




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2022-2023學年九上數(shù)學期末模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每題4分,共48分)1.如圖,河壩橫斷面的迎水坡AB的坡比為3:4,BC=6m,則坡面AB的長為()A.6m B.8m C.10m D.12m2.如圖,在中,,D為AC上一點,連接BD,且,則DC長為()A.2 B. C. D.53.一元二次方程的一個根為,則的值為()A.1 B.2 C.3 D.44.在平面直角坐標系中,以點(3,2)為圓心、2為半徑的圓,一定()A.與x軸相切,與y軸相切 B.與x軸相切,與y軸相離C.與x軸相離,與y軸相切 D.與x軸相離,與y軸相離5.如圖,Rt△ABC中,∠B=90°,AB=3,BC=2,則cosA=()A. B. C. D.6.已知函數(shù)的圖像上兩點,,其中,則與的大小關系為()A. B. C. D.無法判斷7.如圖,在△ABC中,AB=AC,D、E、F分別是邊AB、AC、BC的中點,若CE=2,則四邊形ADFE的周長為()A.2 B.4 C.6 D.88.已知平面直角坐標系中,點關于原點對稱的點的坐標是()A. B. C. D.9.方程的根是()A. B.C. D.10.如圖,在正方形中,繞點順時針旋轉(zhuǎn)后與重合,,,則的長度為()A.4 B. C.5 D.11.如圖是一個圓柱形輸水管橫截面的示意圖,陰影部分為有水部分,如果水面AB的寬為8cm,水面最深的地方高度為2cm,則該輸水管的半徑為()A.3cm B.5cm C.6cm D.8cm12.已知(a≠0,b≠0),下列變形錯誤的是()A. B.2a=3b C. D.3a=2b二、填空題(每題4分,共24分)13.在中,.點在直線上,,點為邊的中點,連接,射線交于點,則的值為__________.14.在陽光下,高6m的旗桿在水平地面上的影子長為4m,此時測得附近一個建筑物的影子長為16m,則該建筑物的高度是_____m.15.如圖,將Rt△ABC繞直角頂點C順時針旋轉(zhuǎn)90°,得到△A′B′C,連結(jié)AA′,若∠1=20°,則∠B=_____度.16.如圖,由10個完全相同的正三角形構(gòu)成的網(wǎng)格圖中,如圖所示,則=______.17.如圖,半徑為,正方形內(nèi)接于,點在上運動,連接,作,垂足為,連接.則長的最小值為________.18.如圖,,,若,則_________.三、解答題(共78分)19.(8分)如圖,在平面直角坐標系中,一次函數(shù)y=mx+n(m≠0)的圖象與y軸交于點C,與反比例函數(shù)y=(k≠0)的圖象交于A,B兩點,點A在第一象限,縱坐標為4,點B在第三象限,BM⊥x軸,垂足為點M,BM=OM=1.(1)求反比例函數(shù)和一次函數(shù)的解析式.(1)連接OB,MC,求四邊形MBOC的面積.20.(8分)解方程:-2(x+1)=321.(8分)已知y是x的反比例函數(shù),并且當x=2時,y=6.(1)求y關于x的函數(shù)解析式;(2)當x=時,y=______.22.(10分)拋物線L:y=﹣x2+bx+c經(jīng)過點A(0,1),與它的對稱軸直線x=1交于點B(1)直接寫出拋物線L的解析式;(2)如圖1,過定點的直線y=kx﹣k+4(k<0)與拋物線L交于點M、N,若△BMN的面積等于1,求k的值;(3)如圖2,將拋物線L向上平移m(m>0)個單位長度得到拋物線L1,拋物線L1與y軸交于點C,過點C作y軸的垂線交拋物線L1于另一點D、F為拋物線L1的對稱軸與x軸的交點,P為線段OC上一點.若△PCD與△POF相似,并且符合條件的點P恰有2個,求m的值及相應點P的坐標.23.(10分)已知,如圖,是直角三角形斜邊上的中線,交的延長線于點.求證:;若,垂足為點,且,求的值.24.(10分)經(jīng)過某十字路口的汽車,可能直行,也可能向左轉(zhuǎn)或向右轉(zhuǎn).如果這三種可能性大小相同,求兩輛車經(jīng)過這個十字路口時,下列事件的概率:(1)兩輛車中恰有一輛車向左轉(zhuǎn);(2)兩輛車行駛方向相同.25.(12分)一個不透明的口袋中裝有4個完全相同的小球,分別標有數(shù)字1,2,3,4,另有一個可以自由旋轉(zhuǎn)的圓盤,被分成面積相等的3個扇形區(qū)域,分別標有數(shù)字1,2,3(如圖所示).小穎和小亮想通過游戲來決定誰代表學校參加歌詠比賽,游戲規(guī)則為:一人從口袋中摸出一個小球,另一人轉(zhuǎn)動圓盤,如果所摸球上的數(shù)字與圓盤上轉(zhuǎn)出數(shù)字之和小于4,那么小穎去;否則小亮去.(1)用樹狀圖法或列表法求出小穎參加比賽的概率;(2)你認為游戲公平嗎?請說明理由;若不公平,請修改該游戲規(guī)則,使游戲公平.26.如圖,已知拋物線y=ax2+bx+5經(jīng)過A(﹣5,0),B(﹣4,﹣3)兩點,與x軸的另一個交點為C,頂點為D,連結(jié)CD.(1)求該拋物線的表達式;(2)點P為該拋物線上一動點(與點B、C不重合),設點P的橫坐標為t.①當點P在直線BC的下方運動時,求△PBC的面積的最大值;②該拋物線上是否存在點P,使得∠PBC=∠BCD?若存在,求出所有點P的坐標;若不存在,請說明理由.
參考答案一、選擇題(每題4分,共48分)1、C【分析】迎水坡AB的坡比為3:4得出,再根據(jù)BC=6m得出AC的值,再根據(jù)勾股定理求解即可.【詳解】由題意得∴∴故選:C.【點睛】本題考查解直角三角形的應用,把坡比轉(zhuǎn)化為三角函數(shù)值是關鍵.2、C【分析】利用等腰三角形的性質(zhì)得出∠ABC=∠C=∠BDC,可判定△ABC∽△BCD,利用相似三角形對應邊成比例即可求出DC的長.【詳解】∵AB=AC=6∴∠ABC=∠C∵BD=BC=4∴∠C=∠BDC∴∠ABC=∠BCD,∠ACB=∠BDC∴△ABC∽△BCD∴∴故選C.【點睛】本題考查了等腰三角形的性質(zhì),相似三角形的判定與性質(zhì),解題的關鍵是找到兩組對應角相等判定相似三角形.3、B【分析】將x=2代入方程即可求得k的值,從而得到正確選項.【詳解】解:∵一元二次方程x2-3x+k=0的一個根為x=2,
∴22-3×2+k=0,
解得,k=2,
故選:B.【點睛】本題考查一元二次方程的解,解題的關鍵是明確一元二次方程的解一定使得原方程成立.4、B【分析】本題應將該點的橫縱坐標分別與半徑對比,大于半徑時,則坐標軸與該圓相離;若等于半徑時,則坐標軸與該圓相切.【詳解】∵是以點(2,3)為圓心,2為半徑的圓,則有2=2,3>2,∴這個圓與x軸相切,與y軸相離.故選B.【點睛】本題考查了直線與圓的位置關系、坐標與圖形性質(zhì).直線與圓相切,直線到圓的距離等于半徑;與圓相離,直線到圓的距離大于半徑.5、D【分析】根據(jù)勾股定理求出AC,根據(jù)余弦的定義計算得到答案.【詳解】由勾股定理得,AC===,則cosA===,故選:D.【點睛】本題考查的是銳角三角函數(shù)的定義,掌握銳角A的鄰邊b與斜邊c的比叫做∠A的余弦是解題的關鍵.6、B【分析】由二次函數(shù)可知,此函數(shù)的對稱軸為x=2,二次項系數(shù)a=?1<0,故此函數(shù)的圖象開口向下,有最大值;函數(shù)圖象上的點與坐標軸越接近,則函數(shù)值越大,故可求解.【詳解】函數(shù)的對稱軸為x=2,二次函數(shù)開口向下,有最大值,∵,A到對稱軸x=2的距離比B點到對稱軸的距離遠,∴故選:B.【點睛】本題的關鍵是(1)找到二次函數(shù)的對稱軸;(2)掌握二次函數(shù)y=ax2+bx+c(a≠0)的圖象性質(zhì).7、D【分析】根據(jù)三角形的中點的概念求出AB、AC,根據(jù)三角形中位線定理求出DF、EF,計算得到答案.【詳解】解:∵點E是AC的中點,AB=AC,∴AB=AC=4,∵D是邊AB的中點,∴AD=2,∵D、F分別是邊、AB、BC的中點,∴DF=AC=2,同理,EF=2,∴四邊形ADFE的周長=AD+DF+FE+EA=8,故選:D.【點睛】本題考查的是三角形中位線定理,三角形的中位線平行于第三邊,且等于第三邊的一半.8、C【解析】∵在平面直角坐標系中,關于原點對稱的兩個點的橫坐標與橫坐標、縱坐標與縱坐標都互為相反數(shù),∴點P(1,-2)關于原點的對稱點坐標為(-1,2),故選C.9、A【分析】利用直接開平方法進行求解即可得答案.【詳解】,x-1=0,∴x1=x2=1,故選A.【點睛】本題考查解一元二次方程,根據(jù)方程的特點選擇恰當?shù)姆椒ㄊ墙忸}的關鍵.10、D【分析】先根據(jù)旋轉(zhuǎn)性質(zhì)及正方形的性質(zhì)構(gòu)造方程求正方形的邊長,再利用勾股定理求值即可.【詳解】繞點順時針旋轉(zhuǎn)后與重合四邊形ABCD為正方形在中,故選D.【點睛】本題考查了全等三角形的性質(zhì)、旋轉(zhuǎn)的性質(zhì)、正方形的性質(zhì)、勾股定理,找到直角三角形運用勾股定理求值是解題的關鍵.11、B【分析】先過點O作OD⊥AB于點D,連接OA,由垂徑定理可知AD=AB,設OA=r,則OD=r﹣2,在Rt△AOD中,利用勾股定理即可求出r的值.【詳解】解:如圖所示:過點O作OD⊥AB于點D,連接OA,∵OD⊥AB,∴AD=AB=4cm,設OA=r,則OD=r﹣2,在Rt△AOD中,OA2=OD2+AD2,即r2=(r﹣2)2+42,解得r=5cm.∴該輸水管的半徑為5cm;故選:B.【點睛】此題主要考查垂徑定理,解題的關鍵是熟知垂徑定理及勾股定理的運用.12、B【分析】根據(jù)兩內(nèi)項之積等于兩外項之積對各選項分析判斷即可得解.【詳解】解:由得,3a=2b,A、由等式性質(zhì)可得:3a=2b,正確;B、由等式性質(zhì)可得2a=3b,錯誤;C、由等式性質(zhì)可得:3a=2b,正確;D、由等式性質(zhì)可得:3a=2b,正確;故選B.【點睛】本題考查了比例的性質(zhì),主要利用了兩內(nèi)項之積等于兩外項之積.二、填空題(每題4分,共24分)13、或【分析】分當點D在線段BC上時和當點D在線段CB的延長線上時兩種情況討論,根據(jù)平行線分線段成比例定理列出比例式,計算即可.【詳解】解:當點D在線段BC上時,如圖,
過點D作DF//CE,∵,
∴,即EB=4BF,
∵點為邊的中點,
∴AE=EB,∴,
當點D在線段CB的延長線上時,如圖,
過點D作DF//CE,∵,
∴,即MF=2DF,
∵點為邊的中點,
∴AE=EB,∴AM=MF=2DF∴,故答案為或.【點睛】本題考查的是平行線分線段成比例定理,靈活運用定理、找準對應關系是解題的關鍵.14、1【分析】先設建筑物的高為h米,再根據(jù)同一時刻物高與影長成正比列出關系式求出h的值即可.【詳解】解:設建筑物的高為h米,則=,解得h=1.故答案為:1.【點睛】本題考查的是相似三角形的應用,熟知同一時刻物高與影長成正比是解答此題的關鍵.15、1【分析】由題意先根據(jù)旋轉(zhuǎn)的性質(zhì)得到∠ACA′=90°,CA=CA′,∠B=∠CB′A′,則可判斷△CAA′為等腰直角三角形,所以∠CAA′=45°,然后利用三角形外角性質(zhì)計算出∠CB′A′,從而得到∠B的度數(shù).【詳解】解:∵Rt△ABC繞直角頂點C順時針旋轉(zhuǎn)90°,得到△A′B′C,∴∠ACA′=90°,CA=CA′,∠B=∠CB′A′,∴△CAA′為等腰直角三角形,∴∠CAA′=45°,∵∠CB′A′=∠B′AC+∠1=45°+20°=1°,∴∠B=1°.故答案為:1.【點睛】本題考查旋轉(zhuǎn)的性質(zhì),注意掌握對應點到旋轉(zhuǎn)中心的距離相等;對應點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等.16、.【解析】給圖中各點標上字母,連接DE,利用等腰三角形的性質(zhì)及三角形內(nèi)角和定理可得出∠α=30°,同理,可得出:∠CDE=∠CED=30°=∠α,由∠AEC=60°結(jié)合∠AED=∠AEC+∠CED可得出∠AED=90°,設等邊三角形的邊長為a,則AE=2a,DE=a,利用勾股定理可得出AD的長,再結(jié)合余弦的定義即可求出cos(α+β)的值.【詳解】給圖中各點標上字母,連接DE,如圖所示.在△ABC中,∠ABC=120°,BA=BC,∴∠α=30°.同理,可得出:∠CDE=∠CED=30°=∠α.又∵∠AEC=60°,∴∠AED=∠AEC+∠CED=90°.設等邊三角形的邊長為a,則AE=2a,DE=2×sin60°?a=a,∴,∴cos(α+β)=.故答案為:.【點睛】本題考查了解直角三角形、等邊三角形的性質(zhì)以及規(guī)律型:圖形的變化類,構(gòu)造出含一個銳角等于∠α+∠β的直角三角形是解題的關鍵.17、【分析】先求得正方形的邊長,取AB的中點G,連接GF,CG,當點C、F、G在同一直線上時,根據(jù)兩點之間線段最短,則CF有最小值,此時即可求得這個值.【詳解】如圖,連接OA、OD,取AB的中點G,連接GF,CG,∵ABCD是圓內(nèi)接正方形,,∴,∴,∵AF⊥BE,∴,∴,,當點C、F、G在同一直線上時,CF有最小值,如下圖:最小值是:,故答案為:【點睛】本題主要考查了正方形的性質(zhì),勾股定理,直角三角形斜邊上的中線的性質(zhì),根據(jù)兩點之間線段最短確定CF的最小值是解決本題的關鍵.18、1【分析】可得出△OAB∽△OCD,可求出CD的長.【詳解】解:∵AB∥CD,
∴△OAB∽△OCD,
∴,
∵,若AB=8,
∴CD=1.
故答案為:1.【點睛】此題考查相似三角形的判定與性質(zhì),解題的關鍵是熟練掌握基本知識.三、解答題(共78分)19、(1)y=,y=1x+1;(1)四邊形MBOC的面積是2.【分析】(1)根據(jù)題意可以求得點B的坐標,從而可以求得反比例函數(shù)的解析式,進而求得點A的坐標,從而可以求得一次函數(shù)的解析式;(1)根據(jù)(1)中的函數(shù)解析式可以求得點C,從而可以求得四邊形MBOC是平行四邊形,根據(jù)面積公式即可求得.【詳解】解:(1)∵BM=OM=1,∴點B的坐標為(﹣1,﹣1),∵反比例函數(shù)y=(k≠0)的圖象經(jīng)過點B,則﹣1=,得k=2,∴反比例函數(shù)的解析式為y=,∵點A的縱坐標是2,∴2=,得x=1,∴點A的坐標為(1,2),∵一次函數(shù)y=mx+n(m≠0)的圖象過點A(1,2)、點B(﹣1,﹣1),∴,解得,即一次函數(shù)的解析式為y=1x+1;(1)∵y=1x+1與y軸交于點C,∴點C的坐標為(0,1),∵點B(﹣1,﹣1),點M(﹣1,0),∴OC=MB=1,∵BM⊥x軸,∴MB∥OC,∴四邊形MBOC是平行四邊形,∴四邊形MBOC的面積是:OM?OC=2.【點睛】本題考查反比例函數(shù)與一次函數(shù)的交點問題,解答本題的關鍵是明確題意,找出所求問題需要的條件,利用一次函數(shù)的性質(zhì)和反比例函數(shù)的性質(zhì)解答.20、【分析】先將-2(x+1)=3化成-2(x+1)-3=0,再將x+1當作一個整體運用因式分解法求出x+1,最后求出x.【詳解】解:∵-2(x+1)=3化成-2(x+1)-3=0∴(x+1-3)(x+1+1)=0∴x+1-3=0或x+1+1=0∴【點睛】本題考查了一元二次方程的解法,掌握整體換元法是解答本題的關鍵.21、(1);(2)-8【分析】(1)設,將x=2,y=1代入求解即可;(2)將x=代入反比例函數(shù)解析式求出y值.【詳解】解:(1)設∵當x=2時,y=1.∴.∴.∴(2)將x=代入得:所以.【點睛】本題考查了反比例函數(shù)的解析式,熟練掌握求反比例函數(shù)解析式的方法是解題關鍵.22、(1)y=﹣x2+2x+1;(2)-3;(3)當m=2﹣1時,點P的坐標為(0,)和(0,);當m=2時,點P的坐標為(0,1)和(0,2).【解析】(1)根據(jù)對稱軸為直線x=1且拋物線過點A(0,1)利用待定系數(shù)法進行求解可即得;(2)根據(jù)直線y=kx﹣k+4=k(x﹣1)+4知直線所過定點G坐標為(1,4),從而得出BG=2,由S△BMN=S△BNG﹣S△BMG=BG?xN﹣BG?xM=1得出xN﹣xM=1,聯(lián)立直線和拋物線解析式求得x=,根據(jù)xN﹣xM=1列出關于k的方程,解之可得;(3)設拋物線L1的解析式為y=﹣x2+2x+1+m,知C(0,1+m)、D(2,1+m)、F(1,0),再設P(0,t),分△PCD∽△POF和△PCD∽△POF兩種情況,由對應邊成比例得出關于t與m的方程,利用符合條件的點P恰有2個,結(jié)合方程的解的情況求解可得.【詳解】(1)由題意知,解得:,∴拋物線L的解析式為y=﹣x2+2x+1;(2)如圖1,設M點的橫坐標為xM,N點的橫坐標為xN,∵y=kx﹣k+4=k(x﹣1)+4,∴當x=1時,y=4,即該直線所過定點G坐標為(1,4),∵y=﹣x2+2x+1=﹣(x﹣1)2+2,∴點B(1,2),則BG=2,∵S△BMN=1,即S△BNG﹣S△BMG=BG?(xN﹣1)-BG?(xM-1)=1,∴xN﹣xM=1,由得:x2+(k﹣2)x﹣k+3=0,解得:x==,則xN=、xM=,由xN﹣xM=1得=1,∴k=±3,∵k<0,∴k=﹣3;(3)如圖2,設拋物線L1的解析式為y=﹣x2+2x+1+m,∴C(0,1+m)、D(2,1+m)、F(1,0),設P(0,t),(a)當△PCD∽△FOP時,,∴,∴t2﹣(1+m)t+2=0①;(b)當△PCD∽△POF時,,∴,∴t=(m+1)②;(Ⅰ)當方程①有兩個相等實數(shù)根時,△=(1+m)2﹣8=0,解得:m=2﹣1(負值舍去),此時方程①有兩個相等實數(shù)根t1=t2=,方程②有一個實數(shù)根t=,∴m=2﹣1,此時點P的坐標為(0,)和(0,);(Ⅱ)當方程①有兩個不相等的實數(shù)根時,把②代入①,得:(m+1)2﹣(m+1)+2=0,解得:m=2(負值舍去),此時,方程①有兩個不相等的實數(shù)根t1=1、t2=2,方程②有一個實數(shù)根t=1,∴m=2,此時點P的坐標為(0,1)和(0,2);綜上,當m=2﹣1時,點P的坐標為(0,)和(0,);當m=2時,點P的坐標為(0,1)和(0,2).【點睛】本題主要考查二次函數(shù)的應用,涉及到待定系數(shù)法求函數(shù)解析式、割補法求三角形的面積、相似三角形的判定與性質(zhì)等,(2)小題中根據(jù)三角形BMN的面積求得點N與點M的橫坐標之差是解題的關鍵;(3)小題中運用分類討論思想進行求解是關鍵.23、(1)證明見解析;(2)9.【分析】(1)首先根據(jù)直角三角形斜邊中線的性質(zhì),得出,進而得出,然后由垂直的性質(zhì)得出,最后由,即可得出;(2)首先由相似三角形的性質(zhì)得出,然后由得出,進而即可得出的值.【詳解】是直角三角形斜邊上的中線.,而又由(1)知即..【點睛】此題主要考查直角三角形斜邊中線性質(zhì)以及相似三角形的判定與性質(zhì),熟練掌握,即可解題.24、(1);(2)【分析】此題可以采用列表法求解.可以得到一共有9種情況,兩輛車中恰有一輛車向左轉(zhuǎn)的有4種情況,兩輛車行駛方向相同有3種情況,根據(jù)概率公式求解即可.【詳解】解:列表得:左直右左左左左直左右直左直直直直右右左右直右右右共有9種等可能結(jié)果,其中,兩輛車中恰有一輛車向左轉(zhuǎn)的有4種情況;兩輛車行駛方向相同有3種情況(1)P(兩輛車中恰有一輛車向左轉(zhuǎn))=;(2)P(兩輛車行駛方向相同)=.【點睛】列表法可以不重不漏的列舉出所有可能發(fā)生的情況,列舉法適合于兩步完成的事件,樹狀圖法適合于兩步或兩步以上完成的事件.解題時注意看清題目的要求,要按要求解題.概率=所求情況數(shù)與總情況數(shù)之比.25、(1)P(小穎去)=;(2)不公平,見解析.【分析】(1)首先根據(jù)題意畫出樹狀圖,由樹狀圖求得所有等可能的結(jié)果與兩指針所指數(shù)字之和和小于4的情況,則可求得小穎參加比賽的概率;(2)根據(jù)小穎獲勝與小亮獲勝的概率,比較概率是否相等,即可判定游戲是否公平;使游戲公平,只要概率相等即可.【詳解】(1)畫樹狀圖得:∵共有12種等可能的結(jié)果,所指數(shù)字之和小于4的有3種情況,∴P(和小于4)==,∴小穎參加比賽的概率為:;(2)不公平,∵P(小穎)=,P(小亮)=.∴P(和小于4)≠P(和大于等于4),∴游戲不公平;可改為:若兩個數(shù)字之和小于5,則小穎去參賽;否則,小亮去參賽.26、(1)y=x2+6x+5;(2)①S△PBC的最大值為;②存在,點P的坐標為P(﹣,﹣)或(0,5).【解析】(1)將點A、B坐標代入二次函數(shù)表達式,即可求出二次函數(shù)解析式;(2)①如圖1,過點P作y軸的平行線交BC于點G,將點B、C的坐標代入一次函數(shù)表達式并解得:直線BC的表達式為:y=x+1,設點G(t,t+1),則點P(t,t2+
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 豫章師范學院《油畫靜物技法與表現(xiàn)》2023-2024學年第二學期期末試卷
- 珠海格力職業(yè)學院《藏文文法上》2023-2024學年第二學期期末試卷
- 遼寧石化職業(yè)技術(shù)學院《語文學科教育論》2023-2024學年第二學期期末試卷
- 西安歐亞學院《數(shù)據(jù)分析與可視化》2023-2024學年第二學期期末試卷
- 南京工業(yè)大學《建筑防火設計》2023-2024學年第二學期期末試卷
- 西安科技大學高新學院《汽車發(fā)展史》2023-2024學年第二學期期末試卷
- 遼寧工程技術(shù)大學《資產(chǎn)評估學》2023-2024學年第二學期期末試卷
- 四川航天職業(yè)技術(shù)學院《嵌入式系統(tǒng)設計與開發(fā)》2023-2024學年第二學期期末試卷
- 合肥信息技術(shù)職業(yè)學院《建筑類專業(yè)導論》2023-2024學年第二學期期末試卷
- 南華大學船山學院《素描半身帶手及全身像實踐教學》2023-2024學年第二學期期末試卷
- 美團外賣騎手服務合同(2025年度)
- 應急預案解讀與實施
- 2025年春季學期團委工作安排表
- 2025年《國有企業(yè)領導人員腐敗案例剖析》心得體會樣本(3篇)
- 廣告行業(yè)安全培訓詳細介紹
- 2024-2029年全球及中國氨能源(綠氨)應用可行性研究與投資戰(zhàn)略規(guī)劃分析報告
- 2025福南平市建武夷水務發(fā)展限公司招聘21人高頻重點提升(共500題)附帶答案詳解
- 2025年上半年工業(yè)和信息化部裝備工業(yè)發(fā)展中心應屆畢業(yè)生招聘(第二批)易考易錯模擬試題(共500題)試卷后附參考答案
- 2025年中遠海運物流有限公司招聘筆試參考題庫含答案解析
- 2024年廣州市海珠區(qū)衛(wèi)生健康系統(tǒng)招聘事業(yè)單位工作人員筆試真題
- 一科一品一骨科護理
評論
0/150
提交評論