版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.將兩個圓形紙片(半徑都為1)如圖重疊水平放置,向該區(qū)域隨機投擲骰子,則骰子落在重疊區(qū)域(陰影部分)的概率大約為()A. B. C. D.2.下列四個圖案中,不是軸對稱圖案的是()A. B.C. D.3.若關(guān)于的一元二次方程有兩個不相等的實數(shù)根,則的取值范圍()A.且 B. C. D.4.要組織一次排球邀請賽,參賽的每個隊之間都要比賽一場,根據(jù)場地和時間等條件,賽程計劃7天,每天安排4場比賽.設(shè)比賽組織者應(yīng)邀請個隊參賽,則滿足的關(guān)系式為()A. B. C. D.5.將拋物線向左平移3個單位長度,再向上平移5個單位長度,得到的拋物線的表達式為()A. B.C. D.6.一元二次方程x2﹣2x﹣1=0的根是()A.x1=1,x2=2 B.x1=﹣1,x2=﹣2C.x1=1+,x2=1﹣ D.x1=1+,x2=1﹣7.如圖是二次函數(shù)y=ax2+bx+c的圖象,其對稱軸為x=1,下列結(jié)論:①abc>0;②2a+b=0;③4a+2b+c<0;④若(-32,y1),(103,y2)是拋物線上兩點,則y1<y2A.①② B.②③ C.②④ D.①③④8.矩形、菱形、正方形都具有的性質(zhì)是()A.對角線相等 B.對角線互相平分 C.對角線互相垂直 D.對角線互相平分且相等9.一個鐵制零件(正方體中間挖去一個圓柱形孔)如圖放置,它的左視圖是()A.B.C.D.10.在△ABC中,∠C=90°,tanA=,那么sinA的值是()A. B. C. D.11.如圖,已知圓錐側(cè)面展開圖的扇形面積為65cm2,扇形的弧長為10cm,則圓錐母線長是()A.5cm B.10cm C.12cm D.13cm12.現(xiàn)有兩個不透明的袋子,一個裝有2個紅球、1個白球,另一個裝有1個黃球、2個紅球,這些球除顏色外完全相同從兩個袋子中各隨機摸出1個球,摸出的兩個球顏色相同的概率是()A. B. C. D.二、填空題(每題4分,共24分)13.如圖,AB為的直徑,弦CD⊥AB于點E,點F在圓上,且=,BE=2,CD=8,CF交AB于點G,則弦CF的長度為__________,AG的長為____________.14.如圖,四邊形OABC是矩形,ADEF是正方形,點A、D在x軸的正半軸上,點C在y軸的正半軸上,點F在AB上,點B、E在反比例函數(shù)的圖像上,OA=1,OC=6,則正方形ADEF的邊長為.15.若點A(﹣4,y1)、B(﹣2,y2)、C(2,y3)都在反比例函數(shù)的圖象上,則y1、y2、y3的大小關(guān)系是_________.16.如圖所示,某建筑物有一拋物線形的大門,小明想知道這道門的高度,他先測出門的寬度,然后用一根長為的小竹竿豎直的接觸地面和門的內(nèi)壁,并測得,則門高為__________.17.已知兩個相似三角形對應(yīng)中線的比為,它們的周長之差為,則較大的三角形的周長為__________.18.若方程(a-3)x|a|-1+2x-8=0是關(guān)于x的一元二次方程,則a的值是_____.三、解答題(共78分)19.(8分)拋物線L:y=﹣x2+bx+c經(jīng)過點A(0,1),與它的對稱軸直線x=1交于點B(1)直接寫出拋物線L的解析式;(2)如圖1,過定點的直線y=kx﹣k+4(k<0)與拋物線L交于點M、N,若△BMN的面積等于1,求k的值;(3)如圖2,將拋物線L向上平移m(m>0)個單位長度得到拋物線L1,拋物線L1與y軸交于點C,過點C作y軸的垂線交拋物線L1于另一點D、F為拋物線L1的對稱軸與x軸的交點,P為線段OC上一點.若△PCD與△POF相似,并且符合條件的點P恰有2個,求m的值及相應(yīng)點P的坐標.20.(8分)如圖,在矩形ABCD中,E是邊CD的中點,點M是邊AD上一點(與點A,D不重合),射線ME與BC的延長線交于點N.(1)求證:△MDE≌△NCE;(2)過點E作EF//CB交BM于點F,當MB=MN時,求證:AM=EF.21.(8分)某網(wǎng)店打出促銷廣告:最潮新款服裝30件,每件售價300元,若一次性購買不超過10件時,售價不變;若一次性購買超過10件時,每多買2件,所買的每件服裝的售價均降低6元.已知該服裝成本是每件200元.設(shè)顧客一次性購買服裝x件時,該網(wǎng)店從中獲利y元.(1)求y與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.(2)顧客一次性購買多少件時,該網(wǎng)店從中獲利最多,并求出獲利的最大值?22.(10分)如圖,在△ABC中,點D在BC上,CD=CA,CF平分∠ACB,AE=EB,求證:EF=BD23.(10分)邊長為2的正方形在平面直角坐標系中的位置如圖所示,點是邊的中點,連接,點在第一象限,且,.以直線為對稱軸的拋物線過,兩點.(1)求拋物線的解析式;(2)點從點出發(fā),沿射線每秒1個單位長度的速度運動,運動時間為秒.過點作于點,當為何值時,以點,,為頂點的三角形與相似?(3)點為直線上一動點,點為拋物線上一動點,是否存在點,,使得以點,,,為頂點的四邊形是平行四邊形?若存在,請直接寫出滿足條件的點的坐標;若不存在,請說明理由.24.(10分)已知拋物線y=x2﹣2x﹣3與x軸交于點A、B,與y軸交于點C,點D為OC中點,點P在拋物線上.(1)直接寫出A、B、C、D坐標;(2)點P在第四象限,過點P作PE⊥x軸,垂足為E,PE交BC、BD于G、H,是否存在這樣的點P,使PG=GH=HE?若存在,求出點P坐標;若不存在,請說明理由.(3)若直線y=x+t與拋物線y=x2﹣2x﹣3在x軸下方有兩個交點,直接寫出t的取值范圍.25.(12分)如圖,△ABC的高AD與中線BE相交于點F,過點C作BE的平行線、過點F作AB的平行線,兩平行線相交于點G,連接BG.(1)若AE=2.5,CD=3,BD=2,求AB的長;(2)若∠CBE=30°,求證:CG=AD+EF.26.如圖,在平面直角坐標系中,菱形ABCD的頂點C與原點O重合,點B在y軸的正半軸上,點A在函數(shù)y=(k>0,x>0)的圖象上,點D的坐標為(4,3).(1)求k的值;(2)若將菱形ABCD沿x軸正方向平移,當菱形的頂點D落在函數(shù)y=(k>0,x>0)的圖象上時,求菱形ABCD沿x軸正方向平移的距離.
參考答案一、選擇題(每題4分,共48分)1、B【解析】連接AO1,AO2,O1O2,BO1,推出△AO1O2是等邊三角形,求得∠AO1B=120°,得到陰影部分的面積=-,得到空白部分的面積=+,于是得到結(jié)論.【詳解】解:連接AO1,AO2,O1O2,BO1,則O1O2垂直平分AB
∴AO1=AO2=O1O2=BO1=1,
∴△AO1O2是等邊三角形,
∴∠AO1O2=60°,AB=2AO1sin60°=
∴∠AO1B=120°,∴陰影部分的面積=2×()=-,
∴空白部分和陰影部分的面積和=2π-(-)=+,
∴骰子落在重疊區(qū)域(陰影部分)的概率大約為≈,
故選B.【點睛】此題考查了幾何概率,扇形的面積,三角形的面積,正確的作出輔助線是解題的關(guān)鍵.2、B【分析】根據(jù)軸對稱圖形的定義逐項判斷即得答案.【詳解】解:A、是軸對稱圖案,故本選項不符合題意;B、不是軸對稱圖案,故本選項符合題意;C、是軸對稱圖案,故本選項不符合題意;D、是軸對稱圖案,故本選項不符合題意.故選:B.【點睛】本題考查了軸對稱圖形的定義,屬于應(yīng)知應(yīng)會題型,熟知概念是關(guān)鍵.3、A【分析】根據(jù)題意可得k滿足兩個條件,一是此方程是一元二次方程,所以二次項系數(shù)k不等于0,二是方程有兩個不相等的實數(shù)根,所以b2-4ac>0,根據(jù)這兩點列式求解即可.【詳解】解:根據(jù)題意得,k≠0,且(-6)2-36k>0,解得,且.故選:A.【點睛】本題考查一元二次方程的定義及利用一元二次方程根的情況確定字母系數(shù)的取值范圍,根據(jù)需滿足定義及根的情況列式求解是解答此題的重要思路.4、A【分析】根據(jù)應(yīng)用題的題目條件建立方程即可.【詳解】解:由題可得:即:故答案是:A.【點睛】本題主要考察一元二次方程的應(yīng)用題,正確理解題意是解題的關(guān)鍵.5、A【分析】易得新拋物線的頂點,根據(jù)頂點式及平移前后二次項的系數(shù)不變可得新拋物線的解析式.【詳解】原拋物線的頂點為(0,0),向左平移3個單位,再向上平移1個單位,那么新拋物線的頂點為(?3,1);可設(shè)新拋物線的解析式為y=?4(x?h)2+k,代入得:y=?4(x+3)2+1.故選:A.【點睛】本題主要考查的是函數(shù)圖象的平移,根據(jù)平移規(guī)律“左加右減,上加下減”利用頂點的變化確定圖形的變化是解題的關(guān)鍵.6、C【分析】利用一元二次方程的公式法求解可得.【詳解】解:∵a=1,b=﹣2,c=﹣1,∴△=(﹣2)2﹣4×1×(﹣1)=8>0,則x==1±,即x1=1+,x2=1﹣,故選:C.【點睛】本題考查了一元二次方程的解法,根據(jù)一元二次方程的特征,靈活選擇解法是解題的關(guān)鍵.7、C【解析】試題分析:根據(jù)題意可得:a<0,b>0,c>0,則abc<0,則①錯誤;根據(jù)對稱軸為x=1可得:-b2a=1,則-b=2a,即2a+b=0,則②正確;根據(jù)函數(shù)的軸對稱可得:當x=2時,y>0,即4a+2b+c>0,則③錯誤;對于開口向下的函數(shù),離對稱軸越近則函數(shù)值越大,則點睛:本題主要考查的就是二次函數(shù)的性質(zhì),屬于中等題.如果開口向上,則a>0,如果開口向下,則a<0;如果對稱軸在y軸左邊,則b的符號與a相同,如果對稱軸在y軸右邊,則b的符號與a相反;如果題目中出現(xiàn)2a+b和2a-b的時候,我們要看對稱軸與1或者-1的大小關(guān)系再進行判定;如果出現(xiàn)a+b+c,則看x=1時y的值;如果出現(xiàn)a-b+c,則看x=-1時y的值;如果出現(xiàn)4a+2b+c,則看x=2時y的值,以此類推;對于開口向上的函數(shù),離對稱軸越遠則函數(shù)值越大,對于開口向下的函數(shù),離對稱軸越近則函數(shù)值越大.8、B【分析】矩形、菱形、正方形都是特殊的平行四邊形,因而平行四邊形的性質(zhì)就是四個圖形都具有的性質(zhì).【詳解】解:平行四邊形的對角線互相平分,而對角線相等、平分一組對角、互相垂直不一定成立.
故平行四邊形、矩形、菱形、正方形都具有的性質(zhì)是:對角線互相平分.
故選:B.【點睛】本題主要考查了正方形、矩形、菱形、平行四邊形的性質(zhì),理解四個圖形之間的關(guān)系是解題關(guān)鍵.9、C【解析】試題解析:從左邊看一個正方形被分成三部分,兩條分式是虛線,故C正確;故選C.考點:簡單幾何體的三視圖.10、C【分析】根據(jù)正切函數(shù)的定義,可得BC,AC的關(guān)系,根據(jù)勾股定理,可得AB的長,根據(jù)正弦函數(shù)的定義,可得答案.【詳解】tanA==,BC=x,AC=3x,由勾股定理,得AB=x,sinA==,故選:C.【點睛】本題考查了同角三角函數(shù)的關(guān)系,利用正切函數(shù)的定義得出BC=x,AC=3x是解題關(guān)鍵.11、D【解析】∴選D12、C【分析】根據(jù)列表法列出所有的可能情況,從中找出兩個球顏色相同的結(jié)果數(shù),再利用概率的公式計算即可得到答案.【詳解】解:列表如圖所示:由表可知,共有9種等可能結(jié)果,其中摸出的兩個球顏色相同的有4種結(jié)果所以摸出兩個球顏色相同的概率是故選:C.【點睛】本題考查的是列表法與樹狀圖的知識,解題的關(guān)鍵是能夠用列表或者樹狀圖將所有等可能結(jié)果列舉出來.二、填空題(每題4分,共24分)13、;【分析】如圖(見解析),連接CO、DO,并延長DO交CF于H,由垂徑定理可知CE,在中,可以求出半徑CO的長;又由=和垂徑定理得,根據(jù)圓周角定理可得,從而可知,在中可求出FG,也就可求得CF的長度;在中利用勾股定理求出DH,再求出,同樣地,在中利用余弦函數(shù)求出OG,從而可求得.【詳解】,,,(垂徑定理)連接,設(shè),則在中,解得,連接DO并延長交CF于H=,由垂徑定理可知,是所對圓周角,是所對圓心角,且=2,,由勾股定理得:,.【點睛】本題考查了垂徑定理、圓周角定理、直角三角形中的余弦三角函數(shù),通過構(gòu)造輔助線,利用垂徑定理和圓周角定理是解題關(guān)鍵.14、2【解析】試題分析:由OA=1,OC=6,可得矩形OABC的面積為6;再根據(jù)反比例函數(shù)系數(shù)k的幾何意義,可知k=6,∴反比例函數(shù)的解析式為;設(shè)正方形ADEF的邊長為a,則點E的坐標為(a+1,a),∵點E在拋物線上,∴,整理得,解得或(舍去),故正方形ADEF的邊長是2.考點:反比例函數(shù)系數(shù)k的幾何意義.15、y2>y1>y1【分析】根據(jù)反比例函數(shù)的圖象和性質(zhì),即可得到答案.【詳解】∵反比例函數(shù)的比例系數(shù)k<0,∴在每一個象限內(nèi),y隨x的增大而增大,∵點A(﹣4,y1)、B(﹣2,y2)、C(2,y1)都在反比例函數(shù)的圖象上,∴y2>y1>0,y1<0,∴y2>y1>y1.故答案是:y2>y1>y1.【點睛】本題主要考查反比例函數(shù)的圖象和性質(zhì),掌握反比例函數(shù)的增減性,是解題的關(guān)鍵.16、【分析】根據(jù)題意分別求出A,B,D三點的坐標,利用待定系數(shù)法求出拋物線的表達式,從而找到頂點,即可找到OE的高度.【詳解】根據(jù)題意有∴設(shè)拋物線的表達式為將A,B,D代入得解得∴當時,故答案為:.【點睛】本題主要考查二次函數(shù)的最大值,掌握待定系數(shù)法是解題的關(guān)鍵.17、15【分析】利用相似三角形對應(yīng)中線的比可得出對應(yīng)周長的比,根據(jù)周長之差為10即可得答案.【詳解】設(shè)較小的三角形的周長為x,∵兩個相似三角形對應(yīng)中線的比為1:3,∴兩個相似三角形對應(yīng)周長的比為1:3,∴較大的三角形的周長為3x,∵它們的周長之差為10,∴3x-x=10,解得:x=5,∴3x=15,故答案為:15【點睛】本題考查相似三角形的性質(zhì),相似三角形對應(yīng)中線、高、周長的邊都等于相似比;面積比等于相似比的平方.18、-3【分析】根據(jù)一元二次方程的定義列方程求出a的值即可.【詳解】∵方程(a-3)x|a|-1+2x-8=0是關(guān)于x的一元二次方程,∴-1=2,且a-3≠0,解得:a=-3,故答案為:-3【點睛】本題考查一元二次方程的定義,只含有一個未知數(shù),并且未知數(shù)的最高次數(shù)是2的方程,叫做一元二次方程;一般形式為ax2+bx+c=0(a≠0),熟練掌握定義是解題關(guān)鍵,注意a≠0的隱含條件,不要漏解.三、解答題(共78分)19、(1)y=﹣x2+2x+1;(2)-3;(3)當m=2﹣1時,點P的坐標為(0,)和(0,);當m=2時,點P的坐標為(0,1)和(0,2).【解析】(1)根據(jù)對稱軸為直線x=1且拋物線過點A(0,1)利用待定系數(shù)法進行求解可即得;(2)根據(jù)直線y=kx﹣k+4=k(x﹣1)+4知直線所過定點G坐標為(1,4),從而得出BG=2,由S△BMN=S△BNG﹣S△BMG=BG?xN﹣BG?xM=1得出xN﹣xM=1,聯(lián)立直線和拋物線解析式求得x=,根據(jù)xN﹣xM=1列出關(guān)于k的方程,解之可得;(3)設(shè)拋物線L1的解析式為y=﹣x2+2x+1+m,知C(0,1+m)、D(2,1+m)、F(1,0),再設(shè)P(0,t),分△PCD∽△POF和△PCD∽△POF兩種情況,由對應(yīng)邊成比例得出關(guān)于t與m的方程,利用符合條件的點P恰有2個,結(jié)合方程的解的情況求解可得.【詳解】(1)由題意知,解得:,∴拋物線L的解析式為y=﹣x2+2x+1;(2)如圖1,設(shè)M點的橫坐標為xM,N點的橫坐標為xN,∵y=kx﹣k+4=k(x﹣1)+4,∴當x=1時,y=4,即該直線所過定點G坐標為(1,4),∵y=﹣x2+2x+1=﹣(x﹣1)2+2,∴點B(1,2),則BG=2,∵S△BMN=1,即S△BNG﹣S△BMG=BG?(xN﹣1)-BG?(xM-1)=1,∴xN﹣xM=1,由得:x2+(k﹣2)x﹣k+3=0,解得:x==,則xN=、xM=,由xN﹣xM=1得=1,∴k=±3,∵k<0,∴k=﹣3;(3)如圖2,設(shè)拋物線L1的解析式為y=﹣x2+2x+1+m,∴C(0,1+m)、D(2,1+m)、F(1,0),設(shè)P(0,t),(a)當△PCD∽△FOP時,,∴,∴t2﹣(1+m)t+2=0①;(b)當△PCD∽△POF時,,∴,∴t=(m+1)②;(Ⅰ)當方程①有兩個相等實數(shù)根時,△=(1+m)2﹣8=0,解得:m=2﹣1(負值舍去),此時方程①有兩個相等實數(shù)根t1=t2=,方程②有一個實數(shù)根t=,∴m=2﹣1,此時點P的坐標為(0,)和(0,);(Ⅱ)當方程①有兩個不相等的實數(shù)根時,把②代入①,得:(m+1)2﹣(m+1)+2=0,解得:m=2(負值舍去),此時,方程①有兩個不相等的實數(shù)根t1=1、t2=2,方程②有一個實數(shù)根t=1,∴m=2,此時點P的坐標為(0,1)和(0,2);綜上,當m=2﹣1時,點P的坐標為(0,)和(0,);當m=2時,點P的坐標為(0,1)和(0,2).【點睛】本題主要考查二次函數(shù)的應(yīng)用,涉及到待定系數(shù)法求函數(shù)解析式、割補法求三角形的面積、相似三角形的判定與性質(zhì)等,(2)小題中根據(jù)三角形BMN的面積求得點N與點M的橫坐標之差是解題的關(guān)鍵;(3)小題中運用分類討論思想進行求解是關(guān)鍵.20、(1)見解析;(2)見解析.【分析】(1)由平行線的性質(zhì)得出∠DME=∠CNE,∠MDE=∠ECN,可證明△MDE≌△NCE(AAS);(2)過點M作MG⊥BN于點G,由等腰三角形的性質(zhì)得出BG=BN=BN,由中位線定理得出EF=BN,則可得出結(jié)論.【詳解】解:(1)證明:∵四邊形ABCD為矩形,∴AD//BC,∴∠DME=∠CNE,∠MDE=∠ECN,∵E為CD的中點,∴DE=CE,∴△MDE≌△NCE(AAS);(2)證明:過點M作MG⊥BN于點G,∵BM=MN,∴BG=BN=BN,∵矩形ABCD中,∠A=∠ABG=90°,又∵MG⊥BN,∴∠BGM=90°,∴四邊形ABGM為矩形,∴AM=BG=,∵EF//BN,E為DC的中點,∴F為BM的中點,∴EF=BN,∴AM=EF.【點睛】本題考查了矩形的性質(zhì),等腰三角形的性質(zhì),中位線定理,全等三角形的判定與性質(zhì)等知識,熟練掌握矩形的性質(zhì)是解題的關(guān)鍵.21、(1)y=100x(的整數(shù))y=x(的整數(shù));(2)購買22件時,該網(wǎng)站獲利最多,最多為1408元.【分析】(1)根據(jù)題意可得出銷售量乘以每臺利潤進而得出總利潤;(2)根據(jù)一次函數(shù)和二次函數(shù)的性質(zhì)求得最大利潤.【詳解】(1)當?shù)恼麛?shù)時,y與x的關(guān)系式為y=100x;當?shù)恼麛?shù)時,,y=(的整數(shù)),∴y與x的關(guān)系式為:y=100x(的整數(shù)),y=x(的整數(shù))(2)當(的整數(shù)),y=100x,當x=10時,利潤有最大值y=1000元;當10?x≤30時,y=,∵a=-3<0,拋物線開口向下,∴y有最大值,當x=時,y取最大值,因為x為整數(shù),根據(jù)對稱性得:當x=22時,y有最大值=1408元?1000元,所以顧客一次性購買22件時,該網(wǎng)站獲利最多.【點睛】本題考查分段函數(shù)及一次函數(shù)和二次函數(shù)的性質(zhì),利用函數(shù)性質(zhì)求最值是解答此題的重要途徑,自變量x的取值范圍及取值要求是解答此題的關(guān)鍵之處.22、見解析【解析】試題分析:由等腰三角形三線合一得FA=FD.又由E是中點,所以EF是中位線,即得結(jié)論.∵CD=CA,CF平分∠ACB,∴FA=FD(三線合一),∵FA=FD,AE=EB,∴EF=BD.考點:本題考查的是等腰三角形的性質(zhì),三角形的中位線點評:解答本題的關(guān)鍵是熟練掌握三角形的中位線定理:三角形的中位線平行于第三邊,并且等于第三邊的一半.23、(1);(2)或時,以點,,為頂點的三角形與相似;(3)存在,四邊形是平行四邊形時,,;四邊形是平行四邊形時,,;四邊形是平行四邊形時,,【分析】(1)根據(jù)正方形的性質(zhì),可得OA=OC,∠AOC=∠DGE,根據(jù)余角的性質(zhì),可得∠OCD=∠GDE,根據(jù)全等三角形的判定與性質(zhì),可得EG=OD=1,DG=OC=2,根據(jù)待定系數(shù)法,可得函數(shù)解析式;(2)分類討論:若△DFP∽△COD,根據(jù)相似三角形的性質(zhì),可得∠PDF=∠DCO,根據(jù)平行線的判定與性質(zhì),可得∠PDO=∠OCP=∠AOC=90,根據(jù)矩形的判定與性質(zhì),可得PC的長;若△PFD∽△COD,根據(jù)相似三角形的性質(zhì),可得∠DPF=∠DCO,,根據(jù)等腰三角形的判定與性質(zhì),可得DF于CD的關(guān)系,根據(jù)相似三角形的相似比,可得PC的長;(3)分類討論:當四邊形是平行四邊形時,四邊形是平行四邊形時,四邊形是平行四邊形時,根據(jù)一組對邊平行且相等的四邊形式平行四邊,可得答案.【詳解】解:(1)過點作軸于點.∵四邊形是邊長為2的正方形,是的中點,∴,,.∵,∴.∵,∴.在和中,∴,,.∴點的坐標為.∵拋物線的對稱軸為直線即直線,∴可設(shè)拋物線的解析式為,將、點的坐標代入解析式,得,解得.∴拋物線的解析式為;(2)①若,則,,∴,∴四邊形是矩形,∴,∴;②若,則,∴.∴.∴,∴.∵,∴,∴.∵,∴,,綜上所述:或時,以點,,為頂點的三角形與相似:(3)存在,①若以DE為平行四邊形的對角線,如圖2,此時,N點就是拋物線的頂點(2,),由N、E兩點坐標可求得直線NE的解析式為:y=x;∵DM∥EN,∴設(shè)DM的解析式為:y=x+b,將D(1,0)代入可求得b=?,∴DM的解析式為:y=x?,令x=2,則y=,∴M(2,);②過點C作CM∥DE交拋物線對稱軸于點M,連接ME,如圖3,∵CM∥DE,DE⊥CD,∴CM⊥CD,∵OC⊥CB,∴∠OCD=∠BCM,在△OCD和△BCM中,∴△OCD≌△BCM(ASA),∴CM=CD=DE,BM=OD=1,∴CDEM是平行四邊形,即N點與C占重合,∴N(0,2),M(2,3);③N點在拋物線對稱軸右側(cè),MN∥DE,如圖4,作NG⊥BA于點G,延長DM交BN于點H,∵MNED是平行四邊形,∴∠MDE=MNE,∠ENH=∠DHB,∵BN∥DF,∴∠ADH=∠DHB=∠ENH,∴∠MNB=∠EDF,在△BMN和△FED中∴△BMN≌△FED(AAS),∴BM=EF=1,BN=DF=2,∴M(2,1),N(4,2);綜上所述,四邊形是平行四邊形時,,;四邊形是平行四邊形時,,;四邊形是平行四邊形時,,.【點睛】本題考查了二次函數(shù)綜合題,(1)利用了正方形的性質(zhì),余角的性質(zhì),全等三角形的判定與性質(zhì),待定系數(shù)法求函數(shù)解析式;(2)利用了相似三角形的性質(zhì),矩形的判定,分類討論時解題關(guān)鍵;(3)利用了平行四邊形的判定,分類討論時解題關(guān)鍵.24、(1)A(﹣1,0),B(3,0),C(0,﹣3),D(0,﹣);(2)存在,(,﹣);(3)﹣<t<﹣1【分析】(1)可通過二次函數(shù)的解析式列出方程,即可求出相關(guān)點的坐標;(2)存在,先求出直線BC和直線BD的解析式,設(shè)點P的坐標為(x,x2﹣2x﹣3),則E(x,0),H(x,x﹣),G(x,x﹣3),列出等式方程,即可求出點P坐標;(3)求出直線y=x+t經(jīng)過點B時t的值,再列出當直線y=x+t與拋物線y=x2﹣2x﹣3只有一個交點時的方程,使根的判別式為0,求出t的值,即可寫出t的取值范圍.【詳解】解:(1)在y=x2﹣2x﹣3中,當x=0時,y=﹣3;當y=0時,x1=﹣1,x2=3,∴A(﹣1,0),B(3,0),C(0,﹣3),∵D為OC的中點,∴D(0,﹣);(2)存在,理由如下:設(shè)直線BC的解析式為y=kx﹣3,將點B(3,0)代入y=kx﹣3,解得k=1,∴直線BC的解析式為y=x﹣3,設(shè)直線BD的解析式為y=mx﹣,將點B(3,0)代入y=mx﹣,解得m=,∴直線BD的解析式為y=x﹣,設(shè)點P的坐標為(x,x2﹣2x﹣3),則E(x,0),H(x,x﹣),G(x,x﹣3),∴EH=﹣x+,HG=x﹣﹣(x﹣3)=﹣x+,GP=x﹣3﹣(x2﹣2x﹣3)=﹣x2+3x,當EH=HG=GP時,﹣x+=﹣x2+3x,解得x1=,x2=3(舍去),∴點P的坐標為(,﹣);(3)當直線y=x+t經(jīng)過點B時,將點B(3,0)代入y=x+t,得,t=﹣1,當直線y=x+t與拋物線y=x2﹣2x﹣3只有一個交點時,方程x+t=x2﹣2x﹣3只有一個解,即x2﹣x﹣3﹣t=0,△=()2﹣
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度衛(wèi)星導(dǎo)航系統(tǒng)服務(wù)合同
- 2024天然氣運輸物流信息化建設(shè)合同
- 2024常見簽訂勞動合同陷阱
- 2024年工程項目驗收與交付合同
- 2024年建筑工程混凝土專項分包協(xié)議
- 2024年度噸不銹鋼帶打印功能電子地磅秤技術(shù)支持合同
- 2024年大數(shù)據(jù)服務(wù)合作協(xié)議
- 2024年度環(huán)保項目工程設(shè)計與施工合同
- 2024年度電子商務(wù)平臺技術(shù)支持與運營服務(wù)合同
- 2024年度水果購銷合同
- 污泥( 廢水)運輸服務(wù)方案(技術(shù)方案)
- 公司章程范本杭州工商docx
- 職業(yè)院校面試題目及答案
- 全護筒跟進旋挖施工方案
- 海水淡化處理方案
- 初中數(shù)學(xué)基于大單元的作業(yè)設(shè)計
- 小學(xué)一年級下冊數(shù)學(xué)期末考試質(zhì)量分析及試卷分析
- 原材料情況說明范本
- 相鄰企業(yè)間安全管理協(xié)議
- 裝飾裝修工程售后服務(wù)具體措施
- 乙炔發(fā)生器、電石庫安全檢查表
評論
0/150
提交評論