版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數(shù)學期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題3分,共30分)1.下列兩個變量成反比例函數(shù)關系的是()①三角形底邊為定值,它的面積S和這條邊上的高線h;②三角形的面積為定值,它的底邊a與這條邊上的高線h;③面積為定值的矩形的長與寬;④圓的周長與它的半徑.A.①④ B.①③ C.②③ D.②④2.已知點(-1,y1)、(2,y2)、(π,y3)在雙曲線上,則下列關系式正確的是()A.y1>y2>y3 B.y1>y3>y2 C.y2>y1>y3 D.y3>y1>y23.若一元二次方程kx2﹣3x﹣=0有實數(shù)根,則實數(shù)k的取值范圍是()A.k=﹣1 B.k≥﹣1且k≠0 C.k>﹣1且k≠0 D.k≤﹣1且k≠04.如圖,菱形ABCD的兩條對角線AC,BD相交于點O,E是AB的中點,若AC=6,BD=8,則OE長為()A.3 B.5 C.2.5 D.45.二次函數(shù)的圖象如圖,則一次函數(shù)的圖象經(jīng)過()A.第一、二、三象限 B.第一、二、四象限 C.第二、三、四象限 D.第一、三、四象限6.某學校組織創(chuàng)城知識競賽,共設有20道試題,其中有:社會主義核心價值觀試題3道,文明校園創(chuàng)建標準試題6道,文明禮貌試題11道.學生小宇從中任選一道試題作答,他選中文明校園創(chuàng)建標準試題的概率是()A. B. C. D.7.如圖,點A,B,C,D都在上,OA⊥BC,∠AOB=40°,則∠CDA的度數(shù)為()A.40° B.30° C.20° D.15°8.的相反數(shù)是()A. B. C. D.39.二次函數(shù)下列說法正確的是()A.開口向上 B.對稱軸為直線C.頂點坐標為 D.當時,隨的增大而增大10.用配方法解方程,下列配方正確的是()A. B. C. D.二、填空題(每小題3分,共24分)11.如圖,分別以等邊三角形的每個頂點為圓心、以邊長為半徑,在另兩個頂點間作一段圓弧,三段圓弧圍成的曲邊三角形稱為勒洛三角形.若等邊三角形的邊長為a,則勒洛三角形的周長為_____.12.在中,已知cm,cm,P是BC的中點,以點P為圓心,3cm為半徑畫☉P,則點A與☉P的位置關系是____________.13.如果兩個相似三角形的面積的比是4:9,那么它們對應的角平分線的比是_____.14.已知Rt△ABC中,AC=3,BC=4,以C為圓心,以r為半徑作圓.若此圓與線段AB只有一個交點,則r的取值范圍為_____.15.若關于的一元二次方程(m-1)x2-4x+1=0有兩個不相等的實數(shù)根,則m的取值范圍為_____________.16.如圖,點E在正方形ABCD的邊CD上.若△ABE的面積為8,CE=3,則線段BE的長為_______.17.二次函數(shù)y=﹣x2+bx+c的部分圖象如圖所示,由圖象可知,不等式﹣x2+bx+c<0的解集為______.18.如圖,物理老師為同學們演示單擺運動,單擺左右擺動中,在的位置時俯角,在的位置時俯角.若,點比點高.則從點擺動到點經(jīng)過的路徑長為________.三、解答題(共66分)19.(10分)如圖,在平面直角坐標系中,一次函數(shù)的圖象與反比例函數(shù)的圖象交于、兩點,與軸交于點.(1)求反比例函數(shù)的表達式及點坐標;(2)請直接寫出當為何值時,;(3)求的面積.20.(6分)方方駕駛小汽車勻速地從地行駛到地,行駛里程為千米,設小汽車的行駛時間為(單位:小時),行駛速度為(單位:千米/小時),且全程速度限定為不超過千米/小時.(1)求關于的函數(shù)表達式,并寫出自變量的取值范圍;(2)方方上午點駕駛小汽車從地出發(fā);①方方需在當天點分至點(含點分和點)間到達地,求小汽車行駛速度的范圍;②方方能否在當天點分前到達地?說明理由.21.(6分)如圖,⊙O是△ABC的外接圓,AB為直徑,∠BAC的平分線交⊙O于點D,過點D作DE⊥AC分別交AC的延長線于點E,交AB的延長線于點F.(1)求證:EF是⊙O的切線;(2)若AC=8,CE=4,求弧BD的長.(結果保留π)22.(8分)如圖,AB為⊙O的直徑,C是⊙O上一點,過點C的直線交AB的延長線于點D,AE⊥DC,垂足為E,F(xiàn)是AE與⊙O的交點,AC平分∠BAE(1)求證:DE是⊙O的切線;(2)若AE=6,∠D=30°,求圖中陰影部分的面積.23.(8分)已知:如圖,⊙O的直徑AB與弦CD相交于點E,且E為CD中點,過點B作CD的平行線交弦AD的延長線于點F.(1)求證:BF是⊙O的切線;(2)連結BC,若⊙O的半徑為2,tan∠BCD=,求線段AD的長.24.(8分)如圖,直線和反比例函數(shù)的圖象交于兩點,已知點的坐標為.(1)求該反比例函數(shù)的解析式;(2)求出點關于原點的對稱點的坐標;(3)連接,求的面積.25.(10分)解方程:3x(1x+1)=4x+1.26.(10分)如圖,天星山山腳下西端A處與東端B處相距800(1+)米,小軍和小明同時分別從A處和B處向山頂C勻速行走.已知山的西端的坡角是45°,東端的坡角是30°,小軍的行走速度為米/秒.若小明與小軍同時到達山頂C處,則小明的行走速度是多少?
參考答案一、選擇題(每小題3分,共30分)1、C【分析】根據(jù)反比例函數(shù)的定義即可判斷.【詳解】①三角形底邊為定值,它的面積S和這條邊上的高線h是成正比例關系,故不符合題意;②三角形的面積為定值,它的底邊a與這條邊上的高線h是反比例函數(shù)關系;故符合題意;③面積為定值的矩形的長與寬;是反比例函數(shù)關系;故符合題意;④圓的周長與它的半徑,是成正比例關系,故不符合題意.故選:C.【點睛】本題考查了反比例函數(shù)的解析式,解答本題的關鍵是根據(jù)題意列出函數(shù)關系式來進行判斷,本題屬于基礎題型.2、B【解析】分析:根據(jù)題意,可得這個反比例函數(shù)圖象所在的象限及每個象限的增減性,比較三個點的縱橫坐標,分析可得三點縱坐標的大小,即可得答案.詳解:∵雙曲線中的-(k1+1)<0,∴這個反比例函數(shù)在二、四象限,且在每個象限都是增函數(shù),且1<,
∴y1>0,y1<y3<0;
故有y1>y3>y1.
故選B.點睛:考查了運用反比例函數(shù)圖象的性質(zhì)判斷函數(shù)值的大小,解題關鍵牢記反比例函數(shù)(x≠0)的性質(zhì):當k>0時,圖像分別位于第一、三象限,每一個象限內(nèi),從左往右,y隨x的增大而減?。划攌<0時,圖像分別位于第二、四象限,每一個象限內(nèi),從左往右,y隨x的增大而增大.
3、B【分析】根據(jù)一元二次方程根的判別式△=9+9k≥0即可求出答案.【詳解】解:由題意可知:△=9+9k≥0,∴k≥﹣1,∵k≠0,∴k≥﹣1且k≠0,故選:B.【點睛】本題考查了根據(jù)一元二次方程根的情況求方程中的參數(shù),解題的關鍵是熟知一元二次方程根的判別式的應用.4、C【分析】根據(jù)菱形的性質(zhì)可得OB=OD,AO⊥BO,從而可判斷OE是△DAB的中位線,在Rt△AOB中求出AB,繼而可得出OE的長度.【詳解】解:∵四邊形ABCD是菱形,AC=6,BD=8,
∴AO=OC=3,OB=OD=4,AO⊥BO,
又∵點E是AB中點,
∴OE是△DAB的中位線,
在Rt△AOD中,AB==5,
則OE=AD=.
故選C.【點睛】本題考查了菱形的性質(zhì)及三角形的中位線定理,熟練掌握菱形四邊相等、對角線互相垂直且平分的性質(zhì)是解題關鍵.5、C【解析】∵拋物線的頂點在第四象限,∴﹣>1,<1.∴<1,∴一次函數(shù)的圖象經(jīng)過二、三、四象限.故選C.6、B【分析】根據(jù)概率公式即可得出答案.【詳解】解:∵共設有20道試題,其中文明校園創(chuàng)建標準試題6道,∴他選中文明校園創(chuàng)建標準的概率是,故選:B.【點睛】此題考查概率的求法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結果,那么事件A的概率P(A)=.7、C【分析】先根據(jù)垂徑定理由OA⊥BC得到,然后根據(jù)圓周角定理計算即可.【詳解】解:∵OA⊥BC,∴,∴∠ADC=∠AOB=×40°=20°.故選:C.【點睛】本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.也考查了垂徑定理.8、A【分析】根據(jù)相反數(shù)的意義求解即可.【詳解】的相反數(shù)是-,故選:A.【點睛】本題考查了相反數(shù),在一個數(shù)的前面加上負號就是這個數(shù)的相反數(shù).9、D【分析】根據(jù)解析式即可依次判斷正確與否.【詳解】∵a=-2∴開口向下,A選項錯誤;∵,∴對稱軸為直線x=-1,故B錯誤;∵,∴頂點坐標為(-1,-4),故C錯誤;∵對稱軸為直線x=-1,開口向下,∴當時,隨的增大而增大,故D正確.故選:D.【點睛】此題考查二次函數(shù)的性質(zhì),掌握不同函數(shù)解析式的特點,各字母代表的含義,并熟練運用解題是關鍵.10、D【分析】把方程兩邊都加上4,然后把方程左邊寫成完全平方形式即可.【詳解】∵,∴,∴.故選:D.【點睛】本題考查了配方法解一元二次方程,解題時要注意解題步驟的正確應用.①把常數(shù)項移到等號的右邊;②把二次項的系數(shù)化為1;③等式兩邊同時加上一次項系數(shù)一半的平方得出即可.二、填空題(每小題3分,共24分)11、πa【分析】首先根據(jù)等邊三角形的性質(zhì)得出∠A=∠B=∠C=60°,AB=BC=CA=a,再利用弧長公式求出的長=的長=的長=,那么勒洛三角形的周長為【詳解】解:如圖.∵△ABC是等邊三角形,∴∠A=∠B=∠C=60°,AB=BC=CA=a,∴的長=的長=的長=,∴勒洛三角形的周長為故答案為πa.【點睛】本題考查了弧長公式:(弧長為l,圓心角度數(shù)為n,圓的半徑為R),也考查了等邊三角形的性質(zhì).12、點A在圓P內(nèi)【分析】求出AP的長,然后根據(jù)點與圓的位置關系判斷即可.【詳解】∵AB=AC,P是BC的中點,∴AP⊥BC,BP=3cm,∴AP=cm,∵,∴點A在圓P內(nèi).故答案為:點A在圓P內(nèi).【點睛】本題考查了等腰三角形的性質(zhì),勾股定理,點與圓的位置關系,關鍵要記住若半徑為r,點到圓心的距離為d,則有:當d>r時,點在圓外;當d=r時,點在圓上,當d<r時,點在圓內(nèi).13、2:1【解析】先根據(jù)相似三角形面積的比是4:9,求出其相似比是2:1,再根據(jù)其對應的角平分線的比等于相似比,可知它們對應的角平分線比是2:1.故答案為2:1.點睛:本題考查的是相似三角形的性質(zhì),即相似三角形對應邊的比、對應高線的比、對應角平分線的比、周長的比都等于相似比;面積的比等于相似比的平方.14、3<r≤1或r=.【解析】根據(jù)直線與圓的位置關系得出相切時有一交點,再結合圖形得出另一種有一個交點的情況,即可得出答案.【詳解】解:過點C作CD⊥AB于點D,∵AC=3,BC=1.∴AB=5,如果以點C為圓心,r為半徑的圓與斜邊AB只有一個公共點,當直線與圓相切時,d=r,圓與斜邊AB只有一個公共點,∴CD×AB=AC×BC,∴CD=r=,當直線與圓如圖所示也可以有一個交點,∴3<r≤1,故答案為3<r≤1或r=.【點睛】此題主要考查了直線與圓的位置關系,結合題意畫出符合題意的圖形,從而得出答案,此題比較容易漏解.15、且【解析】試題解析:∵一元二次方程有兩個不相等的實數(shù)根,∴m?1≠0且△=16?4(m?1)>0,解得m<5且m≠1,∴m的取值范圍為m<5且m≠1.故答案為:m<5且m≠1.點睛:一元二次方程方程有兩個不相等的實數(shù)根時:16、5.【詳解】試題解析:過E作EM⊥AB于M,∵四邊形ABCD是正方形,∴AD=BC=CD=AB,∴EM=AD,BM=CE,∵△ABE的面積為8,∴×AB×EM=8,解得:EM=4,即AD=DC=BC=AB=4,∵CE=3,由勾股定理得:BE==5.考點:1.正方形的性質(zhì);2.三角形的面積;3.勾股定理.17、x<?1或x>5.【分析】先利用拋物線的對稱性得到拋物線與x軸的另一個交點坐標為(-1,0),然后寫出拋物線在x軸下方所對應的自變量的范圍即可.【詳解】拋物線的對稱軸為直線x=2,而拋物線與x軸的一個交點坐標為(5,0),所以拋物線與x軸的另一個交點坐標為(?1,0),所以不等式?x2+bx+c<0的解集為x<?1或x>5.故答案為x<?1或x>5.考點:二次函數(shù)圖象的性質(zhì)18、【分析】如圖,過點A作AP⊥OC于點P,過點B作BQ⊥OC于點Q,由題意可得∠AOP=60°,∠BOQ=30°,進而得∠AOB=90°,設OA=OB=x,分別在Rt△AOP和Rt△BOQ中,利用解直角三角形的知識用含x的代數(shù)式表示出OP和OQ,從而可得關于x的方程,解方程即可求出x,然后再利用弧長公式求解即可.【詳解】解:如圖,過點A作AP⊥OC于點P,過點B作BQ⊥OC于點Q,∵∠EOA=30°,∠FOB=60°,且OC⊥EF,∴∠AOP=60°,∠BOQ=30°,∴∠AOB=90°,設OA=OB=x,則在Rt△AOP中,OP=OAcos∠AOP=x,在Rt△BOQ中,OQ=OBcos∠BOQ=x,由PQ=OQ﹣OP可得:x﹣x=7,解得:x=7+7cm,則從點A擺動到點B經(jīng)過的路徑長為cm,故答案為:.【點睛】本題考查了解直角三角形的應用和弧長公式的計算,屬于常考題型,正確理解題意、熟練掌握解直角三角形的知識是解題的關鍵.三、解答題(共66分)19、(1),;(2)或;(3)1.【分析】(1)由題意將代入,可得反比例函數(shù)的表達式,進而將代入反比例函數(shù)的表達式即可求得點坐標;(2)根據(jù)題意可知一次函數(shù)的圖象在反比例函數(shù)的圖象的下方即直線在曲線下方時的取值范圍,以此進行分析即可;(3)根據(jù)題意先利用待定系數(shù)法求得一次函數(shù)的表達式,并代入可得點坐標,進而根據(jù)進行分析計算即可.【詳解】解:(1)由題意將代入,可得:,解得:,又將代入反比例函數(shù),解得:,所以反比例函數(shù)的表達式為:,點坐標為:;(2)即一次函數(shù)的圖象在反比例函數(shù)的圖象的下方,觀察圖象可得:或;(3)觀察圖象可得:,一次函數(shù)的圖象與軸交于點,將,代入一次函數(shù),可得,即一次函數(shù)的表達式為:,代入可得點坐標為:,所以.【點睛】本題考查一次函數(shù)與反比例函數(shù)綜合,熟練掌握利用待定系數(shù)法求解函數(shù)解析式以及利用割補法計算三角形的面積是解題的關鍵.20、(1);(2)①;②方方不能在當天點分前到達地.【分析】(1)由速度乘以時間等于路程,變形即可得速度等于路程比時間,從而得解;
(2)①8點至12點48分時間長為小時,8點至14點時間長為6小時,將它們分別代入v關于t的函數(shù)表達式,即可得小汽車行駛的速度范圍;
②8點至11點30分時間長為小時,將其代入v關于t的函數(shù)表達式,可得速度大于120千米/時,從而得答案.【詳解】解:(1),且全程速度限定為不超過120千米/時,關于的函數(shù)表達式為:.(2)①點至點分時間長為小時,點至點時間長為小時將代入得;將代入得,小汽車行駛速度的范圍為:.②方方不能在當天點分前到達地.理由如下:點至點分時間長為小時,將代入中,得千米/時,超速了.所以方方不能在當天點分前到達地.【點睛】本題是反比例函數(shù)在行程問題中的應用,根據(jù)時間速度和路程的關系可以求解,本題屬于中檔題.21、(1)見解析;(2)【分析】(1)連接OD,由OA=OD知∠OAD=∠ODA,由AD平分∠EAF知∠DAE=∠DAO,據(jù)此可得∠DAE=∠ADO,繼而知OD∥AE,根據(jù)AE⊥EF即可得證;(2)作OG⊥AE,知AG=CG=AC=4,證四邊形ODEG是矩形,得出OA=OB=OD=CG+CE=4,再證△ADE∽△ABD得AD2=192,據(jù)此得出BD的長及∠BAD的度數(shù),利用弧長公式可得答案.【詳解】(1)證明:連接OD,如圖1所示:∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠EAF,∴∠DAE=∠DAO,∴∠DAE=∠ADO,∴OD∥AE,∵AE⊥EF,∴OD⊥EF,∴EF是⊙O的切線;(2)解:作OG⊥AE于點G,連接BD,如圖2所示:則AG=CG=AC=4,∠OGE=∠E=∠ODE=90°,∴四邊形ODEG是矩形,∴OA=OB=OD=CG+CE=4+4=8,∠DOG=90°,∴AB=2OA=16,∵AC=8,CE=4,∴AE=AC+CE=12,∵∠DAE=∠BAD,∠AED=∠ADB=90°,∴△ADE∽△ABD,∴,即,∴,在Rt△ABD中,,在Rt△ABD中,∵AB=2BD,∴∠BAD=30°,∴∠BOD=60°,則弧BD的長度為=.【點睛】本題考查切線的判定與性質(zhì),解題的關鍵是掌握切線的判定與性質(zhì)、矩形的判定與性質(zhì)、垂徑定理、弧長公式等知識點.22、(1)證明見解析;(2)陰影部分的面積為.【分析】(1)連接OC,先證明∠OAC=∠OCA,進而得到OC∥AE,于是得到OC⊥CD,進而證明DE是⊙O的切線;(2)分別求出△OCD的面積和扇形OBC的面積,利用S陰影=S△COD﹣S扇形OBC即可得到答案.【詳解】解:(1)連接OC,∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠BAE,∴∠OAC=∠CAE,∴∠OCA=∠CAE,∴OC∥AE,∴∠OCD=∠E,∵AE⊥DE,∴∠E=90°,∴∠OCD=90°,∴OC⊥CD,∵點C在圓O上,OC為圓O的半徑,∴CD是圓O的切線;(2)在Rt△AED中,∵∠D=30°,AE=6,∴AD=2AE=12,在Rt△OCD中,∵∠D=30°,∴DO=2OC=DB+OB=DB+OC,∴DB=OB=OC=AD=4,DO=8,∴CD=∴S△OCD==8,∵∠D=30°,∠OCD=90°,∴∠DOC=60°,∴S扇形OBC=×π×OC2=,∵S陰影=S△COD﹣S扇形OBC∴S陰影=8﹣,∴陰影部分的面積為8﹣.23、(1)見解析;(2)【分析】(1)由垂徑定理可證AB⊥CD,由CD∥BF,得AB⊥BF,則BF是⊙O的切線;(2)連接BD,根據(jù)同弧所對圓周角相等得到∠BCD=∠BAD,再利用圓的性質(zhì)得到∠ADB=90°,tan∠BCD=tan∠BAD=,得到BD與AD的關系,再利用解直角三角形可以得到BD、AD與半徑的關系,進一步求解即可得到答案.【詳解】(1)證明:∵⊙O的直徑AB與弦CD相交于點E,且E為CD中點∴AB⊥CD,∠AED=90°∵CD//BF∴∠ABF=∠AED=9
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 職業(yè)理想 課件
- 2024年湖南省長沙市中考生物真題卷及答案解析
- 愛迪生課件兒童
- 西京學院《微電網(wǎng)技術及應用》2022-2023學年期末試卷
- 北師大小學數(shù)學六年級上《分數(shù)混合運算(三)》教程
- 中等職業(yè)學校教師教育教學水平能力測試成績單附件2
- 西京學院《電工電子學》2022-2023學年期末試卷
- 西華師范大學《中學歷史課程標準解讀與教材分析》2022-2023學年第一學期期末試卷
- 如何提高 課件
- 西華師范大學《計算思維》2021-2022學年期末試卷
- 建國集團財務制度匯總
- 安裝工程預算照明配管配線
- 區(qū)最新關于生活垃圾分類工作推進會上的講話稿
- 除塵器安裝專業(yè)監(jiān)理實施細則
- 任現(xiàn)職以來教學改革情況
- 八年級黃金矩形(數(shù)學活動)ppt課件
- 銷售技巧個頂尖電梯銷售技巧
- 工程施工管理協(xié)議書(共7頁)
- 《幼兒園衛(wèi)生保健后勤材料資料》幼兒園保健醫(yī)生每日檢查工作記錄表
- 換鋪長鋼軌施工方案(工機段版)
- 第二章算法與問題解決PPT課件
評論
0/150
提交評論