版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每題4分,共48分)1.如果二次函數(shù)的圖像如圖所示,那么一次函數(shù)的圖像經(jīng)過()A.第一、二、三象限 B.第一、三、四象限C.第一、二、四象限 D.第二、三、四象限2.已知關(guān)于x的一元二次方程有實(shí)數(shù)根,則m的取值范圍是()A.m≥2 B.m≤5 C.m>2 D.m<53.如圖,從點(diǎn)看一山坡上的電線桿,觀測(cè)點(diǎn)的仰角是45°,向前走到達(dá)點(diǎn),測(cè)得頂端點(diǎn)和桿底端點(diǎn)的仰角分別是60°和30°,則該電線桿的高度()A. B. C. D.4.如圖,四邊形ABCD是正方形,以BC為底邊向正方形外部作等腰直角三角形BCE,連接AE,分別交BD,BC于點(diǎn)F,G,則下列結(jié)論:①△AFB∽△ABE;②△ADF∽△GCE;③CG=3BG;④AF=EF,其中正確的有().A.①③ B.②④ C.①② D.③④5.如圖,△AOB縮小后得到△COD,△AOB與△COD的相似比是3,若C(1,2),則點(diǎn)A的坐標(biāo)為()A.(2,4) B.(2,6) C.(3,6) D.(3,4)6.如圖,在中,中線相交于點(diǎn),連接,則的值是()A. B. C. D.7.在如圖所示的平面直角坐標(biāo)系中,△OA1B1是邊長(zhǎng)為2的等邊三角形,作△B2A2B1與△OA1B1關(guān)于點(diǎn)B1成中心對(duì)稱,再作△B2A3B3與△B2A2B1關(guān)于點(diǎn)B2成中心對(duì)稱,如此作下去,則△B2nA2n+1B2n+1(n是正整數(shù))的頂點(diǎn)A2n+1的坐標(biāo)是()A.(4n﹣1,) B.(2n﹣1,) C.(4n+1,) D.(2n+1,)8.下列各點(diǎn)在拋物線上的是()A. B. C. D.9.下列四個(gè)圖形中,既是軸對(duì)稱圖形又是中心對(duì)稱圖形的是()A. B. C. D.10.已知⊙O的半徑為4cm,點(diǎn)P在⊙O上,則OP的長(zhǎng)為()A.2cm B.4cm C.6cm D.8cm11.若反比例函數(shù)圖象上有兩個(gè)點(diǎn),設(shè),則不經(jīng)過第()象限.A.一 B.二 C.三 D.四12.如圖,在紙上剪一個(gè)圓形和一個(gè)扇形的紙片,使之恰好能圍成一個(gè)圓錐模型,若圓的半徑r=1,扇形的半徑為R,扇形的圓心角等于90°,則R的值是()A.R=2 B.R=3 C.R=4 D.R=5二、填空題(每題4分,共24分)13.在一個(gè)不透明的袋子里,有2個(gè)黑球和1個(gè)白球,除了顏色外其它都相同,任意摸出一個(gè)球,摸到黑球的概率是__________.14.一組數(shù)據(jù):﹣1,3,2,x,5,它有唯一的眾數(shù)是3,則這組數(shù)據(jù)的中位數(shù)是__.15.已知:在⊙O中,直徑AB=4,點(diǎn)P、Q均在⊙O上,且∠BAP=60°,∠BAQ=30°,則弦PQ的長(zhǎng)為_____.16.請(qǐng)寫出一個(gè)符合以下兩個(gè)條件的反比例函數(shù)的表達(dá)式:___________________.①圖象位于第二、四象限;②如果過圖象上任意一點(diǎn)A作AB⊥x軸于點(diǎn)B,作AC⊥y軸于點(diǎn)C,那么得到的矩形ABOC的面積小于1.17.一枚質(zhì)地均勻的骰子,六個(gè)面分別標(biāo)有數(shù)字1,2,3,4,5,6,拋擲一次,恰好出現(xiàn)“正面朝上的數(shù)字是5”的概率是___________.18.化簡(jiǎn):________.三、解答題(共78分)19.(8分)若邊長(zhǎng)為6的正方形ABCD繞點(diǎn)A順時(shí)針旋轉(zhuǎn),得正方形AB′C′D′,記旋轉(zhuǎn)角為a.(I)如圖1,當(dāng)a=60°時(shí),求點(diǎn)C經(jīng)過的弧的長(zhǎng)度和線段AC掃過的扇形面積;(Ⅱ)如圖2,當(dāng)a=45°時(shí),BC與D′C′的交點(diǎn)為E,求線段D′E的長(zhǎng)度;(Ⅲ)如圖3,在旋轉(zhuǎn)過程中,若F為線段CB′的中點(diǎn),求線段DF長(zhǎng)度的取值范圍.20.(8分)問題探究:(1)如圖①所示是一個(gè)半徑為,高為4的圓柱體和它的側(cè)面展開圖,AB是圓柱的一條母線,一只螞蟻從A點(diǎn)出發(fā)沿圓柱的側(cè)面爬行一周到達(dá)B點(diǎn),求螞蟻爬行的最短路程.(探究思路:將圓柱的側(cè)面沿母線AB剪開,它的側(cè)面展開圖如圖①中的矩形則螞蟻爬行的最短路程即為線段的長(zhǎng))(2)如圖②所示是一個(gè)底面半徑為,母線長(zhǎng)為4的圓錐和它的側(cè)面展開圖,PA是它的一條母線,一只螞蟻從A點(diǎn)出發(fā)沿圓錐的側(cè)面爬行一周后回到A點(diǎn),求螞蟻爬行的最短路程.(3)如圖③所示,在②的條件下,一只螞蟻從A點(diǎn)出發(fā)沿圓錐的側(cè)面爬行一周到達(dá)母線PA上的一點(diǎn),求螞蟻爬行的最短路程.21.(8分)如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=x2+bx+c的圖象與x軸交于A、B兩點(diǎn),B點(diǎn)的坐標(biāo)為(3,0),與y軸交于點(diǎn)C(0,﹣3),點(diǎn)P是直線BC下方拋物線上的任意一點(diǎn)。(1)求這個(gè)二次函數(shù)y=x2+bx+c的解析式。(2)連接PO,PC,并將△POC沿y軸對(duì)折,得到四邊形POP′C,如果四邊形POP′C為菱形,求點(diǎn)P的坐標(biāo)。22.(10分)如圖,一次函數(shù)y=﹣x+4的圖象與反比例函數(shù)y=(k為常數(shù),且k≠0)的圖象交于A(1,a),B(3,b)兩點(diǎn).(1)求反比例函數(shù)的表達(dá)式(2)在x軸上找一點(diǎn)P,使PA+PB的值最小,求滿足條件的點(diǎn)P的坐標(biāo)(3)求△PAB的面積.23.(10分)(1)解方程:x2+4x-1=0(2)已知α為銳角,若,求的度數(shù).24.(10分)端午節(jié)放假期間,小明和小華準(zhǔn)備到巴馬的水晶宮(記為A)、百魔洞(記為B)、百鳥巖(記為C)、長(zhǎng)壽村(記為D)的一個(gè)景點(diǎn)去游玩,他們各自在這四個(gè)景點(diǎn)中任選一個(gè),每個(gè)景點(diǎn)都被選中的可能性相同.(1)求小明選擇去百魔洞旅游的概率.(2)用樹狀圖或列表的方法求小明和小華都選擇去長(zhǎng)壽村旅游的概率.25.(12分)如圖,已知∠BAC=30°,把△ABC繞著點(diǎn)A順時(shí)針旋轉(zhuǎn)到△ADE的位置,使得點(diǎn)D,A,C在同一直線上.(1)△ABC旋轉(zhuǎn)了多少度?(2)連接CE,試判斷△AEC的形狀;(3)求∠AEC的度數(shù).26.某次足球比賽,隊(duì)員甲在前場(chǎng)給隊(duì)友乙擲界外球.如圖所示:已知兩人相距8米,足球出手時(shí)的高度為2.4米,運(yùn)行的路線是拋物線,當(dāng)足球運(yùn)行的水平距離為2米時(shí),足球達(dá)到最大高度4米.請(qǐng)你根據(jù)圖中所建坐標(biāo)系,求出拋物線的表達(dá)式.
參考答案一、選擇題(每題4分,共48分)1、B【分析】由二次函數(shù)解析式表示出頂點(diǎn)坐標(biāo),根據(jù)圖形得到頂點(diǎn)在第四象限,求出m與n的正負(fù),即可作出判斷.【詳解】根據(jù)題意得:拋物線的頂點(diǎn)坐標(biāo)為(m,n),且在第四象限,
∴m>0,n<0,
則一次函數(shù)y=mx+n經(jīng)過第一、三、四象限.
故選:B.【點(diǎn)睛】此題考查了二次函數(shù)與一次函數(shù)圖象與系數(shù)的關(guān)系,熟練掌握二次函數(shù)及一次函數(shù)的圖象與性質(zhì)是解題的關(guān)鍵.2、B【分析】根據(jù)一元二次方程根的情況即可列出不等式,從而求出m的取值范圍.【詳解】解:∵關(guān)于x的一元二次方程有實(shí)數(shù)根,∴b2﹣4ac=1﹣4()≥0,解得:m≤5故選:B.【點(diǎn)睛】此題考查的是根據(jù)一元二次方程根的情況,求參數(shù)的取值范圍,掌握一元二次方程根的情況與△的關(guān)系是解決此題的關(guān)鍵.3、A【分析】延長(zhǎng)PQ交直線AB于點(diǎn)E,設(shè)PE=x米,在直角△APE和直角△BPE中,根據(jù)三角函數(shù)利用x表示出AE和BE,根據(jù)AB=AE-BE即可列出方程求得x的值,再在直角△BQE中利用三角函數(shù)求得QE的長(zhǎng),則PQ的長(zhǎng)度即可求解.【詳解】解:延長(zhǎng)PQ交直線AB于點(diǎn)E,設(shè)PE=x.
在直角△APE中,∠PAE=45°,
則AE=PE=x;
∵∠PBE=60°
∴∠BPE=30°
在直角△BPE中,,∵AB=AE-BE=6,則解得:∴在直角△BEQ中,故選:A【點(diǎn)睛】本題考查解直角三角形的應(yīng)用-仰角俯角問題,解答本題的關(guān)鍵是明確題意,利用銳角三角函數(shù)和數(shù)形結(jié)合的思想解答.4、B【解析】連接AC,交BD于O,過點(diǎn)E作EH⊥BC于H,由正方形的性質(zhì)及等腰直角三角形的性質(zhì)可得∠ADF=∠ABD=∠BCE=∠CBE=45°,可得∠ABE=135°,根據(jù)外角性質(zhì)可得∠AFD=∠FAB+∠ABF>45°,利用平角定義可得∠AFB<135°,即可證明∠AFB≠∠ABE,可對(duì)①進(jìn)行判斷;由EH⊥BC可證明EH//AB,根據(jù)平行線的性質(zhì)可得∠HEG=∠FAB,根據(jù)角的和差關(guān)系可證明∠DAF=∠CEG,即可證明△ADF∽△GCE;可對(duì)②進(jìn)行判斷,由EH//AB可得△HEG∽△BAG,根據(jù)相似三角形的性質(zhì)即可得出BG=2HG,根據(jù)等腰直角三角形性質(zhì)可得CH=BH,進(jìn)而可得CG=2BG,可對(duì)③進(jìn)行判斷;根據(jù)正方形的性質(zhì)可得OA=BE,∠AOF=∠FBE=90°,利用AAS可證明△AOF≌△EBF,可得AF=EF,可對(duì)④進(jìn)行判斷;綜上即可得答案.【詳解】如圖,連接AC,交BD于O,過點(diǎn)E作EH⊥BC于H,∵ABCD是正方形,△BCE是等腰直角三角形,∴∠ADF=∠ABD=∠BCE=∠CBE=45°,∴∠ABE=135°,∵∠AFD=∠BAF+∠ABF=∠BAF+45°>45°,∴∠AFB=180°-∠AFD<135°,∴∠AFB≠∠ABE,∴△AFB與△ABE不相似,故①錯(cuò)誤,∵EH⊥BC,∠ABC=90°,∴EH//AB,∴∠HEG=∠FAB,∴∠AFD=∠FAB+∠ABD=45°+∠HEG=∠CEG,又∵∠ADB=∠GCE=45°,∴△ADF∽△GCE,故②正確,∵EH//AB,∴△HEG∽△BAG,∴,∵△BCE是等腰直角三角形,∴EH=CH=BH=BC=AB,∴=,即BG=2HG,∴CH=BH=3HG,∴CG=CH+HG=4HG,∴CG=2BG,故③錯(cuò)誤,∵ABCD是正方形,△BCE是等腰直角三角形,∴∠AOF=90°,∠FBE=∠DBC+∠CBE=45°+45°=90°,OA=AB,BE=BC,∴∠AOF=∠FBE,OA=BE,在△AOF和△EBF中,,∴△AOF≌△EBF,∴AF=EF,故④正確,綜上所述:正確的結(jié)論有②④,故選:B.【點(diǎn)睛】本題考查正方形的性質(zhì)、等腰直角三角形的性質(zhì)、全等三角形的判定與性質(zhì)及相似三角形的判定與性質(zhì),熟練掌握相關(guān)判定定理及性質(zhì)是解題關(guān)鍵.5、C【解析】根據(jù)位似變換的性質(zhì)計(jì)算即可.【詳解】由題意得,點(diǎn)A與點(diǎn)C是對(duì)應(yīng)點(diǎn),△AOB與△COD的相似比是3,∴點(diǎn)A的坐標(biāo)為(1×3,2×3),即(3,6),故選:C.【點(diǎn)睛】本題考查的是位似變換的性質(zhì),掌握在平面直角坐標(biāo)系中,如果位似變換是以原點(diǎn)為位似中心,相似比為k,那么位似圖形對(duì)應(yīng)點(diǎn)的坐標(biāo)的比等于k或﹣k是解題的關(guān)鍵.6、B【分析】BE、CD是△ABC的中線,可知DE是△ABC的中位線,于是有DE∥BC,△ODE∽△OCB,根據(jù)相似三角形的性質(zhì)即可判斷.【詳解】解:∵BE、CD是△ABC的中線,∴DE是△ABC的中位線,
∴DE∥BC,DE=BC,
∴△DOE∽△COB,∴,故選:B.【點(diǎn)睛】本題考查了三角形的中位線定理,相似三角形的判定與性質(zhì),證明△ODE和△OBC相似是關(guān)鍵.7、C【解析】試題分析:∵△OA1B1是邊長(zhǎng)為2的等邊三角形,∴A1的坐標(biāo)為(1,),B1的坐標(biāo)為(2,0),∵△B2A2B1與△OA1B1關(guān)于點(diǎn)B1成中心對(duì)稱,∴點(diǎn)A2與點(diǎn)A1關(guān)于點(diǎn)B1成中心對(duì)稱,∵2×2﹣1=3,2×0﹣=﹣,∴點(diǎn)A2的坐標(biāo)是(3,﹣),∵△B2A3B3與△B2A2B1關(guān)于點(diǎn)B2成中心對(duì)稱,∴點(diǎn)A3與點(diǎn)A2關(guān)于點(diǎn)B2成中心對(duì)稱,∵2×4﹣3=5,2×0﹣(﹣)=,∴點(diǎn)A3的坐標(biāo)是(5,),∵△B3A4B4與△B3A3B2關(guān)于點(diǎn)B3成中心對(duì)稱,∴點(diǎn)A4與點(diǎn)A3關(guān)于點(diǎn)B3成中心對(duì)稱,∵2×6﹣5=7,2×0﹣=﹣,∴點(diǎn)A4的坐標(biāo)是(7,﹣),…,∵1=2×1﹣1,3=2×2﹣1,5=2×3﹣1,7=2×3﹣1,…,∴An的橫坐標(biāo)是2n﹣1,A2n+1的橫坐標(biāo)是2(2n+1)﹣1=4n+1,∵當(dāng)n為奇數(shù)時(shí),An的縱坐標(biāo)是,當(dāng)n為偶數(shù)時(shí),An的縱坐標(biāo)是﹣,∴頂點(diǎn)A2n+1的縱坐標(biāo)是,∴△B2nA2n+1B2n+1(n是正整數(shù))的頂點(diǎn)A2n+1的坐標(biāo)是(4n+1,).故選C.考點(diǎn):坐標(biāo)與圖形變化-旋轉(zhuǎn).8、A【分析】確定點(diǎn)是否在拋物線上,分別把x=0,3,-2,代入中計(jì)算出對(duì)應(yīng)的函數(shù)值,再進(jìn)行判斷即可.【詳解】解:當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)時(shí),,所以點(diǎn)在拋物線上.故選:.9、A【解析】根據(jù)軸對(duì)稱圖形與中心對(duì)稱圖形的概念求解.【詳解】解:A、是軸對(duì)稱圖形,是中心對(duì)稱圖形,故此選項(xiàng)正確;
B、是軸對(duì)稱圖形,不是中心對(duì)稱圖形,故此選項(xiàng)錯(cuò)誤;
C、不是軸對(duì)稱圖形,不是中心對(duì)稱圖形,故此選項(xiàng)錯(cuò)誤;
D、不是軸對(duì)稱圖形,是中心對(duì)稱圖形,故此選項(xiàng)錯(cuò)誤;
故選:A.【點(diǎn)睛】此題主要考查了中心對(duì)稱圖形與軸對(duì)稱圖形的概念.軸對(duì)稱圖形的關(guān)鍵是尋找對(duì)稱軸,圖形兩部分折疊后可重合,中心對(duì)稱圖形是要尋找對(duì)稱中心,旋轉(zhuǎn)180度后兩部分重合.10、B【分析】根據(jù)點(diǎn)在圓上,點(diǎn)到圓心的距離等于圓的半徑求解.【詳解】∵⊙O的半徑為4cm,點(diǎn)P在⊙O上,∴OP=4cm.故選:B.【點(diǎn)睛】本題考查了點(diǎn)與圓的位置關(guān)系:設(shè)⊙O的半徑為r,點(diǎn)P到圓心的距離OP=d,則有:點(diǎn)P在圓外?d>r;點(diǎn)P在圓上?d=r;點(diǎn)P在圓內(nèi)?d<r.11、C【分析】利用反比例函數(shù)的性質(zhì)判斷出m的正負(fù),再根據(jù)一次函數(shù)的性質(zhì)即可判斷.【詳解】解:∵,∴a-1>0,∴圖象在三象限,且y隨x的增大而減小,∵圖象上有兩個(gè)點(diǎn)(x1,y1),(x2,y2),x1與y1同負(fù),x2與y2同負(fù),∴m=(x1-x2)(y1-y2)<0,∴y=mx-m的圖象經(jīng)過一,二、四象限,不經(jīng)過三象限,故選:C.【點(diǎn)睛】本題考查反比例函數(shù)的性質(zhì),一次函數(shù)的性質(zhì)等知識(shí),解題的關(guān)鍵是熟練掌握基本知識(shí),屬于中考常考題型.12、C【分析】利用圓錐的底面周長(zhǎng)等于側(cè)面展開圖的扇形弧長(zhǎng),根據(jù)弧長(zhǎng)公式計(jì)算.【詳解】解:扇形的弧長(zhǎng)是:=,圓的半徑r=1,則底面圓的周長(zhǎng)是2π,圓錐的底面周長(zhǎng)等于側(cè)面展開圖的扇形弧長(zhǎng)則得到:=2π,∴=2,即:R=4,故選C.【點(diǎn)睛】本題主要考查圓錐底面周長(zhǎng)與展開扇形弧長(zhǎng)關(guān)系,解決本題的關(guān)鍵是要熟練掌握?qǐng)A錐底面周長(zhǎng)與展開扇形之間關(guān)系.二、填空題(每題4分,共24分)13、【解析】袋子中一共有3個(gè)球,其中有2個(gè)黑球,根據(jù)概率公式直接進(jìn)行計(jì)算即可.【詳解】袋子中一共有3個(gè)球,其中有2個(gè)黑球,所以任意摸出一個(gè)球,摸到黑球的概率是,故答案為:.【點(diǎn)睛】本題考查了簡(jiǎn)單的概率計(jì)算,熟練掌握概率的計(jì)算公式是解題的關(guān)鍵.14、1【解析】先根據(jù)數(shù)據(jù)的眾數(shù)確定出x的值,即可得出結(jié)論.【詳解】∵一組數(shù)據(jù):﹣1,1,2,x,5,它有唯一的眾數(shù)是1,∴x=1,∴此組數(shù)據(jù)為﹣1,2,1,1,5,∴這組數(shù)據(jù)的中位數(shù)為1.故答案為1.【點(diǎn)睛】本題考查了數(shù)據(jù)的中位數(shù),眾數(shù)的確定,掌握中位數(shù)和眾數(shù)的確定方法是解答本題的關(guān)鍵.15、2或1【分析】當(dāng)點(diǎn)P和Q在AB的同側(cè),如圖1,連接OP、OQ、PQ,先計(jì)算出∠PAQ=30°,根據(jù)圓周角定理得到∠POQ=60°,則可判斷△OPQ為等邊三角形,從而得到PQ=OP=2;當(dāng)點(diǎn)P和Q在AB的同側(cè),如圖1,連接PQ,先計(jì)算出∠PAQ=90°,根據(jù)圓周角定理得到PQ為直徑,從而得到PQ=1.【詳解】解:當(dāng)點(diǎn)P和Q在AB的同側(cè),如圖1,連接OP、OQ、PQ,∵∠BAP=60°,∠BAQ=30°,∴∠PAQ=30°,∴∠POQ=2∠PAQ=2×30°=60°,∴△OPQ為等邊三角形,∴PQ=OP=2;當(dāng)點(diǎn)P和Q在AB的同側(cè),如圖1,連接PQ,∵∠BAP=60°,∠BAQ=30°,∴∠PAQ=90°,∴PQ為直徑,∴PQ=1,綜上所述,PQ的長(zhǎng)為2或1.故答案為2或1.【點(diǎn)睛】本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對(duì)的圓周角相等,都等于這條弧所對(duì)的圓心角的一半.16、,答案不唯一【解析】設(shè)反比例函數(shù)解析式為y=,根據(jù)題意得k<0,|k|<1,當(dāng)k取?5時(shí),反比例函數(shù)解析式為y=?.故答案為y=?.答案不唯一.17、【分析】“正面朝上的數(shù)字是5”的情況數(shù)除以總情況數(shù)6即為所求的概率.【詳解】解:∵拋擲六個(gè)面上分別標(biāo)有數(shù)字1,2,3,4,5,6的骰子共有6種結(jié)果,其中“正面朝上的數(shù)字是5”的只有1種,
∴“正面朝上的數(shù)字是5”的概率為,
故答案為:.【點(diǎn)睛】此題主要考查了概率公式的應(yīng)用,概率等于所求情況數(shù)與總情況數(shù)之比.18、【分析】根據(jù)平面向量的加法法則計(jì)算即可【詳解】.故答案為【點(diǎn)睛】本題考查平面向量的加減法則,解題的關(guān)鍵是熟練掌握平面向量的加減法則,注意平面向量的加減適合加法交換律以及結(jié)合律,適合去括號(hào)法則.三、解答題(共78分)19、(I)12π;(Ⅱ)D′E=6﹣6;(Ⅲ)1﹣1≤DF≤1+1.【分析】(Ⅰ)根據(jù)正方形的性質(zhì)得到AD=CD=6,∠D=90°,由勾股定理得到AC=6,根據(jù)弧長(zhǎng)的計(jì)算公式和扇形的面積公式即可得到結(jié)論;(Ⅱ)連接BC′,根據(jù)題意得到B在對(duì)角線AC′上,根據(jù)勾股定理得到AC′==6,求得BC′=6﹣6,推出△BC′E是等腰直角三角形,得到C′E=BC′=12﹣6,于是得到結(jié)論;(Ⅲ)如圖1,連接DB,AC相交于點(diǎn)O,則O是DB的中點(diǎn),根據(jù)三角形中位線定理得到FO=AB′=1,推出F在以O(shè)為圓心,1為半徑的圓上運(yùn)動(dòng),于是得到結(jié)論.【詳解】解:(Ⅰ)∵四邊形ABCD是正方形,∴AD=CD=6,∠D=90°,∴AC=6,∵邊長(zhǎng)為6的正方形ABCD繞點(diǎn)A順時(shí)針旋轉(zhuǎn),得正方形AB′C′D′,∴∠CAC′=60°,∴的長(zhǎng)度==2π,線段AC掃過的扇形面積==12π;(Ⅱ)解:如圖2,連接BC′,∵旋轉(zhuǎn)角∠BAB′=45°,∠BAD′=45°,∴B在對(duì)角線AC′上,∵B′C′=AB′=6,在Rt△AB′C′中,AC′==6,∴BC′=6﹣6,∵∠C′BE=180°﹣∠ABC=90°,∠BC′E=90°﹣45°=45°,∴△BC′E是等腰直角三角形,∴C′E=BC′=12﹣6,∴D′E=C′D′﹣EC′=6﹣(12﹣6)=6﹣6;(Ⅲ)如圖1,連接DB,AC相交于點(diǎn)O,則O是DB的中點(diǎn),∵F為線段BC′的中點(diǎn),∴FO=AB′=1,∴F在以O(shè)為圓心,1為半徑的圓上運(yùn)動(dòng),∵DO=1,∴DF最大值為1+1,DF的最小值為1﹣1,∴DF長(zhǎng)的取值范圍為1﹣1≤DF≤1+1.【點(diǎn)睛】本題考查了旋轉(zhuǎn)的綜合題,正方形性質(zhì),全等三角形判定與性質(zhì),三角形中位線定理.(Ⅲ)問解題的關(guān)鍵是利用中位線定理得出點(diǎn)P的軌跡.20、(1)螞蟻爬行的最短路程為1;(2)最短路程為;(3)螞蟻爬行的最短距離為【分析】(1)螞蟻爬行的最短路程為圓柱側(cè)面展開圖即矩形的對(duì)角線的長(zhǎng)度,由勾股定理可求得;(2)螞蟻爬行的最短路程為圓錐展開圖中的AA′的連線,可求得△PAA′是等邊三角形,則AA′=PA=4;(3)螞蟻爬行的最短路程為圓錐展開圖中點(diǎn)A到PA的距離.【詳解】(1)由題意可知:在中,即螞蟻爬行的最短路程為1.(2)連結(jié)則的長(zhǎng)為螞蟻爬行的最短路程,設(shè)為圓錐底面半徑,為側(cè)面展開圖(扇形)的半徑,則由題意得:即是等邊三角形最短路程為(3)如圖③所示是圓錐的側(cè)面展開圖,過作于點(diǎn)則線段的長(zhǎng)就是螞蟻爬行的最短路程.在Rt△ACP中,∵∠P=60°,∴∠PAC=30°∴PC=PA=×4=2∴AC==螞蟻爬行的最短距離為【點(diǎn)睛】本題考查了勾股定理,矩形的性質(zhì),圓周長(zhǎng)公式,弧長(zhǎng)公式,等邊三角形的判定和性質(zhì),直角三角形的性質(zhì),掌握相關(guān)公式和性質(zhì)定理是本題的解題關(guān)鍵.21、(1)二次函數(shù)的解析式為;(2)P()時(shí),四邊形POP′C為菱形.【分析】(1)將點(diǎn)B、C的坐標(biāo)代入解方程組即可得到函數(shù)解析式;(2)根據(jù)四邊形POP′C為菱形,得到,且與OC互相垂直平分,可知點(diǎn)P的縱坐標(biāo)為,將點(diǎn)P的縱坐標(biāo)代入解析式即可得到橫坐標(biāo),由此得到答案.【詳解】(1)將點(diǎn)B(3,0)、C(0,﹣3)的坐標(biāo)代入y=x2+bx+c,得,∴∴二次函數(shù)的解析式為;(2)如圖,令中x=0,得y=-3,∴C(0,-3)∵四邊形POP′C為菱形,∴,且與OC互相垂直平分,∴點(diǎn)P的縱坐標(biāo)為,當(dāng)y=時(shí),,得:,∵點(diǎn)P是直線BC下方拋物線上的任意一點(diǎn),∴P()時(shí),四邊形POP′C為菱形.【點(diǎn)睛】此題考查二次函數(shù)的待定系數(shù)法求解析式、菱形的性質(zhì),(2)根據(jù)菱形的對(duì)角線互相垂直平分得到點(diǎn)P的縱坐標(biāo),由此解答問題.22、(1)反比例函數(shù)的表達(dá)式y(tǒng)=,(2)點(diǎn)P坐標(biāo)(,0),(3)S△PAB=1.1.【解析】(1)把點(diǎn)A(1,a)代入一次函數(shù)中可得到A點(diǎn)坐標(biāo),再把A點(diǎn)坐標(biāo)代入反比例解析式中即可得到反比例函數(shù)的表達(dá)式;(2)作點(diǎn)D關(guān)于x軸的對(duì)稱點(diǎn)D,連接AD交x軸于點(diǎn)P,此時(shí)PA+PB的值最小.由B可知D點(diǎn)坐標(biāo),再由待定系數(shù)法求出直線AD的解析式,即可得到點(diǎn)P的坐標(biāo);(3)由S△PAB=S△ABD﹣S△PBD即可求出△PAB的面積.解:(1)把點(diǎn)A(1,a)代入一次函數(shù)y=﹣x+4,得a=﹣1+4,
解得a=3,
∴A(1,3),
點(diǎn)A(1,3)代入反比例函數(shù)y=,
得k=3,
∴反比例函數(shù)的表達(dá)式y(tǒng)=,
(2)把B(3,b)代入y=得,b=1∴點(diǎn)B坐標(biāo)(3,1);作點(diǎn)B作關(guān)于x軸的對(duì)稱點(diǎn)D,交x軸于點(diǎn)C,連接AD,交x軸于點(diǎn)P,此時(shí)PA+PB的值最小,
∴D(3,﹣1),設(shè)直線AD的解析式為y=mx+n,
把A,D兩點(diǎn)代入得,,
解得m=﹣2,n=1,
∴直線AD的解析式為y=﹣2x+1,令y=0,得x=,
∴點(diǎn)P坐標(biāo)(,0),(3)S△PAB
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二四年度智能家電贈(zèng)與協(xié)議及安裝服務(wù)3篇
- 二零二五年度環(huán)保技術(shù)研發(fā)安全生產(chǎn)合作協(xié)議3篇
- 一建建筑成本預(yù)算與合同糾紛解決-2024年視角3篇
- 二零二五年度影視基地場(chǎng)地租賃與拍攝制作合同6篇
- 二零二五年度職業(yè)技能培訓(xùn)保密協(xié)議范本修訂版4篇
- 二零二四年度醫(yī)療機(jī)構(gòu)藥品質(zhì)量管理服務(wù)合同3篇
- 2025年度瓷石礦產(chǎn)資源勘探與開發(fā)合同4篇
- 二零二五年度科技產(chǎn)品體驗(yàn)店承包經(jīng)營(yíng)合作協(xié)議4篇
- 2025年度門樓安全監(jiān)控系統(tǒng)設(shè)計(jì)與安裝合同4篇
- 2024項(xiàng)目部安全培訓(xùn)考試題及參考答案(培優(yōu)A卷)
- 寵物會(huì)展策劃設(shè)計(jì)方案
- 孤殘兒童護(hù)理員(四級(jí))試題
- 梁湘潤(rùn)《子平基礎(chǔ)概要》簡(jiǎn)體版
- 醫(yī)院急診醫(yī)學(xué)小講課課件:急診呼吸衰竭的處理
- 腸梗阻導(dǎo)管在臨床中的使用及護(hù)理課件
- 調(diào)料廠工作管理制度
- 2023年MRI技術(shù)操作規(guī)范
- 小學(xué)英語單詞匯總大全打印
- 衛(wèi)生健康系統(tǒng)安全生產(chǎn)隱患全面排查
- GB/T 15114-2023鋁合金壓鑄件
- 貨物驗(yàn)收單表格模板
評(píng)論
0/150
提交評(píng)論