




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年高三上數(shù)學期末模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若數(shù)列滿足且,則使的的值為()A. B. C. D.2.趙爽是我國古代數(shù)學家、天文學家,大約在公元222年,趙爽為《周髀算經》一書作序時,介紹了“勾股圓方圖”,亦稱“趙爽弦圖”(以弦為邊長得到的正方形是由4個全等的直角三角形再加上中間的一個小正方形組成的).類比“趙爽弦圖”.可類似地構造如下圖所示的圖形,它是由3個全等的三角形與中間的一個小等邊三角形拼成一個大等邊三角形.設,若在大等邊三角形中隨機取一點,則此點取自小等邊三角形(陰影部分)的概率是()A. B. C. D.3.函數(shù)的對稱軸不可能為()A. B. C. D.4.某個小區(qū)住戶共200戶,為調查小區(qū)居民的7月份用水量,用分層抽樣的方法抽取了50戶進行調查,得到本月的用水量(單位:m3)的頻率分布直方圖如圖所示,則小區(qū)內用水量超過15m3的住戶的戶數(shù)為()A.10 B.50 C.60 D.1405.a為正實數(shù),i為虛數(shù)單位,,則a=()A.2 B. C. D.16.已知函數(shù),給出下列四個結論:①函數(shù)的值域是;②函數(shù)為奇函數(shù);③函數(shù)在區(qū)間單調遞減;④若對任意,都有成立,則的最小值為;其中正確結論的個數(shù)是()A. B. C. D.7.數(shù)列滿足,且,,則()A. B.9 C. D.78.已知正項數(shù)列滿足:,設,當最小時,的值為()A. B. C. D.9.已知集合,,則A. B.C. D.10.已知,且,則的值為()A. B. C. D.11.若為過橢圓中心的弦,為橢圓的焦點,則△面積的最大值為()A.20 B.30 C.50 D.6012.已知,若對任意,關于x的不等式(e為自然對數(shù)的底數(shù))至少有2個正整數(shù)解,則實數(shù)a的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知(為虛數(shù)單位),則復數(shù)________.14.在四面體中,分別是的中點.則下述結論:①四面體的體積為;②異面直線所成角的正弦值為;③四面體外接球的表面積為;④若用一個與直線垂直,且與四面體的每個面都相交的平面去截該四面體,由此得到一個多邊形截面,則該多邊形截面面積最大值為.其中正確的有_____.(填寫所有正確結論的編號)15.已知實數(shù),滿足則的取值范圍是______.16.某校開展“我身邊的榜樣”評選活動,現(xiàn)對3名候選人甲、乙、丙進行不記名投票,投票要求詳見選票.這3名候選人的得票數(shù)(不考慮是否有效)分別為總票數(shù)的88%,75%,46%,則本次投票的有效率(有效票數(shù)與總票數(shù)的比值)最高可能為百分之________.“我身邊的榜樣”評選選票候選人符號注:1.同意畫“○”,不同意畫“×”.2.每張選票“○”的個數(shù)不超過2時才為有效票.甲乙丙三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線C:x24py(p為大于2的質數(shù))的焦點為F,過點F且斜率為k(k0)的直線交C于A,B兩點,線段AB的垂直平分線交y軸于點E,拋物線C在點A,B處的切線相交于點G.記四邊形AEBG的面積為S.(1)求點G的軌跡方程;(2)當點G的橫坐標為整數(shù)時,S是否為整數(shù)?若是,請求出所有滿足條件的S的值;若不是,請說明理由.18.(12分)2019年安慶市在大力推進城市環(huán)境、人文精神建設的過程中,居民生活垃圾分類逐漸形成意識.有關部門為宣傳垃圾分類知識,面向該市市民進行了一次“垃圾分類知識"的網絡問卷調查,每位市民僅有一次參與機會,通過抽樣,得到參與問卷調查中的1000人的得分數(shù)據(jù),其頻率分布直方圖如圖:(1)由頻率分布直方圖可以認為,此次問卷調查的得分Z服從正態(tài)分布,近似為這1000人得分的平均值(同一組數(shù)據(jù)用該區(qū)間的中點值作代表),利用該正態(tài)分布,求P();(2)在(1)的條件下,有關部門為此次參加問卷調查的市民制定如下獎勵方案:(i)得分不低于可獲贈2次隨機話費,得分低于則只有1次:(ii)每次贈送的隨機話費和對應概率如下:贈送話費(單位:元)1020概率現(xiàn)有一位市民要參加此次問卷調查,記X(單位:元)為該市民參加問卷調查獲贈的話費,求X的分布列.附:,若,則,.19.(12分)已知橢圓,左、右焦點為,點為上任意一點,若的最大值為3,最小值為1.(1)求橢圓的方程;(2)動直線過點與交于兩點,在軸上是否存在定點,使成立,說明理由.20.(12分)在平面直角坐標系xOy中,已知平行于x軸的動直線l交拋物線C:于點P,點F為C的焦點.圓心不在y軸上的圓M與直線l,PF,x軸都相切,設M的軌跡為曲線E.(1)求曲線E的方程;(2)若直線與曲線E相切于點,過Q且垂直于的直線為,直線,分別與y軸相交于點A,當線段AB的長度最小時,求s的值.21.(12分)已知點到拋物線C:y1=1px準線的距離為1.(Ⅰ)求C的方程及焦點F的坐標;(Ⅱ)設點P關于原點O的對稱點為點Q,過點Q作不經過點O的直線與C交于兩點A,B,直線PA,PB,分別交x軸于M,N兩點,求的值.22.(10分)已知是遞增的等差數(shù)列,,是方程的根.(1)求的通項公式;(2)求數(shù)列的前項和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】因為,所以是等差數(shù)列,且公差,則,所以由題設可得,則,應選答案C.2、A【解析】
根據(jù)幾何概率計算公式,求出中間小三角形區(qū)域的面積與大三角形面積的比值即可.【詳解】在中,,,,由余弦定理,得,所以.所以所求概率為.故選A.【點睛】本題考查了幾何概型的概率計算問題,是基礎題.3、D【解析】
由條件利用余弦函數(shù)的圖象的對稱性,得出結論.【詳解】對于函數(shù),令,解得,當時,函數(shù)的對稱軸為,,.故選:D.【點睛】本題主要考查余弦函數(shù)的圖象的對稱性,屬于基礎題.4、C【解析】從頻率分布直方圖可知,用水量超過15m3的住戶的頻率為,即分層抽樣的50戶中有0.3×50=15戶住戶的用水量超過15立方米所以小區(qū)內用水量超過15立方米的住戶戶數(shù)為,故選C5、B【解析】
,選B.6、C【解析】
化的解析式為可判斷①,求出的解析式可判斷②,由得,結合正弦函數(shù)得圖象即可判斷③,由得可判斷④.【詳解】由題意,,所以,故①正確;為偶函數(shù),故②錯誤;當時,,單調遞減,故③正確;若對任意,都有成立,則為最小值點,為最大值點,則的最小值為,故④正確.故選:C.【點睛】本題考查三角函數(shù)的綜合運用,涉及到函數(shù)的值域、函數(shù)單調性、函數(shù)奇偶性及函數(shù)最值等內容,是一道較為綜合的問題.7、A【解析】
先由題意可得數(shù)列為等差數(shù)列,再根據(jù),,可求出公差,即可求出.【詳解】數(shù)列滿足,則數(shù)列為等差數(shù)列,,,,,,,故選:.【點睛】本題主要考查了等差數(shù)列的性質和通項公式的求法,意在考查學生對這些知識的理解掌握水平,屬于基礎題.8、B【解析】
由得,即,所以得,利用基本不等式求出最小值,得到,再由遞推公式求出.【詳解】由得,即,,當且僅當時取得最小值,此時.故選:B【點睛】本題主要考查了數(shù)列中的最值問題,遞推公式的應用,基本不等式求最值,考查了學生的運算求解能力.9、D【解析】
因為,,所以,,故選D.10、A【解析】
由及得到、,進一步得到,再利用兩角差的正切公式計算即可.【詳解】因為,所以,又,所以,,所以.故選:A.【點睛】本題考查三角函數(shù)誘導公式、二倍角公式以及兩角差的正切公式的應用,考查學生的基本計算能力,是一道基礎題.11、D【解析】
先設A點的坐標為,根據(jù)對稱性可得,在表示出面積,由圖象遏制,當點A在橢圓的頂點時,此時面積最大,再結合橢圓的標準方程,即可求解.【詳解】由題意,設A點的坐標為,根據(jù)對稱性可得,則的面積為,當最大時,的面積最大,由圖象可知,當點A在橢圓的上下頂點時,此時的面積最大,又由,可得橢圓的上下頂點坐標為,所以的面積的最大值為.故選:D.【點睛】本題主要考查了橢圓的標準方程及簡單的幾何性質,以及三角形面積公式的應用,著重考查了數(shù)形結合思想,以及化歸與轉化思想的應用.12、B【解析】
構造函數(shù)(),求導可得在上單調遞增,則,問題轉化為,即至少有2個正整數(shù)解,構造函數(shù),,通過導數(shù)研究單調性,由可知,要使得至少有2個正整數(shù)解,只需即可,代入可求得結果.【詳解】構造函數(shù)(),則(),所以在上單調遞增,所以,故問題轉化為至少存在兩個正整數(shù)x,使得成立,設,,則,當時,單調遞增;當時,單調遞增.,整理得.故選:B.【點睛】本題考查導數(shù)在判斷函數(shù)單調性中的應用,考查不等式成立問題中求解參數(shù)問題,考查學生分析問題的能力和邏輯推理能力,難度較難.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
解:故答案為:【點睛】本題考查復數(shù)代數(shù)形式的乘除運算,屬于基礎題.14、①③④.【解析】
補圖成長方體,在長方體中利用割補法求四面體的體積,和外接球的表面積,以及異面直線的夾角,作出截面即可計算截面面積的最值.【詳解】根據(jù)四面體特征,可以補圖成長方體設其邊長為,,解得補成長,寬,高分別為的長方體,在長方體中:①四面體的體積為,故正確②異面直線所成角的正弦值等價于邊長為的矩形的對角線夾角正弦值,可得正弦值為,故錯;③四面體外接球就是長方體的外接球,半徑,其表面積為,故正確;④由于,故截面為平行四邊形,可得,設異面直線與所成的角為,則,算得,.故正確.故答案為:①③④.【點睛】此題考查根據(jù)幾何體求體積,外接球的表面積,異面直線夾角和截面面積最值,關鍵在于熟練掌握點線面位置關系的處理方法,補圖法作為解決體積和外接球問題的常用方法,平常需要積累常見幾何體的補圖方法.15、【解析】
根據(jù)約束條件畫出可行域,即可由直線的平移方法求得的取值范圍.【詳解】.由題意,畫出約束條件表示的平面區(qū)域如下圖所示,令,則如圖所示,圖中直線所示的兩個位置為的臨界位置,根據(jù)幾何關系可得與軸的兩個交點分別為,所以的取值范圍為.故答案為:【點睛】本題考查了非線性約束條件下線性規(guī)劃的簡單應用,由數(shù)形結合法求線性目標函數(shù)的取值范圍,屬于中檔題.16、91【解析】
設共有選票張,且票對應張數(shù)為,由此可構造不等式組化簡得到,由投票有效率越高越小,可知,由此計算可得投票有效率.【詳解】不妨設共有選票張,投票的有,票的有,票的有,則由題意可得:,化簡得:,即,投票有效率越高,越小,則,,故本次投票的有效率(有效票數(shù)與總票數(shù)的比值)最高可能為.故答案為:.【點睛】本題考查線性規(guī)劃的實際應用問題,關鍵是能夠根據(jù)已知條件構造出變量所滿足的關系式.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)當G點橫坐標為整數(shù)時,S不是整數(shù).【解析】
(1)先求解導數(shù),得出切線方程,聯(lián)立方程得出交點G的軌跡方程;(2)先求解弦長,再分別求解點到直線的距離,表示出四邊形的面積,結合點G的橫坐標為整數(shù)進行判斷.【詳解】(1)設,則,拋物線C的方程可化為,則,所以曲線C在點A處的切線方程為,在點B處的切線方程為,因為兩切線均過點G,所以,所以A,B兩點均在直線上,所以直線AB的方程為,又因為直線AB過點F(0,p),所以,即G點軌跡方程為;(2)設點G(,),由(1)可知,直線AB的方程為,即,將直線AB的方程與拋物線聯(lián)立,,整理得,所以,,解得,因為直線AB的斜率,所以,且,線段AB的中點為M,所以直線EM的方程為:,所以E點坐標為(0,),直線AB的方程整理得,則G到AB的距離,則E到AB的距離,所以,設,因為p是質數(shù),且為整數(shù),所以或,當時,,是無理數(shù),不符題意,當時,,因為當時,,即是無理數(shù),所以不符題意,當時,是無理數(shù),不符題意,綜上,當G點橫坐標為整數(shù)時,S不是整數(shù).【點睛】本題主要考查直線與拋物線的位置關系,拋物線中的切線問題通常借助導數(shù)來求解,四邊形的面積問題一般轉化為三角形的面積和問題,表示出面積的表達式是求解的關鍵,側重考查數(shù)學運算的核心素養(yǎng).18、(1)(2)詳見解析【解析】
(1)利用頻率分布直方圖平均數(shù)等于小矩形的面積乘以底邊中點橫坐標之和,再利用正態(tài)分布的對稱性進行求解.(2)寫出隨機變量的所有可能取值,利用互斥事件和相互獨立事件同時發(fā)生的概率計算公式,再列表得到其分布列.【詳解】解:(1)從這1000人問卷調查得到的平均值為∵由于得分Z服從正態(tài)分布,(2)設得分不低于分的概率為p,(或由頻率分布直方圖知)法一:X的取值為10,20,30,40;;;;所以X的分布列為X10203040P法二:2次隨機贈送的話費及對應概率如下2次話費總和203040PX的取值為10,20,30,40;;;;所以X的分布列為X10203040P【點睛】本題考查了正態(tài)分布、離散型隨機變量的分布列,屬于基礎題.19、(1)(2)存在;詳見解析【解析】
(1)由橢圓的性質得,解得后可得,從而得橢圓方程;(2)設,當直線斜率存在時,設為,代入橢圓方程,整理后應用韋達定理得,代入=0由恒成立問題可求得.驗證斜率不存在時也適合即得.【詳解】解:(1)由題易知解得,所以橢圓方程為(2)設當直線斜率存在時,設為與橢圓方程聯(lián)立得,顯然所以因為化簡解得即所以此時存在定點滿足題意當直線斜率不存在時,顯然也滿足綜上所述,存在定點,使成立【點睛】本題考查求橢圓的標準方程,考查直線與橢圓相交問題中的定點問題,解題方法是設而不求的思想方法.設而不求思想方法是直線與圓錐曲線相交問題中常用方法,只要涉及交點坐標,一般就用此法.20、(1),(2).【解析】
根據(jù)題意設,可得PF的方程,根據(jù)距離即可求出;點Q處的切線的斜率存在,由對稱性不妨設,根據(jù)導數(shù)的幾何意義和斜率公式,求,并構造函數(shù),利用導數(shù)求出函數(shù)的最值.【詳解】因為拋物線C的方程為,所以F的坐標為,設,因為圓M與x軸、直線l都相切,l平行于x軸,所以圓M的半徑為,點,則直線PF的方程為,即,所以,又m,,所以,即,所以E的方程為,,設,,,由知,點Q處的切線的斜率存在,由對稱性不妨設,由,所以,,所以,,所以,.令,,則,由得,由得,所以在區(qū)間單調遞減,在單調遞增,所以當時,取得極小值也是最小值,即AB取得最小值此時.【點睛】本題考查了直線和拋物線的位置關系,以及利用導數(shù)求函數(shù)最值的關系,考查了運算能力和轉化能力,屬于難題.21、(Ⅰ)C的方程為,焦點F的坐標為(1,0);(Ⅱ)1【解析】
(Ⅰ)根據(jù)拋物線定義求出p,即可求C的方程及焦點F的坐標;
(Ⅱ)設點A(x1,y1),B(x1,y1),由已知得Q(?1,?1),由題意直線AB斜率存在且不為0,設直線AB的方
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 保潔與員工合同范本
- 住宅加裝電梯工程合同范例
- 出售尼龍水箱合同范本
- 與政府合作合同范本
- 內控合同范本
- 協(xié)商撤銷合同范例
- 勞動合同范本 病假
- 單位租住房合同范本
- 個人蓋房合同范本
- 中醫(yī)醫(yī)聯(lián)體合同范本
- 染廠公司簡介(4個范本)
- PPT用中國地圖(可編輯)
- 基于德育的農村中小學校園欺凌現(xiàn)象的解決對策優(yōu)秀獲獎科研論文
- 鐵路工程概預算-工程經濟管理培訓-課件
- 小學英語一般現(xiàn)在時-(演示)課件
- 面部激素依賴性皮炎的管理課件
- 盧卡奇教學講解課件
- 智慧環(huán)衛(wèi)項目建設方案
- 焊接作業(yè)現(xiàn)場環(huán)境溫度濕度記錄
- 長期護理保險待遇資格申請表
- 馬克思主義基本原理教案:第一章+教案
評論
0/150
提交評論