版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2022-2023學年九上數(shù)學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.如圖所示,拋物線的頂點為,與軸的交點在點和之間,以下結(jié)論:①;②;③;④.其中正確的是()A.①② B.③④ C.②③ D.①③2.若關于的一元二次方程有兩個相等的根,則的值為()A. B. C.或 D.或3.如圖,正比例函數(shù)的圖像與反比例函數(shù)的圖象相交于A、B兩點,其中點A的橫坐標為2,當時,x的取值范圍是()A.x<-2或x>2 B.x<-2或0<x<2C.-2<x<0或0<x<2 D.-2<x<0或x>24.如圖,正方形的邊長為4,點在的邊上,且,與關于所在的直線對稱,將按順時針方向繞點旋轉(zhuǎn)得到,連接,則線段的長為()A.4 B. C.5 D.65.如圖所示的幾何體的左視圖是()A. B. C. D.6.如圖,將△ABC繞點A逆時針旋轉(zhuǎn)一定角度,得到△ADE,若∠CAE=65°,∠E=70°,且AD⊥BC,∠BAC的度數(shù)為().A.60° B.75° C.85° D.90°7.如圖,AD是⊙O的直徑,以A為圓心,弦AB為半徑畫弧交⊙O于點C,連結(jié)BC交AD于點E,若DE=3,BC=8,則⊙O的半徑長為()A. B.5 C. D.8.拋物線的圖象先向右平移2個單位,再向下平移3個單位,所得圖象的函數(shù)解析式為,則b、c的值為A.b=2,c=﹣6 B.b=2,c=0 C.b=﹣6,c=8 D.b=﹣6,c=29.一元二次方程的根的情況是()A.有兩個相等的實數(shù)根 B.有兩個不相等的實數(shù)根C.沒有實數(shù)根 D.不能確定10.已知一個矩形的面積為24cm2,其長為ycm,寬為xcm,則y與x之間的函數(shù)關系的圖象大致是A. B. C. D.11.的相反數(shù)是()A. B.2 C. D.12.對于反比例函數(shù),下列說法不正確的是()A.圖像分布在第一、三象限 B.當時,隨的增大而減小C.圖像經(jīng)過點 D.若點都在圖像上,且,則二、填空題(每題4分,共24分)13.如圖,與中,,,,,AD的長為________.14.方程ax2+x+1=0有兩個不等的實數(shù)根,則a的取值范圍是________.15.已知關于x的分式方程有一個正數(shù)解,則k的取值范圍為________.16.用長的鐵絲做一個長方形框架,設長方形的長為,面積為,則關于的函數(shù)關系式為__________.17.關于的方程的一個根為2,則______.18.如圖,練習本中的橫格線都平行,且相鄰兩條橫格線間的距離都相等,同一條直線上的三個點A、B、C都在橫格線上.若線段AB=6cm,則線段BC=____cm.三、解答題(共78分)19.(8分)如圖1,在平面直角坐標系中,二次函數(shù)的圖象與軸交于兩點,點為拋物線的頂點,為線段中點.(1)求的值;(2)求證:;(3)以拋物線的頂點為圓心,為半徑作,點是圓上一動點,點為的中點(如圖2);①當面積最大時,求的長度;②若點為的中點,求點運動的路徑長.
20.(8分)如圖,以△ABC的邊AB為直徑畫⊙O,交AC于點D,半徑OE//BD,連接BE,DE,BD,設BE交AC于點F,若∠DEB=∠DBC.(1)求證:BC是⊙O的切線;(2)若BF=BC=2,求圖中陰影部分的面積.21.(8分)如圖,四邊形ABCD內(nèi)接于⊙O,∠1至∠6是六個不同位置的圓周角.(1)分別寫出與∠1、∠2相等的圓周角,并求∠1+∠2+∠3+∠4的值;(2)若∠1-∠2=∠3-∠4,求證:AC⊥BD.22.(10分)如圖,在△ABC中,邊BC與⊙A相切于點D,∠BAD=∠CAD.求證:AB=AC.23.(10分)如圖,是□ABCD的邊延長線上一點,連接,交于點.求證:△∽△CDF.24.(10分)如圖,在中,,,,P是BC上一動點,過P作AP的垂線交CD于E,將翻折得到,延長FP交AB于H,連結(jié)AE,PE交AC于G.(1)求證;(2)當時,求AE的長;(3)當時,求AG的長.25.(12分)圖1和圖2中的正方形ABCD和四邊形AEFG都是正方形.(1)如圖1,連接DE,BG,M為線段BG的中點,連接AM,探究AM與DE的數(shù)量關系和位置關系,并證明你的結(jié)論;(2)在圖1的基礎上,將正方形AEFG繞點A逆時針方向旋轉(zhuǎn)到圖2的位置,連結(jié)DE、BG,M為線段BG的中點,連結(jié)AM,探究AM與DE的數(shù)量關系和位置關系,并證明你的結(jié)論.26.某果園有100棵橙子樹,每一棵樹平均結(jié)600個橙子.現(xiàn)準備多種一些橙子樹以提高產(chǎn)量,但是如果多種樹,那么樹之間的距離和每一棵樹所接受的陽光就會減少.根據(jù)經(jīng)驗估計,每多種一棵樹,平均每棵樹就會少結(jié)5個橙子.(1)如果果園既要讓橙子的總產(chǎn)量達到60375個,又要確保每一棵橙子樹接受到的陽光照射盡量少受影響,那么應該多種多少棵橙子樹?(2)增種多少棵橙子樹,可以使果園橙子的總產(chǎn)量最多?最多為多少?
參考答案一、選擇題(每題4分,共48分)1、B【分析】根據(jù)二次函數(shù)的圖象可逐項判斷求解即可.【詳解】解:拋物線與x軸有兩個交點,
∴△>0,
∴b2?4ac>0,故①錯誤;
由于對稱軸為x=?1,
∴x=?3與x=1關于x=?1對稱,
∵x=?3,y<0,
∴x=1時,y=a+b+c<0,故②錯誤;
∵對稱軸為x=?=?1,
∴2a?b=0,故③正確;
∵頂點為B(?1,3),
∴y=a?b+c=3,
∴y=a?2a+c=3,
即c?a=3,故④正確,
故選B.【點睛】本題考查拋物線的圖象與性質(zhì),解題的關鍵是熟練運用拋物線的圖象與性質(zhì),本題屬于中等題型.2、B【分析】把化為一元二次方程的一般形式,根據(jù)一元二次方程的判別式列方程求出b值即可.【詳解】∵,∴x2+(b-1)x=0,∵一元二次方程有兩個相等的根,∴(b-1)2-4×1×0=0,解得:b=1,故選:B.【點睛】本題考查一元二次方程根的判別式,對于一元二次方程ax2+bx+c=0(a≠0),根的判別式△=b2-4ac,當△>0時,方程有兩個不相等的實數(shù)根;當△=0時,方程有兩個相等的實數(shù)根;當△<0時,方程沒有實數(shù)根.熟練掌握一元二次方程根的判別式是解題關鍵.3、D【分析】先根據(jù)反比例函數(shù)與正比例函數(shù)的性質(zhì)求出B點坐標,再由函數(shù)圖象即可得出結(jié)論.【詳解】解:∵反比例函數(shù)與正比例函數(shù)的圖象均關于原點對稱,
∴A、B兩點關于原點對稱,
∵點A的橫坐標為1,∴點B的橫坐標為-1,
∵由函數(shù)圖象可知,當-1<x<0或x>1時函數(shù)y1=k1x的圖象在的上方,
∴當y1>y1時,x的取值范圍是-1<x<0或x>1.
故選:D.【點睛】本題考查的是反比例函數(shù)與一次函數(shù)的交點問題,能根據(jù)數(shù)形結(jié)合求出y1>y1時x的取值范圍是解答此題的關鍵.4、C【分析】如圖,連接BE,根據(jù)軸對稱的性質(zhì)得到AF=AD,∠EAD=∠EAF,根據(jù)旋轉(zhuǎn)的性質(zhì)得到AG=AE,∠GAB=∠EAD.求得∠GAB=∠EAF,根據(jù)全等三角形的性質(zhì)得到FG=BE,根據(jù)正方形的性質(zhì)得到BC=CD=AB=1.根據(jù)勾股定理即可得到結(jié)論.【詳解】解:如圖,連接BE,∵△AFE與△ADE關于AE所在的直線對稱,∴AF=AD,∠EAD=∠EAF,∵△ADE按順時針方向繞點A旋轉(zhuǎn)90°得到△ABG,∴AG=AE,∠GAB=∠EAD.∴∠GAB=∠EAF,∴∠GAB+∠BAF=∠BAF+∠EAF.∴∠GAF=∠EAB.∴△GAF≌△EAB(SAS).∴FG=BE,∵四邊形ABCD是正方形,∴BC=CD=AB=1.∵DE=1,∴CE=2.∴在Rt△BCE中,BE=,∴FG=5,故選:C.【點睛】本題考查了正方形的性質(zhì),勾股定理,全等三角形的判定與性質(zhì)以及旋轉(zhuǎn)的性質(zhì):對應點到旋轉(zhuǎn)中心的距離相等;對應點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等.5、D【分析】根據(jù)左視圖是從左邊看得到的圖形,可得答案.【詳解】從左邊看一個正方形被分成兩部分,正方形中間有一條橫向的虛線,如圖:故選:D.【點睛】本題考查了幾何體的三視圖,從左邊看得到的是左視圖.6、C【解析】試題分析:根據(jù)旋轉(zhuǎn)的性質(zhì)知,∠EAC=∠BAD=65°,∠C=∠E=70°.如圖,設AD⊥BC于點F.則∠AFB=90°,∴在Rt△ABF中,∠B=90°-∠BAD=25°,∴在△ABC中,∠BAC=180°-∠B-∠C=180°-25°-70°=85°,即∠BAC的度數(shù)為85°.故選C.考點:旋轉(zhuǎn)的性質(zhì).7、A【分析】由作法得,根據(jù)圓周角定理得到∠ADB=∠ABE,再根據(jù)垂徑定理的推論得到AD⊥BC,BE=CE=BC=4,于是可判斷Rt△ABE∽Rt△BDE,然后利用相似比求出AE,從而得到圓的直徑和半徑.【詳解】解:由作法得AC=AB,∴,∴∠ADB=∠ABE,∵AB為直徑,∴AD⊥BC,∴BE=CE=BC=4,∠BEA=∠BED=90°,而∠BDE=∠ABE,∴Rt△ABE∽Rt△BDE,∴BE:DE=AE:BE,即4:3=AE:4,∴AE=,∴AD=AE+DE=+3=,∴⊙O的半徑長為.故選:A.【點睛】本題考查了相似三角形的判定與性質(zhì):在判定兩個三角形相似時,應注意利用圖形中已有的公共角、公共邊等隱含條件,以充分發(fā)揮基本圖形的作用,尋找相似三角形的一般方法是通過作平行線構(gòu)造相似三角形,靈活運用相似三角形的性質(zhì)表示線段之間的關系.也考查了圓周角定理.8、B【詳解】函數(shù)的頂點坐標為(1,﹣4),∵函數(shù)的圖象由的圖象向右平移2個單位,再向下平移3個單位得到,∴1﹣2=﹣1,﹣4+3=﹣1,即平移前的拋物線的頂點坐標為(﹣1,﹣1).∴平移前的拋物線為,即y=x2+2x.∴b=2,c=1.故選B.9、B【分析】根據(jù)根的判別式(),求該方程的判別式,根據(jù)結(jié)果的正負情況即可得到答案.【詳解】解:根據(jù)題意得:△=22-4×1×(-1)
=4+4
=8>0,即該方程有兩個不相等的實數(shù)根,
故選:B.【點睛】本題考查了根的判別式.一元二次方程ax2+bx+c=0(a≠0)的根與△=b2-4ac有如下關系:當△>0時,方程有兩個不相等的實數(shù)根;當△=0時,方程有兩個相等的實數(shù)根;當△<0時,方程無實數(shù)根.10、D【詳解】根據(jù)題意有:xy=24;且根據(jù)x,y實際意義x、y應大于0,其圖象在第一象限.故選D.11、B【分析】根據(jù)相反數(shù)的性質(zhì)可得結(jié)果.【詳解】因為-2+2=0,所以﹣2的相反數(shù)是2,故選B.【點睛】本題考查求相反數(shù),熟記相反數(shù)的性質(zhì)是解題的關鍵.12、D【分析】根據(jù)反比例函數(shù)圖象的性質(zhì)對各選項分析判斷后即可求解.【詳解】解:A、k=8>0,∴它的圖象在第一、三象限,故本選項正確,不符合題意;B、k=8>0,當x>0時,y隨x的增大而減小,故本選項正確,不符合題意;C、∵,∴點(-4,-2)在它的圖象上,故本選項正確,不符合題意;D、點A(x1,y1)、B(x2、y2)都在反比例函數(shù)的圖象上,若x1<x2<0,則y1>y2,故本選項錯誤,符合題意.故選D.【點睛】本題考查了反比例函數(shù)的性質(zhì),對于反比例函數(shù),(1)k>0,反比例函數(shù)圖象在一、三象限,在每一個象限內(nèi),y隨x的增大而減小;(2)k<0,反比例函數(shù)圖象在第二、四象限內(nèi),在每一個象限內(nèi),y隨x的增大而增大.二、填空題(每題4分,共24分)13、【分析】先證明△ABC∽△ADB,然后根據(jù)相似三角形的判定與性質(zhì)列式求解即可.【詳解】∵,,∴△ABC∽△ADB,∴,∵,,∴,∴AD=.故答案為:.【點睛】本題考查了相似三角形的判定與性質(zhì):在判定兩個三角形相似時,應注意利用圖形中已有的公共角、公共邊等隱含條件,以充分發(fā)揮基本圖形的作用,尋找相似三角形的一般方法是通過作平行線構(gòu)造相似三角形.靈活運用相似三角形的性質(zhì)進行幾何計算.14、且a≠0【解析】∵方程有兩個不等的實數(shù)根,∴,解得且.15、k<6且k≠1【解析】分析:根據(jù)解分式方程的步驟,可得分式方程的解,根據(jù)分式方程的解是正數(shù),可得不等式,解不等式,可得答案,并注意分母不分零.詳解:,方程兩邊都乘以(x-1),得x=2(x-1)+k,解得x=6-k≠1,關于x的方程程有一個正數(shù)解,∴x=6-k>0,k<6,且k≠1,∴k的取值范圍是k<6且k≠1.故答案為k<6且k≠1.點睛:本題主要考查了解分式方程、分式方程的解、一元一次不等式等知識,能根據(jù)已知和方程的解得出k的范圍是解此題的關鍵.16、或【分析】易得矩形另一邊長為周長的一半減去已知邊長,那么矩形的面積等于相鄰兩邊長的積.【詳解】由題意得:矩形的另一邊長=24÷2?x=12?x,則y=x(12?x)=?x2+12x.故答案為或【點睛】本題考查了二次函數(shù)的應用,掌握矩形周長與面積的關系是解題的關鍵.17、1【分析】方程的根即方程的解,就是能使方程兩邊相等的未知數(shù)的值,利用方程解的定義就可以得到關于k的方程,從而求得k的值.【詳解】把x=2代入方程得:4k?2?2=0,解得k=1故答案為:1.【點睛】本題主要考查了方程的根的定義,是一個基礎的題目.18、18【分析】根據(jù)已知圖形構(gòu)造相似三角形,進而得出,即可求得答案.【詳解】如圖所示:過點A作平行線的垂線,交點分別為D、E,可得:,∴,即,解得:,∴,故答案為:.【點睛】本題主要考查了相似三角形的應用,根據(jù)題意得出是解答本題的關鍵.三、解答題(共78分)19、(1),;(2)證明見解析;(3)①或;②.【分析】(1)將代入二次函數(shù)的解析式即可求解;(2)證得是等邊三角形即可證得結(jié)論;(3)①根據(jù)題意,當或時,或面積最大,利用三角形中位線定理可求得的長,利用勾股定理可求得,即可求得答案;②根據(jù)點M的運動軌跡是半徑為2的,則的中點的運動軌跡也是圓,同樣,的中點的運動軌跡也是圓,據(jù)此即可求得答案.【詳解】∵二次函數(shù)的圖象與軸交于兩點,∴,解得:,故答案為:,;(2)由(1)得:拋物線的解析式為,∵二次函數(shù)的圖象與軸交于兩點,∴拋物線的對稱軸為:,∴頂點的坐標為:,,∵,,∴,∴是等邊三角形,∵為線段中點,∴;(3)①∵為定值,當時,面積最大,如圖,由(2)得,,,∴∥,∵點為線段中點,點為的中點,∴∥,,∴三點共線,在Rt中,,,∴,∴;同理,當時,面積最大,同理可求得:;故答案為:或;②如圖,∵點E的運動軌跡是,半徑為,∴的中點的運動軌跡也是圓,半徑為1,∴的中點M的運動軌跡也是圓,半徑為,∴點M運動的路徑長為:.故答案為:.【點睛】主要考查了二次函數(shù)的綜合,二次函數(shù)的解析式的求法和與幾何圖形結(jié)合的綜合能力的培養(yǎng).要會利用數(shù)形結(jié)合的思想把代數(shù)和幾何圖形結(jié)合起來,利用點的坐標的意義表示線段的長度,從而求出線段之間的關系.20、(1)證明見解析;(2).【分析】(1)求出∠ADB的度數(shù),求出∠ABD+∠DBC=90,根據(jù)切線判定推出即可;(2)連接OD,分別求出三角形DOB面積和扇形DOB面積,即可求出答案.【詳解】(1)是的直徑,,,,,,,是的切線;(2)連接,,且,,,,,,,,,的半徑為,陰影部分的面積扇形的面積三角形的面積.【點睛】本題考查了切線判定的定理和三角形及扇形面積的計算方法,熟練掌握該知識點是本題解題的關鍵.21、(1)∠6=∠1,∠5=∠2,1°;(2)詳見解析【分析】(1)根據(jù)圓的性質(zhì)可得出與∠1、∠2相等的圓周角,然后計算∠1+∠2+∠3+∠4可得;(2)先得出∠1+∠4=90°,從而得出∠6+∠4=90°,從而證垂直.【詳解】(1)∵∠1和∠6所對應的圓弧相同,∴∠1=∠6同理,∠2=∠∠5∵∠1=∠6,∠2=∠5∴∠1+∠2+∠3+∠4=∠6+∠5+∠3+∠4=1°;(2)∵∠1-∠2=∠3-∠4∴∠1+∠4=∠2+∠3∵∠1+∠2+∠3+∠4=1°∴∠1+∠4=∠2+∠3=90°∵∠1=∠6∴∠6+∠4=90°∴AC⊥BD.【點睛】本題考查圓周角的特點,同弧或等弧所對應的圓周角相等,解題關鍵是得出∠1+∠2+∠3+∠4=1.22、見解析.【分析】根據(jù)切線的性質(zhì)和全等三角形的判定和性質(zhì)定理即可得到結(jié)論.【詳解】解:∵BC與⊙A相切于點D,∴AD⊥BC,∴∠ADB=∠ADC=90°,∵∠BAD=∠CAD,AD=AD,∴△ABD≌△ACD(ASA),∴AB=AC.【點睛】本題考查的知識點是切線的性質(zhì)和全等三角形的判定和性質(zhì)定理,易于理解掌握.23、詳見解析【分析】利用平行四邊形的性質(zhì)即可證明.【詳解】證明:∵四邊形ABCD是平行四邊形,∴∠∠,∥,∴∠∠.∴△∽△【點睛】本題主要考查相似三角形的判定,掌握平行四邊形的性質(zhì)是解題的關鍵.24、(1)見解析;(2);(3)【分析】(1)先證明P、C、F共線,由余角的性質(zhì)可證,根據(jù)等角對等邊證明,再由余角的性質(zhì)證明和等角對等邊證明,結(jié)論可證;(2)過A作于M,由勾股定理可求BC=4,然后求出MP的長,再由勾股定理求出AP的長,由是等腰直角三角形可求出AE的長;(3)通過證明,可得,由外角的性質(zhì)可求出∠PAF=F=22.5°,再根據(jù)角的和差和三角形內(nèi)角和定理證明,然后求出,然后通過證明,利用相似三角形的對應邊成比例即可求解.【詳解】(1)∵四邊形ABCD是平行四邊形,,∴,∴,又∵,∴,,故F在AC的延長線上.又,,而,∴,而,∴,∴,又,,∴,∴,∴,(2)過A作于M,∵,,∴BC=4,∴,,又∵,∴BP=3,CP=,∴,∴,由(1)知AP=AE,∴是等腰直角三角形,∴;(3)由,且得,∴,∴,∴,∴,∴,∵,∴,而∴,∴,∴,∴,∴.【點睛】本題考查了平行四邊形的性質(zhì),余角的性質(zhì),等腰三角形的判定與性質(zhì),三角形外角的性質(zhì),勾股定理,以及相似三角形的判定與性質(zhì),熟練掌握相似三角形的判定與性質(zhì)是解答本題的關鍵.25、(1)AM=DE,AM⊥DE,理由詳見解析;(2)AM=DE,AM⊥DE,理由詳見解析.【解析】試題分析:(1)AM=DE,AM⊥DE,理由是:先證明△DAE≌△BAG,得DE=BG,∠AED=∠AGB,再根據(jù)直角三角形斜邊的中線的性質(zhì)得AM=BG,AM=BM,則AM=DE,由角的關系得∠MAB+∠AED=90°,所以∠AOE=90°,即AM⊥DE;(2)AM=DE,AM⊥DE,理由是:作輔助線構(gòu)建全等三角形,證明△MNG≌△MAB和△AGN
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 22180-2024速凍裹衣魚
- 利用大數(shù)據(jù)分析預測消費趨勢
- 高一化學教案:專題第一單元第二課時化學反應速率與可逆反應
- 2024高中化學第二章化學反應速率和化學平衡第三章第3課時化學平衡常數(shù)達標訓練含解析新人教版選修4
- 2024高中地理課時作業(yè)2地理信息技術(shù)在區(qū)域地理環(huán)境研究中的應用含解析新人教版必修3
- 2024高中生物第五章生態(tài)系統(tǒng)及其穩(wěn)定性第2節(jié)生態(tài)系統(tǒng)的能量流動訓練含解析新人教版必修3
- 2024高中語文第二課千言萬語總關“音”第4節(jié)聲情并茂-押韻和平仄練習含解析新人教版選修語言文字應用
- DB42-T 2352-2024 道路瀝青紅外光譜法快速識別技術(shù)規(guī)程
- 《豆角趣事》幼兒園班本課程課件
- (2篇)2024 年幼兒園保健工作總結(jié)
- 學校2025年寒假特色實踐作業(yè)綜合實踐暨跨學科作業(yè)設計活動方案
- 2024數(shù)據(jù)資源采購及運營管理合同3篇
- 人教版小學數(shù)學一年級上冊20以內(nèi)加減混合口算練習題全套
- 兒童青少年行為和情緒障礙的護理
- 自升式塔式起重機安裝與拆卸施工方案
- 山東省技能大賽青島選拔賽-世賽選拔項目20樣題(數(shù)字建造)
- 人居環(huán)境整治合同書
- 2025屆上海市徐匯、松江、金山區(qū)高一物理第一學期期末學業(yè)水平測試試題含解析
- 幼兒園意識形態(tài)風險點排查報告
- 腔鏡下腹股溝區(qū)解剖課件
- 實驗室清潔、消毒記錄登記表
評論
0/150
提交評論