2023屆湖北省隨州市高新區(qū)大堰坡中學(xué)數(shù)學(xué)九上期末經(jīng)典模擬試題含解析_第1頁
2023屆湖北省隨州市高新區(qū)大堰坡中學(xué)數(shù)學(xué)九上期末經(jīng)典模擬試題含解析_第2頁
2023屆湖北省隨州市高新區(qū)大堰坡中學(xué)數(shù)學(xué)九上期末經(jīng)典模擬試題含解析_第3頁
2023屆湖北省隨州市高新區(qū)大堰坡中學(xué)數(shù)學(xué)九上期末經(jīng)典模擬試題含解析_第4頁
2023屆湖北省隨州市高新區(qū)大堰坡中學(xué)數(shù)學(xué)九上期末經(jīng)典模擬試題含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷考生請(qǐng)注意:1.答題前請(qǐng)將考場、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.一元二次方程的根是()A.1 B.3 C.1或3 D.-1或32.已知圓內(nèi)接四邊形ABCD中,∠A:∠B:∠C=1:2:3,則∠D的大小是()A.45° B.60° C.90° D.135°3.如圖所示,某同學(xué)拿著一把有刻度的尺子,站在距電線桿30m的位置,把手臂向前伸直,將尺子豎直,看到尺子遮住電線桿時(shí)尺子的刻度為12cm,已知臂長60cm,則電線桿的高度為(

)A.2.4m B.24m C.0.6m D.6m4.在平面直角坐標(biāo)系中,△ABC與△A1B1C1位似,位似中心是原點(diǎn)O,若△ABC與△A1B1C1的相似比為1:2,且點(diǎn)A的坐標(biāo)是(1,3),則它的對(duì)應(yīng)點(diǎn)A1的坐標(biāo)是()A.(-3,-1) B.(-2,-6) C.(2,6)或(-2,-6) D.(-1,-3)5.若拋物線y=ax2+2x﹣10的對(duì)稱軸是直線x=﹣2,則a的值為()A.2 B.1 C.-0.5 D.0.56.下列方程是一元二次方程的是()A. B.x2=0 C.x2-2y=1 D.7.已知關(guān)于x的一元二次方程x2+(2k+1)x+k2=0①有兩個(gè)不相等的實(shí)數(shù)根.則k的取值范圍為()A.k>﹣ B.k>4 C.k<﹣1 D.k<48.如圖,將繞點(diǎn)按逆時(shí)針方向旋轉(zhuǎn)后得到,若,則的度數(shù)為()A. B. C. D.9.如圖,點(diǎn)A,B,C在⊙O上,∠A=36°,∠C=28°,則∠B=()A.100° B.72° C.64° D.36°10.下列方程有兩個(gè)相等的實(shí)數(shù)根是()A.x﹣x+3=0 B.x﹣3x+2=0 C.x﹣2x+1=0 D.x﹣4=0二、填空題(每小題3分,共24分)11.如圖,是一座古拱橋的截面圖,拱橋橋洞的上沿是拋物線形狀,當(dāng)水面的寬度為10m時(shí),橋洞與水面的最大距離是5m.因?yàn)樯嫌嗡畮煨购?,水面寬度變?yōu)?m,則水面上漲的高度為_____m.12.如圖,△ABC中,AD是中線,BC=8,∠B=∠DAC,則線段的長為________.13.計(jì)算:|﹣3|+(2019﹣π)0﹣+()-2=_______.14.如圖,點(diǎn)P是∠AOB平分線OC上一點(diǎn),PD⊥OB,垂足為D,若PD=2,則點(diǎn)P到邊OA的距離是_____.15.經(jīng)過點(diǎn)的反比例函數(shù)的解析式為__________.16.下表記錄了甲、乙、丙、丁四名跳遠(yuǎn)運(yùn)動(dòng)員選拔賽成績的平均數(shù)與方差s2:甲乙丙丁平均數(shù)(cm)561560561560方差s2(cm2)3.53.515.516.5根據(jù)表中數(shù)據(jù),要從中選擇一名成績好又發(fā)揮穩(wěn)定的運(yùn)動(dòng)員參加比賽,應(yīng)該選擇_____.17.如圖,在直角△OAB中,∠AOB=30°,將△OAB繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)100°得到△OA1B1,則∠A1OB=°.18.二次函數(shù)y=x2的圖象如圖所示,點(diǎn)A0位于坐標(biāo)原點(diǎn),點(diǎn)A1、A、A、…、A在y軸的正半軸上,點(diǎn)B、B、B、…、B在二次函數(shù)y=x2位于第一象限的圖象上,若△A0B1A1、△A1B2A2、△A2B3A3、…、△A2017B2018A2018都為等邊三角形,則△ABA的邊長=____________.三、解答題(共66分)19.(10分)如圖,已知一次函數(shù)y1=ax+b的圖象與x軸、y軸分別交于點(diǎn)D、C,與反比例函數(shù)y2=的圖象交于A、B兩點(diǎn),且點(diǎn)A的坐標(biāo)是(1,3)、點(diǎn)B的坐標(biāo)是(3,m).(1)求一次函數(shù)與反比例函數(shù)的解析式;(2)求C、D兩點(diǎn)的坐標(biāo),并求△AOB的面積;(3)根據(jù)圖象直接寫出:當(dāng)x在什么取值范圍時(shí),y1>y2?20.(6分)在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),拋物線y=ax2+ax+a(a≠0)交x軸于點(diǎn)A和點(diǎn)B(點(diǎn)A在點(diǎn)B左邊),交y軸于點(diǎn)C,連接AC,tan∠CAO=1.(1)如圖1,求拋物線的解析式;(2)如圖2,D是第一象限的拋物線上一點(diǎn),連接DB,將線段DB繞點(diǎn)D順時(shí)針旋轉(zhuǎn)90°,得到線段DE(點(diǎn)B與點(diǎn)E為對(duì)應(yīng)點(diǎn)),點(diǎn)E恰好落在y軸上,求點(diǎn)D的坐標(biāo);(1)如圖1,在(2)的條件下,過點(diǎn)D作x軸的垂線,垂足為H,點(diǎn)F在第二象限的拋物線上,連接DF交y軸于點(diǎn)G,連接GH,sin∠DGH=,以DF為邊作正方形DFMN,P為FM上一點(diǎn),連接PN,將△MPN沿PN翻折得到△TPN(點(diǎn)M與點(diǎn)T為對(duì)應(yīng)點(diǎn)),連接DT并延長與NP的延長線交于點(diǎn)K,連接FK,若FK=,求cos∠KDN的值.21.(6分)某校九年級(jí)學(xué)生小麗、小強(qiáng)和小紅到某超市參加了社會(huì)實(shí)踐活動(dòng),在活動(dòng)中他們參與了某種水果的銷售工作.已知該水果的進(jìn)價(jià)為每千克8元,下面是他們?cè)诨顒?dòng)結(jié)束后的對(duì)話.小麗;如果以每千克10元的價(jià)格銷售,那么每天可售出300千克.小強(qiáng):如果每千克的利潤為3元,那么每天可售出250千克.小紅:如果以每千克13元的價(jià)格銷售,那么每天可獲取利潤750元.(1)已知該水果每天的銷售量y(千克)與銷售單價(jià)x(元)之間存在一次的函數(shù)關(guān)系,請(qǐng)根據(jù)他們的對(duì)話,判決該水果每天的銷售量y(千克)與銷售單價(jià)x(元)之間存在怎樣的函數(shù)關(guān)系,并求出這個(gè)函數(shù)關(guān)系式;(2)設(shè)該超市銷售這種水果每天獲取的利潤為W(元),求W(元)與x(元)之間的函數(shù)關(guān)系式.當(dāng)銷售單價(jià)為何值時(shí),每天可獲得的利潤最大?最大利潤是多少元?(3)當(dāng)銷售利潤為600元并且盡量減少庫存時(shí),銷售單價(jià)為每千克多少元?22.(8分)已知,如圖,在Rt△ABC中,∠BAC=90°,∠ABC=45°,點(diǎn)D為直線BC上一動(dòng)點(diǎn)(點(diǎn)D不與點(diǎn)B,C重合).以AD為邊作正方形ADEF,連接CF,當(dāng)點(diǎn)D在線段BC的反向延長線上,且點(diǎn)A,F(xiàn)分別在直線BC的兩側(cè)時(shí).(1)求證:△ABD≌△ACF;(2)若正方形ADEF的邊長為,對(duì)角線AE,DF相交于點(diǎn)O,連接OC,求OC的長度.23.(8分)如圖,拋物線y=ax2+bx+2交x軸于點(diǎn)A(-1,0),B(n,0)(點(diǎn)A在點(diǎn)B的左邊),交y軸于點(diǎn)C.(1)當(dāng)n=2時(shí)求△ABC的面積.(2)若拋物線的對(duì)稱軸為直線x=m,當(dāng)1<n<4時(shí),求m的取值范圍.24.(8分)甲、乙、丙、丁四個(gè)人做“擊鼓傳花”游戲,游戲規(guī)則是:第一次由甲將花隨機(jī)傳給乙、丙、丁三人中的某一人,以后的每一次傳花都是由接到花的人隨機(jī)傳給其他三人中的某一人.(1)求第一次甲將花傳給丁的概率;(2)求經(jīng)過兩次傳花,花恰好回到甲手中的概率.25.(10分)如圖,的頂點(diǎn)坐標(biāo)分別為,,.(1)畫出關(guān)于點(diǎn)的中心對(duì)稱圖形;(2)畫出繞點(diǎn)逆時(shí)針旋轉(zhuǎn)的;直接寫出點(diǎn)的坐標(biāo)為_____;(3)求在旋轉(zhuǎn)到的過程中,點(diǎn)所經(jīng)過的路徑長.26.(10分)如圖,內(nèi)接于⊙,,高的延長線交⊙于點(diǎn),,.(1)求⊙的半徑;(2)求的長.

參考答案一、選擇題(每小題3分,共30分)1、D【解析】利用因式分解法求解即可得.【詳解】故選:D.【點(diǎn)睛】本題考查了利用因式分解法求解一元二次方程,主要解法包括:直接開方法、配方法、公式法、因式分解法、換元法等,熟記各解法是解題關(guān)鍵.2、C【分析】根據(jù)圓內(nèi)接四邊形對(duì)角互補(bǔ),結(jié)合已知條件可得∠A:∠B:∠C:∠D=1:2:3:2,∠B+∠D=180°,由此即可求得∠D的度數(shù).【詳解】∵四邊形ABCD為圓的內(nèi)接四邊形,∠A:∠B:∠C=1:2:3,∴∠A:∠B:∠C:∠D=1:2:3:2,而∠B+∠D=180°,∴∠D=×180°=90°.故選C.【點(diǎn)睛】本題考查了圓內(nèi)接四邊形的性質(zhì),熟練運(yùn)用圓內(nèi)接四邊形對(duì)角互補(bǔ)的性質(zhì)是解決問題的關(guān)鍵.3、D【解析】試題解析:作AN⊥EF于N,交BC于M,

∵BC∥EF,

∴AM⊥BC于M,

∴△ABC∽△AEF,

∴,

∵AM=0.6,AN=30,BC=0.12,

∴EF==6m.

故選D.4、C【解析】根據(jù)如果位似變換是以原點(diǎn)為位似中心,相似比為k,那么位似圖形對(duì)應(yīng)點(diǎn)的坐標(biāo)的比等于k或,即可求出答案.【詳解】由位似變換中對(duì)應(yīng)點(diǎn)坐標(biāo)的變化規(guī)律得:點(diǎn)的對(duì)應(yīng)點(diǎn)的坐標(biāo)是或,即點(diǎn)的坐標(biāo)是或故選:C.【點(diǎn)睛】本題考查了位似變換中對(duì)應(yīng)點(diǎn)坐標(biāo)的變化規(guī)律,理解位似的概念,并熟記變化規(guī)律是解題關(guān)鍵.5、D【分析】根據(jù)拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸方程得到,然后求出a即可.【詳解】解:∵拋物線y=ax2+2x﹣10的對(duì)稱軸是直線x=﹣2,∴,∴;故選:D.【點(diǎn)睛】本題考查了二次函數(shù)的圖象:二次函數(shù)y=ax2+bx+c(a≠0)的圖象為拋物線,當(dāng)a>0;對(duì)稱軸為直線;拋物線與y軸的交點(diǎn)坐標(biāo)為(0,c);當(dāng)b2-4ac>0,拋物線與x軸有兩個(gè)交點(diǎn);當(dāng)b2-4ac=0,拋物線與x軸有一個(gè)交點(diǎn);當(dāng)b2-4ac<0,拋物線與x軸沒有交點(diǎn).6、B【解析】利用一元二次方程的定義:只含有一個(gè)未知數(shù),并且未知數(shù)的最高次數(shù)是2的整式方程叫一元二次方程,可求解.【詳解】解:A:,化簡后是:,不符合一元二次方程的定義,所以不是一元二次方程;

B:x2=0,是一元二次方程;

C:x2-2y=1含有兩個(gè)未知數(shù),不符合一元二次方程的定義,所以不是一元二次方程;

D:,分母含有未知數(shù),是一元一次方程,所以不是一元二次方程;

故選:B.【點(diǎn)睛】本題考查了一元二次方程的定義,判斷一個(gè)方程是否是一元二次方程應(yīng)注意抓住5個(gè)方面:“化簡后”;“一個(gè)未知數(shù)”;“未知數(shù)的最高次數(shù)是2”;“二次項(xiàng)的系數(shù)不等于0”;“整式方程”.7、A【分析】根據(jù)方程的系數(shù)結(jié)合根的判別式△>0;即可得出關(guān)于k的一元一次不等式;解之即可得出結(jié)論.【詳解】∵關(guān)于x的一元二次方程x2+(2k+1)x+k2=0有兩個(gè)不相等的實(shí)數(shù)根,∴△=(2k+1)2﹣4×1×k2=4k+1>0,∴k>﹣.故選A.【點(diǎn)睛】本題考查了根的判別式,牢記“當(dāng)△>0時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根”是解題的關(guān)鍵.8、D【分析】由題意可知旋轉(zhuǎn)角∠BCB′=60°,則根據(jù)∠ACB′=∠BCB′+∠ACB即可得出答案.【詳解】解:根據(jù)旋轉(zhuǎn)的定義可知旋轉(zhuǎn)角∠BCB′=60°,∴∠ACB′=∠BCB′+∠ACB=60°+25°=85°.故選:D.【點(diǎn)睛】本題主要考查旋轉(zhuǎn)的定義,解題的關(guān)鍵是找到旋轉(zhuǎn)角,以及旋轉(zhuǎn)后的不變量.9、C【詳解】試題分析:設(shè)AC和OB交于點(diǎn)D,根據(jù)同弧所對(duì)的圓心角的度數(shù)等于圓周角度數(shù)2倍可得:∠O=2∠A=72°,根據(jù)∠C=28°可得:∠ODC=80°,則∠ADB=80°,則∠B=180°-∠A-∠ADB=180°-36°-80°=64°,故本題選C.10、C【分析】先根據(jù)方程求出△的值,再根據(jù)根的判別式的意義判斷即可.【詳解】A、x2﹣x+3=0,△=(﹣1)2﹣4×1×3=﹣11<0,所以方程沒有實(shí)數(shù)根,故本選項(xiàng)不符合題意;B、x2﹣3x+2=0,△=(﹣3)2﹣4×1×2=1>0,所以方程有兩個(gè)不相等的實(shí)數(shù)根,故本選項(xiàng)不符合題意;C、x2﹣2x+1=0,△=(﹣2)2﹣4×1×1=0,所以方程有兩個(gè)相等的實(shí)數(shù)根,故本選項(xiàng)符合題意;D、x2﹣4=0,△=02﹣4×1×(﹣4)=16>0,所以方程有兩個(gè)不相等的實(shí)數(shù)根,故本選項(xiàng)不符合題意;故選:C.【點(diǎn)睛】本題考查了根的判別式,能熟記根的判別式的意義是解此題的關(guān)鍵.二、填空題(每小題3分,共24分)11、.【分析】先建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,然后根據(jù)題意確定函數(shù)解析式,最后求解即可.【詳解】解:如圖:以水面為x軸、橋洞的頂點(diǎn)所在直線為y軸建立平面直角坐標(biāo)系,根據(jù)題意,得A(5,0),C(0,5),設(shè)拋物線解析式為:y=ax2+5,把A(5,0)代入,得a=﹣,所以拋物線解析式為:y=﹣x2+5,當(dāng)x=3時(shí),y=,所以當(dāng)水面寬度變?yōu)?m,則水面上漲的高度為m.故答案為.【點(diǎn)睛】本題考查了二次函數(shù)的應(yīng)用,建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系是解決本題的關(guān)鍵.12、【解析】已知BC=8,AD是中線,可得CD=4,在△CBA和△CAD中,由∠B=∠DAC,∠C=∠C,可判定△CBA∽△CAD,根據(jù)相似三角形的性質(zhì)可得,即可得AC2=CD?BC=4×8=32,解得AC=4.13、【分析】直接利用負(fù)指數(shù)冪法則以及絕對(duì)值的代數(shù)意義和零指數(shù)冪的法則、算術(shù)平方根的性質(zhì)分別化簡得出答案.【詳解】解:原式=,故答案為:.【點(diǎn)睛】此題主要考查了負(fù)指數(shù)冪法則以及絕對(duì)值的代數(shù)意義和零指數(shù)冪的法則、算術(shù)平方根的性質(zhì),正確利用法則化簡各數(shù)是解題關(guān)鍵.14、1【分析】作PE⊥OA,再根據(jù)角平分線的性質(zhì)得出PE=PD即可得出答案.【詳解】過P作PE⊥OA于點(diǎn)E,∵點(diǎn)P是∠AOB平分線OC上一點(diǎn),PD⊥OB,∴PE=PD,∵PD=1,∴PE=1,∴點(diǎn)P到邊OA的距離是1.故答案為1.【點(diǎn)睛】本題考查角平分線的性質(zhì),關(guān)鍵在于牢記角平分線的性質(zhì)并靈活運(yùn)用.15、【分析】設(shè)出反比例函數(shù)解析式解析式,然后利用待定系數(shù)法列式求出k值,即可得解.【詳解】設(shè)反比例函數(shù)解析式為,則,解得:,∴此函數(shù)的解析式為.故答案為:.【點(diǎn)睛】本題考查了待定系數(shù)法求反比例函數(shù)解析式及特殊角的三角函數(shù)值,設(shè)出函數(shù)的表達(dá)式,然后把點(diǎn)的坐標(biāo)代入求解即可,比較簡單.16、甲【解析】首先比較平均數(shù),平均數(shù)相同時(shí)選擇方差較小的運(yùn)動(dòng)員參加.【詳解】∵,∴從甲和丙中選擇一人參加比賽,∵,∴選擇甲參賽,故答案為甲.【點(diǎn)睛】此題考查了平均數(shù)和方差,關(guān)鍵是根據(jù)方差反映了一組數(shù)據(jù)的波動(dòng)大小,方差越大,波動(dòng)性越大,反之也成立.17、70【解析】∵將△OAB繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)100°得到△OA1B1,∴∠A1OA=100°.又∵∠AOB=30°,∴∠A1OB=∠A1OA-∠AOB=70°.18、1【分析】分別過B1,B2,B3作y軸的垂線,垂足分別為A、B、C,設(shè)A0A1=a,A1A2=b,A2A3=c,則AB1=a,BB2=b,CB3=c,再根據(jù)所求正三角形的邊長,分別表示B1,B2,B3的縱坐標(biāo),逐步代入拋物線y=x2中,求a、b、c的值,得出規(guī)律.【詳解】解:分別過B1,B2,B3作y軸的垂線,垂足分別為A、B、C,

設(shè)A0A1=a,A1A2=b,A2A3=c,則AB1=a,BB2=b,CB3=c,在正△A0B1A1中,B1(a,),

代入y=x2中,得=×a2,解得a=1,即A0A1=1,

在正△A1B2A2中,B2(b,1+),

代入y=x2中,得1+=×b2,解得b=2,即A1A2=2,

在正△A2B3A3中,B3(c,3+),

代入y=x2中,得3+=×c2,解得c=3,即A2A3=3,

依此類推由此可得△A2017B1A1的邊長=1,

故答案為:1.【點(diǎn)睛】本題考查了二次函數(shù)的綜合運(yùn)用.關(guān)鍵是根據(jù)正三角形的性質(zhì)表示點(diǎn)的坐標(biāo),利用拋物線解析式求正三角形的邊長,得到規(guī)律.三、解答題(共66分)19、(1)y1=,y1=﹣x+4;(1)4;(3)當(dāng)x滿足1<x<3、x<2時(shí),則y1>y1.【分析】(1)把點(diǎn)A(1,3)代入y1=,求出k,得到反比例函數(shù)的解析式;再把B(3,m)代入反比例函數(shù)的解析式,求出m,得到點(diǎn)B的坐標(biāo),把A、B兩點(diǎn)的坐標(biāo)代入y1=ax+b,利用待定系數(shù)法求出一次函數(shù)的解析式;

(1)把x=2代入一次函數(shù)解析式,求出y1=4,得到C點(diǎn)的坐標(biāo),把y1=2代入一次函數(shù)解析式,求出x=4,得到D點(diǎn)坐標(biāo),再根據(jù)S△AOB=S△AOD-S△BOD,列式計(jì)算即可;

(3)找出一次函數(shù)落在反比例函數(shù)圖象上方的部分對(duì)應(yīng)的自變量的取值即可.【詳解】解:(1)把點(diǎn)A(1,3)代入y1=,則3=,即k=3,故反比例函數(shù)的解析式為:y1=.把點(diǎn)B的坐標(biāo)是(3,m)代入y1=,得:m==1,∴點(diǎn)B的坐標(biāo)是(3,1).把A(1,3),B(3,1)代入y1=ax+b,得,解得,故一次函數(shù)的解析式為:y1=﹣x+4;(1)令x=2,則y1=4;令y1=2,則x=4,∴C(2,4),D(4,2),∴S△AOB=S△AOD﹣S△BOD=×4×3﹣×4×1=4;(3)由圖像可知x<2、1<x<3時(shí),一次函數(shù)落在反比例函數(shù)圖象上方,故滿足y1>y1條件的自變量的取值范圍:1<x<3、x<2.【點(diǎn)睛】本題考查了反比例函數(shù)與一次函數(shù)的交點(diǎn)問題,待定系數(shù)法求函數(shù)的解析式,函數(shù)圖象上點(diǎn)的坐標(biāo)特征,三角形的面積,難度適中.利用了數(shù)形結(jié)合思想.20、(1)y=﹣x2+x+1;(2)D的坐標(biāo)為(1,1);(1)【分析】(1)通過拋物線y=先求出點(diǎn)A的坐標(biāo),推出OA的長度,再由tan∠CAO=1求出OC的長度,點(diǎn)C的坐標(biāo),代入原解析式即可求出結(jié)論;(2)如圖2,過點(diǎn)D分別作x軸和y軸的垂線,垂足分別為W和Z,證△DZE≌△DWB,得到DZ=DW,由此可知點(diǎn)D的橫縱坐標(biāo)相等,設(shè)出點(diǎn)D坐標(biāo),代入拋物線解析式即可求出點(diǎn)D坐標(biāo);(1)如圖1,連接CD,分別過點(diǎn)C,H作F的垂線,垂足分別為Q,I,過點(diǎn)F作DC的垂線,交DC的延長線于點(diǎn)U,先求出點(diǎn)G坐標(biāo),求出直線DG解析式,再求出點(diǎn)F的坐標(biāo),即可求出正方形FMND的邊長,再求出其對(duì)角線FN的長度,最后證點(diǎn)F,K,M,N,D共圓,推出∠KDN=∠KFN,求出∠KFN的余弦值即可.【詳解】解:(1)在拋物線y=中,當(dāng)y=0時(shí),x1=﹣1,x2=4,∴A(﹣1,0),B(4,0),∴OA=1,∵tan∠CAO=1,∴OC=1OA=1,∴C(0,1),∴a=1,∴a=2,∴拋物線的解析式為:y=﹣x2+x+1;(2)如圖2,過點(diǎn)D分別作x軸和y軸的垂線,垂足分別為W和Z,∵∠ZDW=∠EDB=90°,∴∠ZDE=∠WDB,∵∠DZE=∠DWB=90°,DE=DB,∴△DZE≌△DWB(AAS),∴DZ=DW,設(shè)點(diǎn)D(k,﹣k2+k+1),∴k=﹣k2+k+1,解得,k1=﹣(舍去),k2=1,∴D的坐標(biāo)為(1,1);(1)如圖1,連接CD,分別過點(diǎn)C,H作F的垂線,垂足分別為Q,I,∵sin∠DGH=∴設(shè)HI=4m,HG=5m,則IG=1m,由題意知,四邊形OCDH是正方形,∴CD=DH=1,∵∠CDQ+∠IDH=90°,∠IDH+∠DHI=90°,∴∠CDQ=∠DHI,又∵∠CQD=∠DIH=90°,∴△CQD≌△DIH(AAS),設(shè)DI=n,則CQ=DI=n,DQ=HI=4m,∴IQ=DQ﹣DI=4m﹣n,∴GQ=GI﹣IQ=1m﹣(4m﹣n)=n﹣m,∵∠GCQ+∠QCD=90°,∠QCD+∠CDQ=90°,∴∠GCQ=∠CDQ,∴△GCQ∽△CDQ,∴∴∴n=2m,∴CQ=DI=2m,∴IQ=2m,∴tan∠CDG=,∵CD=1,∴CG=,∴GO=CO﹣CG=,設(shè)直線DG的解析式為y=kx+,將點(diǎn)D(1,1)代入,得,k=,∴yDG=,設(shè)點(diǎn)F(t,﹣t2+t+1),則﹣t2+t+1=t+,解得,t1=1(舍去),t2=﹣,∴F(﹣,)過點(diǎn)F作DC的垂線,交DC的延長線于點(diǎn)U,則,∴在Rt△UFD中,DF=,由翻折知,△NPM≌△NPT,∴∠MNP=∠TNP,NM=NT=ND,∠TPN=∠MPN,TP=MP,又∵NS⊥KD,∴∠DNS=∠TNS,DS=TS,∴∠SNK=∠TNP+∠TNS=×90°=45°,∴∠SKN=45°,∵∠TPK=180°﹣∠TPN,∠MPK=180°﹣∠MPN,∴∠TPK=∠MPK,又∵PK=PK,∴△TPK≌△MPK(SAS),∴∠MKP=∠TKP=45°,∴∠DKM=∠MKP+∠TKP=90°,連接FN,DM,交點(diǎn)為R,再連接RK,則RK=RF=RD=RN=RM,則點(diǎn)F,D,N,M,K同在⊙R上,F(xiàn)N為直徑,∴∠FKN=90°,∠KDN=∠KFN,∵FN=,∴在Rt△FKN中,∴cos∠KDN=cos∠KFN.【點(diǎn)睛】考核知識(shí)點(diǎn):二次函數(shù)綜合題.熟記二次函數(shù)基本性質(zhì),數(shù)形結(jié)合分析問題是關(guān)鍵.21、(1)y=﹣50x+800(x>0);(2)單價(jià)為12元時(shí),每天可獲得的利潤最大,最大利潤是800元;(3)每千克10元或14元.【解析】本題是通過構(gòu)建函數(shù)模型解答銷售利潤的問題.依據(jù)題意首先確定學(xué)生對(duì)話中一次函數(shù)關(guān)系;然后根據(jù)銷售利潤=銷售量×(售價(jià)-進(jìn)價(jià)),列出平均每天的銷售利潤w(元)與銷售價(jià)x之間的函數(shù)關(guān)系,再依據(jù)函數(shù)的增減性求得最大利潤.【詳解】(1)當(dāng)銷售單價(jià)為13元/千克時(shí),銷售量為:750÷(13﹣8)=150千克,設(shè):y與x的函數(shù)關(guān)系式為:y=kx+b(k≠0)把(10,300),(13,150)分別代入得:k=﹣50,b=800∴y與x的函數(shù)關(guān)系式為:y=﹣50x+800(x>0).(2)∵利潤=銷售量×(銷售單價(jià)﹣進(jìn)價(jià)),由題意得∴W=(﹣50x+800)(x﹣8)=﹣50(x﹣12)2+800,∴當(dāng)銷售單價(jià)為12元時(shí),每天可獲得的利潤最大,最大利潤是800元.(3)將w=600代入二次函數(shù)W=(﹣50x+800)(x﹣8)=600解得:x1=10,x2=14即:當(dāng)銷售利潤為600元時(shí),銷售單價(jià)為每千克10元或14元.【點(diǎn)睛】本題考查了二次函數(shù)的性質(zhì)在實(shí)際生活中的應(yīng)用.最大銷售利潤的問題常利用函數(shù)的增減性來解答,我們首先要讀懂題意,確定變量,建立函數(shù)模型,然后結(jié)合實(shí)際選擇最優(yōu)方案.22、(1)證明見解析;(1)【分析】(1)由題意易得AD=AF,∠DAF=90°,則有∠DAB=∠FAC,進(jìn)而可證AB=AC,然后問題可證;(1)由(1)可得△ABD≌△ACF,則有∠ABD=∠ACF,進(jìn)而可得∠ACF=135°,然后根據(jù)正方形的性質(zhì)可求解.【詳解】(1)證明:∵四邊形ADEF為正方形,∴AD=AF,∠DAF=90°,又∵∠BAC=90°,∴∠DAB=∠FAC,∵∠ABC=45°,∠BAC=90°,∴∠ACB=45°,∴∠ABC=∠ACB,∴AB=AC,∴△ABD≌△ACF(SAS);(1)解:由(1)知△ABD≌△ACF,∴∠ABD=∠ACF,∵∠ABC=45°,∴∠ABD=135°,∴∠ACF=135°,由(1)知∠ACB=45°,∴∠DCF=90°,∵正方形ADEF邊長為,∴DF=4,∴OC=DF=×4=1.【點(diǎn)睛】本題主要考查正方形的性質(zhì)及等腰直角三角形的性質(zhì),熟練掌握正方形的性質(zhì)及等腰直角三角形的性質(zhì)是解題的關(guān)鍵.23、(1)3;(2)0<m<.【分析】(1)根據(jù)n的值,得到AB的長度,然后求得點(diǎn)C的坐標(biāo),進(jìn)而得到△ABC的面積;(2)根據(jù)題意,可以得到,然后用含m的代數(shù)式表示n,再根據(jù)n的取值范圍即可得到m的取值范圍.【詳解】解:(1)如圖,連接

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論