2025屆江蘇省鎮(zhèn)江市五校九年級數(shù)學第一學期期末教學質(zhì)量檢測試題含解析_第1頁
2025屆江蘇省鎮(zhèn)江市五校九年級數(shù)學第一學期期末教學質(zhì)量檢測試題含解析_第2頁
2025屆江蘇省鎮(zhèn)江市五校九年級數(shù)學第一學期期末教學質(zhì)量檢測試題含解析_第3頁
2025屆江蘇省鎮(zhèn)江市五校九年級數(shù)學第一學期期末教學質(zhì)量檢測試題含解析_第4頁
2025屆江蘇省鎮(zhèn)江市五校九年級數(shù)學第一學期期末教學質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2025屆江蘇省鎮(zhèn)江市五校九年級數(shù)學第一學期期末教學質(zhì)量檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.如圖,△∽△,若,,,則的長是()A.2 B.3 C.4 D.52.下列圖案中,是中心對稱圖形的是()A. B. C. D.3.如圖所示,在平行四邊形ABCD中,AC與BD相交于點O,E為OD的中點,連接AE并延長交DC于點F,則DF:FC=()A.1:3 B.1:4 C.2:3 D.1:24.小華同學的身高為米,某一時刻他在陽光下的影長為米,與他鄰近的一棵樹的影長為米,則這棵樹的高為()A.米 B.米 C.米 D.米5.下列圖形中,既是軸對稱圖形又是中心對稱圖形的是()A. B. C. D.6.如圖為二次函數(shù)y=ax2+bx+c的圖象,在下列說法中:①ac<1;②方程ax2+bx+c=1的根是x1=﹣1,x2=3;③a+b+c<1;④當x>1時,y隨x的增大而減??;⑤2a﹣b=1;⑥b2﹣4ac>1.下列結(jié)論一定成立的是()A.①②④⑥ B.①②③⑥ C.②③④⑤⑥ D.①②③④7.如圖,在△ABC中,DE∥BC,BE和CD相交于點F,且S△EFC=3S△EFD,則S△ADE:S△ABC的值為()A.1:3 B.1:8 C.1:9 D.1:48.已知反比例函數(shù)的圖象經(jīng)過點,則的值是()A. B. C. D.9.如圖,中,中線AD,BE相交于點F,,交于AD于點G,下列說法①;②;③與面積相等;④與四邊形DCEF面積相等.結(jié)論正確的是()A.①③④ B.②③④ C.①②③ D.①②④10.如圖,正方形ABCD中,AD=6,E為AB的中點,將△ADE沿DE翻折得到△FDE,延長EF交BC于G,F(xiàn)H⊥BC,垂足為H,延長DF交BC與點M,連接BF、DG.以下結(jié)論:①∠BFD+∠ADE=180°;②△BFM為等腰三角形;③△FHB∽△EAD;④BE=2FM⑤S△BFG=2.6⑥sin∠EGB=;其中正確的個數(shù)是()A.3 B.4 C.5 D.611.池塘中放養(yǎng)了鯉魚2000條,鰱魚若干條,在幾次隨機捕撈中,共捕到鯉魚200條,鰱魚300條,估計池塘中原來放養(yǎng)了鰱魚()A.10000條 B.2000條 C.3000條 D.4000條12.的值為()A.2 B. C. D.二、填空題(每題4分,共24分)13.如圖是二次函數(shù)y=ax2+bx+c的部分圖象,由圖象可知方程ax2+bx+c=0的解是_________.14.若一個圓錐的底面圓的周長是cm,母線長是,則該圓錐的側(cè)面展開圖的圓心角度數(shù)是_____.15.如圖是拋物線圖象的一部分,拋物線的頂點坐標為,與軸的一個交點為,點和點均在直線上.①;②;③拋物線與軸的另一個交點時;④方程有兩個不相等的實數(shù)根;⑤;⑥不等式的解集為.上述六個結(jié)論中,其中正確的結(jié)論是_____________.(填寫序號即可)16.如圖,在平面直角坐標系中,正方形ABCD的三個頂點A、B、D均在拋物線y=ax2﹣4ax+3(a<0)上.若點A是拋物線的頂點,點B是拋物線與y軸的交點,則AC長為_____.17.拋物線的頂點坐標是______________.18.如圖,直線y=-x+b與雙曲線分別相交于點A,B,C,D,已知點A的坐標為(-1,4),且AB:CD=5:2,則m=_________.三、解答題(共78分)19.(8分)如圖,在△ABC中,AB=AC,以AC為直徑的⊙O交BC于點D,交AB于點E,過點D作DF⊥AB,垂足為F,連接DE.(1)求證:直線DF與⊙O相切;(2)求證:BF=EF;20.(8分)如圖①,在中,,是邊上任意一點(點與點,不重合),以為一直角邊作,,連接,.若和是等腰直角三角形.(1)猜想線段,之間的數(shù)量關(guān)系及所在直線的位置關(guān)系,直接寫出結(jié)論;(2)現(xiàn)將圖①中的繞著點順時針旋轉(zhuǎn),得到圖②,請判斷(1)中的結(jié)論是否仍然成立,若成立,請證明;若不成立,請說明理由.21.(8分)如圖,拋物線y=ax2+bx+c(a≠0)與y軸交于點C(0,4),與x軸交于A(﹣2,0),點B(4,0).(1)求拋物線的解析式;(2)若點M是拋物線上的一動點,且在直線BC的上方,當S△MBC取得最大值時,求點M的坐標;(3)在直線的上方,拋物線是否存在點M,使四邊形ABMC的面積為15?若存在,求出點M的坐標;若不存在,請說明理由.22.(10分)某市有A、B、C三個公園,甲、乙兩位同學隨機選擇其中一個公園游玩.(1)甲去A公園游玩的概率是;(2)求甲、乙恰好在同一個公園游玩的概率.(請用“畫樹狀圖”或“列表”或“列舉”等方法給出分析過程)23.(10分)已知關(guān)于x的方程ax2+(3﹣2a)x+a﹣3=1.(1)求證:無論a為何實數(shù),方程總有實數(shù)根.(2)如果方程有兩個實數(shù)根x1,x2,當|x1﹣x2|=時,求出a的值.24.(10分)如圖1,矩形ABCD中,AD=2,AB=3,點E,F(xiàn)分別在邊AB,BC上,且BF=FC,連接DE,EF,并以DE,EF為邊作?DEFG.(1)連接DF,求DF的長度;(2)求?DEFG周長的最小值;(3)當?DEFG為正方形時(如圖2),連接BG,分別交EF,CD于點P、Q,求BP:QG的值.25.(12分)如圖:在平面直角坐標系中,點.(1)尺規(guī)作圖:求作過三點的圓;(2)設(shè)過三點的圓的圓心為M,利用網(wǎng)格,求點M的坐標;(3)若直線與相交,直接寫出的取值范圍.26.某企業(yè)設(shè)計了一款工藝品,每件的成本是50元,為了合理定價,投放市場進行試銷.據(jù)市場調(diào)查,銷售單價是100元時,每天的銷售量是50件,而銷售單價每降低1元,每天就可多售出5件,但要求銷售單價不得低于成本.求出每天的銷售利潤元與銷售單價元之間的函數(shù)關(guān)系式;求出銷售單價為多少元時,每天的銷售利潤最大?最大利潤是多少?如果該企業(yè)要使每天的銷售利潤不低于4000元,且每天的總成本不超過7000元,那么銷售單價應控制在什么范圍內(nèi)?每天的總成本每件的成本每天的銷售量

參考答案一、選擇題(每題4分,共48分)1、C【分析】根據(jù)相似三角形的性質(zhì),列出對應邊的比,再根據(jù)已知條件即可快速作答.【詳解】解:∵△∽△∴∴解得:AB=4故答案為C.【點睛】本題主要考查了相似三角形的性質(zhì),解題的關(guān)鍵是找對相似三角形的對應邊,并列出比例進行求解.2、C【解析】根據(jù)中心對稱圖形的概念即可得出答案.【詳解】A選項中,不是中心對稱圖形,故該選項錯誤;B選項中,是軸對稱圖形,不是中心對稱圖形,故該選項錯誤;C選項中,是中心對稱圖形,故該選項正確;D選項中,不是中心對稱圖形,故該選項錯誤.故選C【點睛】本題主要考查中心對稱圖形,掌握中心對稱圖形的概念是解題的關(guān)鍵.3、D【解析】解:在平行四邊形ABCD中,AB∥DC,則△DFE∽△BAE,∴DF:AB=DE:EB.∵O為對角線的交點,∴DO=BO.又∵E為OD的中點,∴DE=DB,則DE:EB=1:1,∴DF:AB=1:1.∵DC=AB,∴DF:DC=1:1,∴DF:FC=1:2.故選D.4、B【分析】在同一時刻物高和影長成正比,即在同一時刻的兩個問題物體,影子,經(jīng)過物體頂部的太陽光線三者構(gòu)成的兩個直角三角形相似.【詳解】據(jù)相同時刻的物高與影長成比例,

設(shè)這棵樹的高度為xm,

則可列比例為解得,x=4.1.

故選:B【點睛】本題主要考查同一時刻物高和影長成正比,考查利用所學知識解決實際問題的能力.5、A【分析】根據(jù)中心對稱圖形和軸對稱圖形的概念對各選項分析判斷即可得解.【詳解】解:A、是軸對稱圖形,也是中心對稱圖形,故本選項符合題意;B、不是軸對稱圖形,不是中心對稱圖形,故本選項不合題意;C、是軸對稱圖形,不是中心對稱圖形,故本選項不合題意;D、是軸對稱圖形,不是中心對稱圖形,故本選項不合題意.故答案為A.【點睛】本題考查了中心對稱圖形和軸對稱圖形的概念,理解這兩個概念是解答本題的關(guān)鍵.6、B【解析】根據(jù)二次函數(shù)圖象和性質(zhì)可以判斷各個小題中的結(jié)論是否成立,從而可以解答本題.根據(jù)圖像分析,拋物線向上開口,a>1;拋物線與y軸交點在y軸的負半軸,c<1;坐標軸在右邊,根據(jù)左同右異,可知b與a異號,b<1;與坐標軸有兩個交點,那么△>1,根據(jù)這些信息再結(jié)合函數(shù)性質(zhì)判斷即可.【詳解】解:①由圖象可得,a>1,c<1,∴ac<1,故①正確,

②方程當y=1時,代入y=ax2+bx+c,求得根是x1=-1,x2=3,故②正確,

③當x=1時,y=a+b+c<1,故③正確,

④∵該拋物線的對稱軸是直線x=∴當x>1時,y隨x的增大而增大,故④錯誤,

⑤則2a=-b,那么2a+b=1,故⑤錯誤,

⑥∵拋物線與x軸兩個交點,∴b2-4ac>1,故⑥正確,

故正確的為.①②③⑥選:B.【點睛】本題考查二次函數(shù)圖象與系數(shù)的關(guān)系,解答本題的關(guān)鍵是明確題意,利用二次函數(shù)的性質(zhì)和數(shù)形結(jié)合的思想解答.7、C【分析】根據(jù)題意,易證△DEF∽△CBF,同理可證△ADE∽△ABC,根據(jù)相似三角形面積比是對應邊比例的平方即可解答.【詳解】∵S△EFC=3S△DEF,∴DF:FC=1:3(兩個三角形等高,面積之比就是底邊之比),∵DE∥BC,∴△DEF∽△CBF,∴DE:BC=DF:FC=1:3同理△ADE∽△ABC,∴S△ADE:S△ABC=1:9,故選:C.【點睛】本題考查相似三角形的判定和性質(zhì),解題的關(guān)鍵是掌握相似三角形面積比是對應邊比例的平方.8、A【分析】把代入反比例函數(shù)的解析式即可求解.【詳解】把代入得:k=-4故選:A【點睛】本題考查的是求反比例函數(shù)的解析式,掌握反比例函數(shù)的圖象和性質(zhì)是關(guān)鍵.9、D【分析】為BC,AC中點,可得由于可得;可證故①正確.②由于則可證,故②正確.設(shè),可得可判斷③錯,④正確.【詳解】解:①∵為BC,AC中點,;故①正確.②,故②正確.③④設(shè),故③錯,④正確.【點睛】本題考查了平行線段成比例,解題的關(guān)鍵是掌握平行線段成比例以及面積與比值的關(guān)系.10、C【分析】根據(jù)正方形的性質(zhì)、折疊的性質(zhì)、三角形外角的性質(zhì)、全等三角形的判定與性質(zhì)、相似三角形的判定與性質(zhì)、勾股定理對各個選項依次進行判斷、計算,即可得出答案.【詳解】解:正方形ABCD中,,E為AB的中點,,,,

沿DE翻折得到,

,,,,

,,

,

又,

,

,∴,又∵,,∴∠BFD+∠ADE=180°,故①正確;∵,,∴又∵,,∴,∴MB=MF,∴△BFM為等腰三角形;故②正確;,,

∴,∴,又∵,∴,∵,,∴,

∽,故正確;

,,,

∵在和中,,

≌,,

設(shè),則,,

在中,由勾股定理得:,

解得:,∴EG=5,,,∴sin∠EGB=,故⑥正確;

∵,,,∴,又∵,∴∽,∴∴BE=2FM,故④正確;∽,且,設(shè),則,

在中,由勾股定理得:,

解得:舍去或,

,故錯誤;故正確的個數(shù)有5個,故選:C.【點睛】本題主要考查了正方形的性質(zhì)、折疊的性質(zhì)、全等三角形的判定與性質(zhì)、相似三角形的判定與性質(zhì)、平行線的判定、勾股定理、三角函數(shù)等知識,本題綜合性較強,證明三角形全等和三角形相似是解題的關(guān)鍵.11、C【分析】根據(jù)題意求出鯉魚與鰱魚的比值,進而利用池塘中放養(yǎng)了鯉魚2000條除以鯉魚與鰱魚的比值即可估計池塘中原來放養(yǎng)了鰱魚的條數(shù).【詳解】解:由題意可知鯉魚與鰱魚的比值為:,所以池塘中原來放養(yǎng)了鰱魚:(條).故選:C.【點睛】本題考查的是通過樣本去估計總體,熟練掌握通過樣本去估計總體的方法,只需將樣本“成比例地放大”為總體即可.12、D【解析】根據(jù)特殊角的三角函數(shù)值及負指數(shù)冪的定義求解即可.【詳解】故選:D【點睛】本題考查了特殊角的三角函數(shù)值及負指數(shù)冪的定義,比較簡單,掌握定義仔細計算即可.二、填空題(每題4分,共24分)13、,【詳解】解:由圖象可知對稱軸x=2,與x軸的一個交點橫坐標是5,它到直線x=2的距離是3個單位長度,所以另外一個交點橫坐標是-1.

所以,.

故答案是:,.【點睛】考查拋物線與x軸的交點,拋物線與x軸兩個交點的橫坐標的和除以2后等于對稱軸.14、【分析】利用圓錐的底面周長和母線長求得圓錐的側(cè)面積,然后再利用圓錐的面積的計算方法求得側(cè)面展開扇形的圓心角的度數(shù)即可【詳解】∵圓錐的底面圓的周長是,∴圓錐的側(cè)面扇形的弧長為cm,,解得:故答案為.【點睛】此題考查弧長的計算,解題關(guān)鍵在于求得圓錐的側(cè)面積15、①④【分析】①由對稱軸x=1判斷;②根據(jù)圖象確定a、b、c的符號;③根據(jù)對稱軸以及B點坐標,通過對稱性得出結(jié)果;③根據(jù)的判別式的符號確定;④比較x=1時得出y1的值與x=4時得出y2值的大小即可;⑤由圖象得出,拋物線總在直線的下面,即y2>y1時x的取值范圍即可.【詳解】解:①因為拋物線的頂點坐標A(1,3),所以對稱軸為:x=1,則-=1,2a+b=0,故①正確;

②∵拋物線開口向下,∴a<0,∵對稱軸在y軸右側(cè),∴b>0,∵拋物線與y軸交于正半軸,∴c>0,∴abc<0,故②不正確;

③∵拋物線對稱軸為x=1,拋物線與x軸的交點B的坐標為(4,0),∴根據(jù)對稱性可得,拋物線與x軸的另一個交點坐標為(-2,0),故③不正確;④∵拋物線與x軸有兩個交點,∴b2-4ac>0,∴的判別式,=b2-4a(c+3)=b2-4ac-12a,又a<0,∴-12a>0,∴=b2-4ac-12a>0,故④正確;⑤當x=-1時,y1=a-b+c>0;當x=4時,y2=4m+n=0,∴a-b+c>4m+n,故⑤不正確;

⑥由圖象得:的解集為x<1或x>4;故⑥不正確;

則其中正確的有:①④.

故答案為:①④.【點睛】本題選項較多,比較容易出錯,因此要認真理解題意,明確以下幾點是關(guān)鍵:①通常2a+b的值都是利用拋物線的對稱軸來確定;②拋物線與x軸的交點個數(shù)確定其△的值,即b2-4ac的值:△=b2-4ac>0時,拋物線與x軸有2個交點;△=b2-4ac=0時,拋物線與x軸有1個交點;△=b2-4ac<0時,拋物線與x軸沒有交點;③知道對稱軸和拋物線的一個交點,利用對稱性可以求與x軸的另一交點.16、1.【解析】試題解析:拋物線的對稱軸x=-=2,點B坐標(0,3),∵四邊形ABCD是正方形,點A是拋物線頂點,∴B、D關(guān)于對稱軸對稱,AC=BD,∴點D坐標(1,3)∴AC=BD=1.考點:1.正方形的性質(zhì);2.二次函數(shù)的性質(zhì).17、(0,-1)【分析】拋物線的解析式為:y=ax2+k,其頂點坐標是(0,k),可以確定拋物線的頂點坐標.【詳解】拋物線的頂點坐標是(0,-1).18、【解析】如圖由題意:k=﹣4,設(shè)直線AB交x軸于F,交y軸于E.根據(jù)反比例函數(shù)y和直線AB組成的圖形關(guān)于直線y=x對稱,求出E、F、C、D的坐標即可.【詳解】如圖由題意:k=﹣4,設(shè)直線AB交x軸于F,交y軸于E.∵反比例函數(shù)y和直線AB組成的圖形關(guān)于直線y=x對稱,A(﹣1,4),∴B(4,﹣1),∴直線AB的解析式為y=﹣x+3,∴E(0,3),F(xiàn)(3,0),∴AB=5,EF=3.∵AB:CD=5:2,∴CD=2,∴CE=DF.設(shè)C(x,-x+3),∴CE=,解得:x=(負數(shù)舍去),∴x=,-x+3=,∴C(),∴m==.故答案為:.【點睛】本題考查了反比例函數(shù)與一次函數(shù)的交點問題,解題的關(guān)鍵是靈活運用所學知識解決問題,學會利用軸對稱的性質(zhì)解決問題,屬于中考??碱}型.三、解答題(共78分)19、見解析【解析】分析:(1)連接OD,由已知易得∠B=∠C,∠C=∠ODC,從而可得∠B=∠ODC,由此可得AB∥OD,結(jié)合DF⊥AB即可得到OD⊥DF,從而可得DF與⊙O相切;(2)連接AD,由已知易得BD=CD,∠BAD=∠CAD,由此可得DE=DC,從而可得DE=BD,結(jié)合DF⊥AB即可得到BF=EF.詳解:(1)連結(jié)OD,∵AB=AC,∴∠B=∠C,∵OC=OD,∴∠ODC=∠C,∴∠ODC=∠B,∴OD∥AB,∵DF⊥AB,∴DF⊥OD,∴直線DF與⊙O相切;(2)連接AD.∵AC是⊙O的直徑,∴AD⊥BC,又AB=AC,∴BD=DC,∠BAD=∠CAD,∴DE=DC,∴DE=DB,又DF⊥AB,∴BF=EF.點睛:(1)連接OD,結(jié)合已知條件證得OD∥AB是解答第1小題的關(guān)鍵;(2)連接AD結(jié)合已知條件和等腰三角形的性質(zhì)證得DE=DC=BD是解答第2小題的關(guān)鍵.20、(1)BE=AD,BE⊥AD;(2)BE=AD,BE⊥AD仍然成立,理由見解析【分析】(1)由CA=CB,CE=CD,∠ACB=90°易證△BCE≌△ACD,所以BE=AD,∠BEC=∠ADC,又因為∠EBC+∠BEC=90°,所以∠EBC+∠ADC=90°,即BE⊥AD;

(2)成立.設(shè)BE與AC的交點為點F,BE與AD的交點為點G,易證△ACD≌△BCE.得到AD=BE,∠CAD=∠CBE.再根據(jù)等量代換得到∠AFG+∠CAD=90°.即BE⊥AD.【詳解】(1)BE=AD,BE⊥AD;在△BCE和△ACD中,∵,∴△BCE≌△ACD(SAS),∴BE=AD,∠BEC=∠ADC,∵∠EBC+∠BEC=90°,∴∠EBC+∠ADC=90°,∴BE⊥AD.故答案為:BE=AD,BE⊥AD.(2)BE=AD,BE⊥AD仍然成立設(shè)BE與AC的交點為F,BE與AD的交點為G,如圖∴,∴.在和中,∵∴.∴∵,∴,,∴BE⊥AD【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),全等三角形的判定與性質(zhì),等腰直角三角形的性質(zhì),熟練掌握性質(zhì)定理是解題的關(guān)鍵.21、(1)y=﹣x2+x+4;(2)(2,4);(3)存在,(1,)或(3,)【分析】(1)拋物線的表達式為::y=a(x+2)(x﹣4)=a(x2﹣2x﹣8),故-8a=4,即可求解;(2)根據(jù)題意列出S△MBC=MH×OB=2(﹣x2+x+4+x﹣4)=﹣x2+4x,即可求解;(3)四邊形ABMC的面積S=S△ABC+S△BCM=6×4+(﹣x2+4x)=15,,即可求解.【詳解】解:(1)拋物線的表達式為:y=a(x+2)(x﹣4)=a(x2﹣2x﹣8),故﹣8a=4,解得:a=﹣,故拋物線的表達式為:y=﹣x2+x+4;(2)過點M作MH∥y軸交BC于點H,將點B、C的坐標代入一次函數(shù)表達式并解得:直線BC的表達式為:y=﹣x+4,設(shè)點M(x,﹣x2+x+4),則點H(x,﹣x+4),S△MBC=MH×OB=2(﹣x2+x+4+x﹣4)=﹣x2+4x,∵﹣1<0,故S有最大值,此時點M(2,4);(3)四邊形ABMC的面積S=S△ABC+S△BCM=×6×4+(﹣x2+4x)=15,解得:x=1或3,故點M(1,)或(3,).【點睛】本題考查的是二次函數(shù)綜合運用,考查了一次函數(shù)、面積的計算等知識,其中面積的計算是解答本題的難點.22、(1);(2)【分析】(1)直接根據(jù)概率公式計算可得;(2)利用列舉方法找出所有的可能情況,再找兩位同學恰好在同一個公園游玩的情況個數(shù),即可求出所求的概率.【詳解】解:(1)甲去A公園游玩的概率為;故答案為:.(2)列樹狀圖如下:共有9種等可能結(jié)果,其中甲、乙恰好在同一個公園游玩的有3種,∴其概率為.【點睛】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結(jié)果,再從中選出符合事件的結(jié)果數(shù)目,然后利用概率公式計算事件的概率.23、(1)見解析;(2)﹣2或2【分析】(1)證明一元二次方程根的判別式恒大于等于1,即可解答;(2)根據(jù)一元二次方程根與系數(shù)的關(guān)系,以及,由|x1﹣x2|=即可求得a的值.【詳解】(1)證明:∵關(guān)于x的方程ax2+(3﹣2a)x+a﹣3=1中,△=(3﹣2a)2﹣4a(a﹣3)=9>1,∴無論a為何實數(shù),方程總有實數(shù)根.(2)解:如果方程的兩個實數(shù)根x1,x2,則,∵,∴,解得a=±2.故a的值是﹣2或2.【點睛】本本題考查了一元二次方程的判別式和根與系數(shù)的關(guān)系,解決本題的關(guān)鍵是正確理解題意,熟練掌握一元二次方程的判別式和根與系數(shù)之間的關(guān)系.24、(1);(2)6;(3)或.【分析】(1)平行四邊形DEFG對角線DF的長就是Rt△DCF的斜邊的長,由勾股定理求解;(2)平行四邊形DEFG周長的最小值就是求鄰邊2(DE+EF)最小值,DE+EF的最小值就是以AB為對稱軸,作點F的對稱點M,連接DM交AB于點N,點E與N點重合時即DE+EF=DM時有最小值,在Rt△DMC中由勾股定理求DM的長;(3)平行四邊形DEFG為矩形時有兩種情況,一是一般矩形,二是正方形,分類用全等三角形判定與性質(zhì),等腰直角三角形判定與性質(zhì),三角形相似的判定與性質(zhì)和勾股定理求解.【詳解】解:(1)如圖1所示:∵四邊形ABCD是矩形,∠C=90°,AD=BC,AB=DC,∵BF=FC,AD=2;∴FC=1,∵AB=3;∴DC=3,在Rt△DCF中,由勾股定理得,∴DF===;(2)如圖2所示:作點F關(guān)直線AB的對稱點M,連接DM交AB于點N,連接NF,ME,點E在AB上是一個動點,①當點E不與點N重合時點M、E、D可構(gòu)成一個三角形,∴ME+DE>MD,②當點E與點N重合時點M、E(N)、D在同一條直線上,∴ME+DE=MD由①和②DE+EF的值最小時就是點E與點N重合時,∵MB=BF,∴MB=1,∴MC=3,又∵DC=3,∴△MCD是等腰直角三角形,∴MD===3,∴NF+DN=MD=3,∴l(xiāng)平行四邊形DEFG=2(NF+DF)=6;(3)設(shè)AE=x,則BE=3﹣x,∵平行四邊形DEFG為矩形,∴∠DEF=90°,∵∠AED+∠BEF=90°,∠BEF+∠BFE=90°,∴∠AED=∠BFE,又∵∠A=∠EBF=90°,∴△DAE∽△EBF,∴=,∴=,解得:x=1,或x=2①當AE=1,BE=2時,過點B作BH⊥EF,如圖3(甲)所示:∵平行四邊形DEFG為矩形,∴∠A=∠ABF=90°,又∵BF=1,AD=2,∴在△ADE和△BEF中,,∴△ADE≌△BEF中(SAS),∴DE=EF,∴矩形DEFG是正方形;在Rt△EBF中,由勾股定理得:EF===,∴BH==,又∵△BEF~△HBF,∴=,HF===,在△BPH和△GPF中有:∠BPH=∠GPF,∠BHP=∠GFP,∴△BPH∽△GPF,∴===,∴PF=?HF=,又∵EP+PF=EF,∴EP=﹣=,又∵AB∥BC,EF∥DG,∴∠EBP=∠DQG,∠EPB=

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論