇:此過程在微粒體進(jìn)行。鯊烯結(jié)合在胞液的固醇載體蛋白(SCP)上,由微粒體酶進(jìn)行催化,經(jīng)一系列反應(yīng)環(huán)化為27碳膽固醇。

2.膽固醇合成的調(diào)節(jié):各種調(diào)節(jié)因素通過對膽固醇合成的關(guān)鍵酶——HMG-CoA還原酶活性的影響,來調(diào)節(jié)膽固醇合成的速度和合成量。

⑴膳食因素:饑餓或禁食可抑制HMG-CoA還原酶的活性,從而使膽固醇的合成減少;反之,攝取高糖、高飽和脂肪膳食后,HMG-CoA活性增加而導(dǎo)致膽固醇合成增多。

⑵膽固醇與其衍生物:膽固醇可反饋抑制HMG-CoA還原酶的活性。膽固醇的某些氧化物,如7β-羥膽固醇,25-羥膽固醇等也可抑制該酶的活性。

⑶激素:胰島素和甲狀腺激素可通過誘導(dǎo)該酶的合成而使酶活性增加;而胰高血糖素和糖皮質(zhì)激素則可抑制該酶的活性。

3.膽固醇的轉(zhuǎn)化:膽固醇主要通過轉(zhuǎn)化作用,轉(zhuǎn)變?yōu)槠渌衔镌龠M(jìn)行代謝,或經(jīng)糞便直接排出體外。

⑴轉(zhuǎn)化為膽汁酸:正常人每天合成的膽汁酸中有2/5通過轉(zhuǎn)化為膽汁酸。初級膽汁酸是以膽固醇為原料在肝臟中合成的,合成的關(guān)鍵酶是7α-羥化酶。。主要的初級膽汁酸是膽酸和鵝脫氧膽酸。初級膽汁酸通常在其羧酸側(cè)鏈上結(jié)合有一分子甘氨酸或?;撬?,從而形成結(jié)合型初級膽汁酸,如甘氨膽酸,甘氨鵝脫氧膽酸、牛磺膽酸和?;蛆Z脫氧膽酸。次級膽汁酸是在腸道細(xì)菌的作用下生成的。主要的次級膽汁酸是脫氧膽酸和石膽酸。

⑵轉(zhuǎn)化為類固醇激素:腎上腺皮質(zhì)球狀帶可合成醛固酮,又稱鹽皮質(zhì)激素,可調(diào)節(jié)水鹽代謝;腎上腺皮質(zhì)束狀帶可合成皮質(zhì)醇和皮質(zhì)酮,合稱為糖皮質(zhì)激素,可調(diào)節(jié)糖代謝。性激素主要有睪酮、孕酮和雌二醇。

⑶轉(zhuǎn)化為維生素D3:膽固醇經(jīng)7位脫氫而轉(zhuǎn)變?yōu)?-脫氫膽固醇,后者在紫外光的照射下,B環(huán)發(fā)生斷裂,生成Vit-D3。Vit-D3在肝臟羥化為25-(OH)D3,再在腎臟被羥化為1,25-(OH)2D3。1,25-(OH)2D3為活性維生素D3。

九、血漿脂蛋白:

1.血漿脂蛋白的分類:①電泳分類法:根據(jù)電泳遷移率的不同進(jìn)行分類,可分為四類:乳糜微?!?脂蛋白→前β-脂蛋白→α-脂蛋白。②超速離心法:按脂蛋白密度高低進(jìn)行分類,也分為四類:CM→VLDL→LDL→HDL。

2.載脂蛋白的功能:

⑴轉(zhuǎn)運(yùn)脂類物質(zhì);

⑵作為脂類代謝酶的調(diào)節(jié)劑:LCAT可被ApoAⅠ等激活,也可被ApoAⅡ所抑制。LpL(脂蛋白脂肪酶)可被ApoCⅡ所激活,也可被ApoCⅢ所抑制。ApoAⅡ可激活HL的活性。

⑶作為脂蛋白受體的識別標(biāo)記:ApoB可被細(xì)胞膜上的ApoB,E受體(LDL受體)所識別;ApoE可被細(xì)胞膜上的ApoB,E受體和ApoE受體(LDL受體相關(guān)蛋白,LRP)所識別。ApoAⅠ參與HDL受體的識別。

⑷參與脂質(zhì)轉(zhuǎn)運(yùn):CETP可促進(jìn)膽固醇酯由HDL轉(zhuǎn)移至VLDL和LDL;PTP可促進(jìn)磷脂由CM和VLDL轉(zhuǎn)移至HDL。

3.血漿脂蛋白的代謝和功能:乳糜微粒在小腸粘膜細(xì)胞組裝,與外源性甘油三酯的轉(zhuǎn)運(yùn)有關(guān);極低密度脂蛋白在肝臟組裝,與內(nèi)源性甘油三酯的轉(zhuǎn)運(yùn)有關(guān);低密度脂蛋白由VLDL代謝產(chǎn)生,可將肝臟合成的膽固醇轉(zhuǎn)運(yùn)至肝外組織細(xì)胞;高密度脂蛋白來源廣泛,與膽固醇的逆向轉(zhuǎn)運(yùn)有關(guān)第七章生物氧化

一、生物氧化的概念和特點(diǎn):

物質(zhì)在生物體內(nèi)氧化分解并釋放出能量的過程稱為生物氧化。與體外燃燒一樣,生物氧化也是一個(gè)消耗O2,生成CO2和H2O,并釋放出大量能量的過程。但與體外燃燒不同的是,生物氧化過程是在37℃,近于中性的含水環(huán)境中,由酶催化進(jìn)行的;反應(yīng)逐步釋放出能量,相當(dāng)一部分能量以高能磷酸酯鍵的形式儲存起來。

二、線粒體氧化呼吸鏈:

在線粒體中,由若干遞氫體或遞電子體按一定順序排列組成的,與細(xì)胞呼吸過程有關(guān)的鏈?zhǔn)椒磻?yīng)體系稱為呼吸鏈。這些遞氫體或遞電子體往往以復(fù)合體的形式存在于線粒體內(nèi)膜上。主要的復(fù)合體有:

1.復(fù)合體Ⅰ(NADH-泛醌還原酶):由一分子NADH還原酶(FMN),兩分子鐵硫蛋白(Fe-S)和一分子CoQ組成,其作用是將(NADH+H+)傳遞給CoQ。

鐵硫蛋白分子中含有非血紅素鐵和對酸不穩(wěn)定的硫。其分子中的鐵離子與硫原子構(gòu)成一種特殊的正四面體結(jié)構(gòu),稱為鐵硫中心或鐵硫簇,鐵硫蛋白是單電子傳遞體。泛醌(CoQ)是存在于線粒體內(nèi)膜上的一種脂溶性醌類化合物。分子中含對苯醌結(jié)構(gòu),可接受二個(gè)氫原子而轉(zhuǎn)變成對苯二酚結(jié)構(gòu),是一種雙遞氫體。

2.復(fù)合體Ⅱ(琥珀酸-泛醌還原酶):由一分子琥珀酸脫氫酶(FAD),兩分子鐵硫蛋白和兩分子Cytb560組成,其作用是將FADH2傳遞給CoQ。

細(xì)胞色素類:這是一類以鐵卟啉為輔基的蛋白質(zhì),為單電子傳遞體。細(xì)胞色素可存在于線粒體內(nèi)膜,也可存在于微粒體。存在于線粒體內(nèi)膜的細(xì)胞色素有Cytaa3,Cytb(b560,b562,b566),Cytc,Cytc1;而存在于微粒體的細(xì)胞色素有CytP450和Cytb5。

3.復(fù)合體Ⅲ(泛醌-細(xì)胞色素c還原酶):由兩分子Cytb(分別為Cytb562和Cytb566),一分子Cytc1和一分子鐵硫蛋白組成,其作用是將電子由泛醌傳遞給Cytc。

4.復(fù)合體Ⅳ(細(xì)胞色素c氧化酶):由一分子Cyta和一分子Cyta3組成,含兩個(gè)銅離子,可直接將電子傳遞給氧,故Cytaa3又稱為細(xì)胞色素c氧化酶,其作用是將電子由Cytc傳遞給氧。

三、呼吸鏈成分的排列順序:

由上述遞氫體或遞電子體組成了NADH氧化呼吸鏈和琥珀酸氧化呼吸鏈兩條呼吸鏈。

1.NADH氧化呼吸鏈:其遞氫體或遞電子體的排列順序?yàn)椋篘AD+→[FMN(Fe-S)]→CoQ→b(Fe-S)→c1→c→aa3→1/2O2。丙酮酸、α-酮戊二酸、異檸檬酸、蘋果酸、β-羥丁酸、β-羥脂酰CoA和谷氨酸脫氫后經(jīng)此呼吸鏈遞氫。

2.琥珀酸氧化呼吸鏈:其遞氫體或遞電子體的排列順序?yàn)椋篬FAD(Fe-S)]→CoQ→b(Fe-S)→c1→c→aa3→1/2O2。琥珀酸、3-磷酸甘油(線粒體)和脂酰CoA脫氫后經(jīng)此呼吸鏈遞氫。

四、生物體內(nèi)能量生成的方式:

1.氧化磷酸化:在線粒體中,底物分子脫下的氫原子經(jīng)遞氫體系傳遞給氧,在此過程中釋放能量使ADP磷酸化生成ATP,這種能量的生成方式就稱為氧化磷酸化。

2.底物水平磷酸化:直接將底物分子中的高能鍵轉(zhuǎn)變?yōu)锳TP分子中的末端高能磷酸鍵的過程稱為底物水平磷酸化。

五、氧化磷酸化的偶聯(lián)部位:

每消耗一摩爾氧原子所消耗的無機(jī)磷的摩爾數(shù)稱為P/O比值。當(dāng)?shù)孜锩摎湟訬AD+為受氫體時(shí),P/O比值約為3;而當(dāng)?shù)孜锩摎湟訤AD為受氫體時(shí),P/O比值約為2。故NADH氧化呼吸鏈有三個(gè)生成ATP的偶聯(lián)部位,而琥珀酸氧化呼吸鏈只有兩個(gè)生成ATP的偶聯(lián)部位。

六、氧化磷酸化的偶聯(lián)機(jī)制:

目前公認(rèn)的機(jī)制是1961年由Mitchell提出的化學(xué)滲透學(xué)說。這一學(xué)說認(rèn)為氧化呼吸鏈存在于線粒體內(nèi)膜上,當(dāng)氧化反應(yīng)進(jìn)行時(shí),H+通過氫泵作用(氧化還原袢)被排斥到線粒體內(nèi)膜外側(cè)(膜間腔),從而形成跨膜pH梯度和跨膜電位差。這種形式的能量,可以被存在于線粒體內(nèi)膜上的ATP合酶利用,生成高能磷酸基團(tuán),并與ADP結(jié)合而合成ATP。

在電鏡下,ATP合酶分為三個(gè)部分,即頭部,柄部和基底部。但如用生化技術(shù)進(jìn)行分離,則只能得到F0(基底部+部分柄部)和F1(頭部+部分柄部)兩部分。ATP合酶的中心存在質(zhì)子通道,當(dāng)質(zhì)子通過這一通道進(jìn)入線粒體基質(zhì)時(shí),其能量被頭部的ATP合酶催化活性中心利用以合成ATP。

七、氧化磷酸化的影響因素:

1.ATP/ADP比值:ATP/ADP比值是調(diào)節(jié)氧化磷酸化速度的重要因素。ATP/ADP比值下降,可致氧化磷酸化速度加快;反之,當(dāng)ATP/ADP比值升高時(shí),則氧化磷酸化速度減慢。

2.甲狀腺激素:甲狀腺激素可以激活細(xì)胞膜上的Na+,K+-ATP酶,使ATP水解增加,因而使ATP/ADP比值下降,氧化磷酸化速度加快。

3.藥物和毒物:

⑴呼吸鏈的抑制劑:能夠抑制呼吸鏈遞氫或遞電子過程的藥物或毒物稱為呼吸鏈的抑制劑。能夠抑制第一位點(diǎn)的有異戊巴比妥、粉蝶霉素A、魚藤酮等;能夠抑制第二位點(diǎn)的有抗霉素A和二巰基丙醇;能夠抑制第三位點(diǎn)的有CO、H2S和CN-、N3-。其中,CN-和N3-主要抑制氧化型Cytaa3-Fe3+,而CO和H2S主要抑制還原型Cytaa3-Fe2+。

⑵解偶聯(lián)劑:不抑制呼吸鏈的遞氫或遞電子過程,但能使氧化產(chǎn)生的能量不能用于ADP的磷酸化的試劑稱為解偶聯(lián)劑。其機(jī)理是增大了線粒體內(nèi)膜對H+的通透性,使H+的跨膜梯度消除,從而使氧化過程釋放的能量不能用于ATP的合成反應(yīng)。主要的解偶聯(lián)劑有2,4-二硝基酚。

⑶氧化磷酸化的抑制劑:對電子傳遞和ADP磷酸化均有抑制作用的藥物和毒物稱為氧化磷酸化的抑制劑,如寡霉素。

八、高能磷酸鍵的類型:

生物化學(xué)中常將水解時(shí)釋放的能量>20kJ/mol的磷酸鍵稱為高能磷酸鍵,主要有以下幾種類型:

1.磷酸酐鍵:包括各種多磷酸核苷類化合物,如ADP,ATP等。

2.混合酐鍵:由磷酸與羧酸脫水后形成的酐鍵,主要有1,3-二磷酸甘油酸等化合物。

3.烯醇磷酸鍵:見于磷酸烯醇式丙酮酸中。

4.磷酸胍鍵:見于磷酸肌酸中,是肌肉和腦組織中能量的貯存形式。磷酸肌酸中的高能磷酸鍵不能被直接利用,而必須先將其高能磷酸鍵轉(zhuǎn)移給ATP,才能供生理活動之需。這一反應(yīng)過程由肌酸磷酸激酶(CPK)催化完成。

九、線粒體外NADH的穿梭:

胞液中的3-磷酸甘油醛或乳酸脫氫,均可產(chǎn)生NADH。這些NADH可經(jīng)穿梭系統(tǒng)而進(jìn)入線粒體氧化磷酸化,產(chǎn)生H2O和ATP。

1.磷酸甘油穿梭系統(tǒng):這一系統(tǒng)以3-磷酸甘油和磷酸二羥丙酮為載體,在兩種不同的α-磷酸甘油脫氫酶的催化下,將胞液中NADH的氫原子帶入線粒體中,交給FAD,再沿琥珀酸氧化呼吸鏈進(jìn)行氧化磷酸化。因此,如NADH通過此穿梭系統(tǒng)帶一對氫原子進(jìn)入線粒體,則只得到2分子ATP。

2.蘋果酸穿梭系統(tǒng):此系統(tǒng)以蘋果酸和天冬氨酸為載體,在蘋果酸脫氫酶和谷草轉(zhuǎn)氨酶的催化下。將胞液中NADH的氫原子帶入線粒體交給NAD+,再沿NADH氧化呼吸鏈進(jìn)行氧化磷酸化。因此,經(jīng)此穿梭系統(tǒng)帶入一對氫原子可生成3分子ATP

第八章氨基酸代謝

一、蛋白質(zhì)的營養(yǎng)作用:

1.蛋白質(zhì)的生理功能:主要有:①是構(gòu)成組織細(xì)胞的重要成分;②參與組織細(xì)胞的更新和修補(bǔ);③參與物質(zhì)代謝與生理功能的調(diào)控;④氧化供能;⑤其他功能:如轉(zhuǎn)運(yùn)、凝血、免疫、記憶、識別等。

2.氮平衡:體內(nèi)蛋白質(zhì)的合成與分解處于動態(tài)平衡中,故每日氮的攝入量與排出量也維持著動態(tài)平衡,這種動態(tài)平衡就稱為氮平衡。氮平衡有以下幾種情況:

⑴氮總平衡:每日攝入氮量與排出氮量大致相等,表示體內(nèi)蛋白質(zhì)的合成量與分解量大致相等,稱為氮總平衡。此種情況見于正常成人。

⑵氮正平衡:每日攝入氮量大于排出氮量,表明體內(nèi)蛋白質(zhì)的合成量大于分解量,稱為氮正平衡。此種情況見于兒童、孕婦、病后恢復(fù)期。

⑶氮負(fù)平衡:每日攝入氮量小于排出氮量,表明體內(nèi)蛋白質(zhì)的合成量小于分解量,稱為氮負(fù)平衡。此種情況見于消耗性疾病患者(結(jié)核、腫瘤),饑餓者。

3.必需氨基酸與非必需氨基酸:體內(nèi)不能合成,必須由食物蛋白質(zhì)供給的氨基酸稱為必需氨基酸。反之,體內(nèi)能夠自行合成,不必由食物供給的氨基酸就稱為非必需氨基酸。

必需氨基酸一共有八種:賴氨酸(Lys)、色氨酸(Trp)、苯丙氨酸(Phe)、蛋氨酸(Met)、蘇氨酸(Thr)、亮氨酸(Leu)、異亮氨酸(Ile)、纈氨酸(Val)。酪氨酸和半胱氨酸必需以必需氨基酸為原料來合成,故被稱為半必需氨基酸。

4.蛋白質(zhì)的營養(yǎng)價(jià)值與互補(bǔ)作用:蛋白質(zhì)營養(yǎng)價(jià)值高低的決定因素有:①必需氨基酸的含量;②必需氨基酸的種類;③必需氨基酸的比例,即具有與人體需求相符的氨基酸組成。將幾種營養(yǎng)價(jià)值較低的食物蛋白質(zhì)混合后食用,以提高其營養(yǎng)價(jià)值的作用稱為食物蛋白質(zhì)的互補(bǔ)作用。

二、蛋白質(zhì)的消化、吸收與腐敗

1.蛋白質(zhì)的消化:胃蛋白酶水解食物蛋白質(zhì)為多肽,再在小腸中完全水解為氨基酸。

2.氨基酸的吸收:主要在小腸進(jìn)行,是一種主動轉(zhuǎn)運(yùn)過程,需由特殊載體攜帶。除此之外,也可經(jīng)γ-谷氨酰循環(huán)進(jìn)行。

3.蛋白質(zhì)在腸中的腐?。褐饕诖竽c中進(jìn)行,是細(xì)菌對蛋白質(zhì)與其消化產(chǎn)物的分解作用,可產(chǎn)生有毒物質(zhì)。

三、氨基酸的脫氨基作用:

氨基酸主要通過三種方式脫氨基,即氧化脫氨基,聯(lián)合脫氨基和非氧化脫氨基。

1.氧化脫氨基:反應(yīng)過程包括脫氫和水解兩步,反應(yīng)主要由L-氨基酸氧化酶和谷氨酸脫氫酶所催化。L-氨基酸氧化酶是一種需氧脫氫酶,該酶在人體內(nèi)作用不大。谷氨酸脫氫酶是一種不需氧脫氫酶,以NAD+或NADP+為輔酶。該酶作用較大,屬于變構(gòu)酶,其活性受ATP,GTP的抑制,受ADP,GDP的激活。

2.轉(zhuǎn)氨基作用:由轉(zhuǎn)氨酶催化,將α-氨基酸的氨基轉(zhuǎn)移到α-酮酸酮基的位置上,生成相應(yīng)的α-氨基酸,而原來的α-氨基酸則轉(zhuǎn)變?yōu)橄鄳?yīng)的α-酮酸。轉(zhuǎn)氨酶以磷酸吡哆醛(胺)為輔酶。轉(zhuǎn)氨基作用可以在各種氨基酸與α-酮酸之間普遍進(jìn)行。除Gly,Lys,Thr,Pro外,均可參加轉(zhuǎn)氨基作用。較為重要的轉(zhuǎn)氨酶有:

⑴丙氨酸氨基轉(zhuǎn)移酶(ALT),又稱為谷丙轉(zhuǎn)氨酶(GPT)。催化丙氨酸與α-酮戊二酸之間的氨基移換反應(yīng),為可逆反應(yīng)。該酶在肝臟中活性較高,在肝臟疾病時(shí),可引起血清中ALT活性明顯升高。

⑵天冬氨酸氨基轉(zhuǎn)移酶(AST),又稱為谷草轉(zhuǎn)氨酶(GOT)。催化天冬氨酸與α-酮戊二酸之間的氨基移換反應(yīng),為可逆反應(yīng)。該酶在心肌中活性較高,故在心肌疾患時(shí),血清中AST活性明顯升高。

3.聯(lián)合脫氨基作用:轉(zhuǎn)氨基作用與氧化脫氨基作用聯(lián)合進(jìn)行,從而使氨基酸脫去氨基并氧化為α-酮酸的過程,稱為聯(lián)合脫氨基作用。可在大多數(shù)組織細(xì)胞中進(jìn)行,是體內(nèi)主要的脫氨基的方式。

4.嘌呤核苷酸循環(huán)(PNC):這是存在于骨骼肌和心肌中的一種特殊的聯(lián)合脫氨基作用方式。在骨骼肌和心肌中,腺苷酸脫氨酶的活性較高,該酶可催化AMP脫氨基,此反應(yīng)與轉(zhuǎn)氨基反應(yīng)相聯(lián)系,即構(gòu)成嘌呤核苷酸循環(huán)的脫氨基作用。

四、α-酮酸的代謝:

1.再氨基化為氨基酸。

2.轉(zhuǎn)變?yōu)樘腔蛑耗承┌被崦摪被笊商钱惿緩降闹虚g代謝物,故可經(jīng)糖異生途徑生成葡萄糖,這些氨基酸稱為生糖氨基酸。個(gè)別氨基酸如Leu,Lys,經(jīng)代謝后只能生成乙酰CoA或乙酰乙酰CoA,再轉(zhuǎn)變?yōu)橹蛲w,故稱為生酮氨基酸。而Phe,Tyr,Ile,Thr,Trp經(jīng)分解后的產(chǎn)物一部分可生成葡萄糖,另一部分則生成乙酰CoA,故稱為生糖兼生酮氨基酸。

3.氧化供能:進(jìn)入三羧酸循環(huán)徹底氧化分解供能。

五、氨的代謝:

1.血氨的來源與去路:

⑴血氨的來源:①由腸道吸收;②氨基酸脫氨基;③氨基酸的酰胺基水解;④其他含氮物的分解。

⑵血氨的去路:①在肝臟轉(zhuǎn)變?yōu)槟蛩?;②合成氨基酸;③合成其他含氮物;④合成天冬酰胺和谷氨酰胺;⑤直接排出?/p>

2.氨在血中的轉(zhuǎn)運(yùn):氨在血液循環(huán)中的轉(zhuǎn)運(yùn),需以無毒的形式進(jìn)行,如生成丙氨酸或谷氨酰胺等,將氨轉(zhuǎn)運(yùn)至肝臟或腎臟進(jìn)行代謝。

⑴丙氨酸-葡萄糖循環(huán):肌肉中的氨基酸將氨基轉(zhuǎn)給丙酮酸生成丙氨酸,后者經(jīng)血液循環(huán)轉(zhuǎn)運(yùn)至肝臟再脫氨基,生成的丙酮酸經(jīng)糖異生轉(zhuǎn)變?yōu)槠咸烟呛笤俳?jīng)血液循環(huán)轉(zhuǎn)運(yùn)至肌肉重新分解產(chǎn)生丙酮酸,這一循環(huán)過程就稱為丙氨酸-葡萄糖循環(huán)。

⑵谷氨酰胺的運(yùn)氨作用:肝外組織,如腦、骨骼肌、心肌在谷氨酰胺合成酶的催化下,合成谷氨酰胺,以谷氨酰胺的形式將氨基經(jīng)血液循環(huán)帶到肝臟,再由谷氨酰胺酶將其分解,產(chǎn)生的氨即可用于合成尿素。因此,谷氨酰胺對氨具有運(yùn)輸、貯存和解毒作用。

3.鳥氨酸循環(huán)與尿素的合成:體內(nèi)氨的主要代謝去路是用于合成尿素。合成尿素的主要器官是肝臟,但在腎與腦中也可少量合成。尿素合成是經(jīng)鳥氨酸循環(huán)的反應(yīng)過程來完成,催化這些反應(yīng)的酶存在于胞液和線粒體中。其主要反應(yīng)過程如下:NH3+

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論