2025屆廣東省華南師范大第二附屬中學九年級數(shù)學第一學期期末經典模擬試題含解析_第1頁
2025屆廣東省華南師范大第二附屬中學九年級數(shù)學第一學期期末經典模擬試題含解析_第2頁
2025屆廣東省華南師范大第二附屬中學九年級數(shù)學第一學期期末經典模擬試題含解析_第3頁
2025屆廣東省華南師范大第二附屬中學九年級數(shù)學第一學期期末經典模擬試題含解析_第4頁
2025屆廣東省華南師范大第二附屬中學九年級數(shù)學第一學期期末經典模擬試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆廣東省華南師范大第二附屬中學九年級數(shù)學第一學期期末經典模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每題4分,共48分)1.若是二次函數(shù),且開口向下,則的值是()A. B.3 C. D.2.-4的相反數(shù)是()A. B. C.4 D.-43.設m是方程的一個較大的根,n是方程的一個較小的根,則的值是()A. B. C.1 D.24.⊙O的半徑為4,點P到圓心O的距離為d,如果點P在圓內,則d()A. B. C. D.5.二次函數(shù)的圖象如圖所示,下列說法中錯誤的是(

)A.函數(shù)的對稱軸是直線x=1B.當x<2時,y隨x的增大而減小C.函數(shù)的開口方向向上D.函數(shù)圖象與y軸的交點坐標是(0,-3)6.如圖,直線AC,DF被三條平行線所截,若DE:EF=1:2,AB=2,則AC的值為()A.6 B.4 C.3 D.7.如圖,在Rt△ABO中,∠AOB=90°,AO=BO=2,以O為圓心,AO為半徑作半圓,以A為圓心,AB為半徑作弧BD,則圖中陰影部分的面積為()A.3π B.π+1 C.π D.28.如圖,在△ABO中,∠B=90o,OB=3,OA=5,以AO上一點P為圓心,PO長為半徑的圓恰好與AB相切于點C,則下列結論正確的是().A.⊙P的半徑為B.經過A,O,B三點的拋物線的函數(shù)表達式是C.點(3,2)在經過A,O,B三點的拋物線上D.經過A,O,C三點的拋物線的函數(shù)表達式是9.把中考體檢調查學生的身高作為樣本,樣本數(shù)據(jù)落在1.6~2.0(單位:米)之間的頻率為0.28,于是可估計2000名體檢中學生中,身高在1.6~2.0米之間的學生有()A.56 B.560 C.80 D.15010.下列說法中,正確的是()A.不可能事件發(fā)生的概率為0B.隨機事件發(fā)生的概率為C.概率很小的事件不可能發(fā)生D.投擲一枚質地均勻的硬幣100次,正面朝上的次數(shù)一定為50次11.若分式的值為,則的值為()A. B. C. D.12.下列圖形中是中心對稱圖形的共有()A.1個 B.2個 C.3個 D.4個二、填空題(每題4分,共24分)13.如圖,的半徑弦于點,連結并延長交于點,連結.若,,則的長為_______.14.如圖,在以O為圓心的兩個同心圓中,大圓的弦AB是小圓的切線,P為切點,如果AB=8cm,小圓直徑徑為6cm,那么大圓半徑為_____cm.15.分解因式:=__________16.在長8cm,寬6cm的矩形中,截去一個矩形,使留下的矩形與原矩形相似,那么留下的矩形面積是_______cm217.若點是雙曲線上的點,則__________(填“>”,“<”或“=”)18.已知是,則的值等于____________.三、解答題(共78分)19.(8分)如圖,直線與軸交于點(),與軸交于點,拋物線()經過,兩點,為線段上一點,過點作軸交拋物線于點.(1)當時,①求拋物線的關系式;②設點的橫坐標為,用含的代數(shù)式表示的長,并求當為何值時,?(2)若長的最大值為16,試討論關于的一元二次方程的解的個數(shù)與的取值范圍的關系.20.(8分)計算:2sin60°+|3﹣|+(π﹣2)0﹣()﹣121.(8分)樂至縣城有兩座遠近聞名的南北古塔,清朝道光11年至13年(公元1831--1833年)修建,南塔名為“文運塔”,高30米;北塔名為“凌云塔”.為了測量北塔的高度AB,身高為1.65米的小明在C處用測角儀CD,(如圖所示)測得塔頂A的仰角為45°,此時小明在太陽光線下的影長為1.1米,測角儀的影長為1米.隨后,他再向北塔方向前進14米到達H處,又測得北塔的頂端A的仰角為60°,求北塔AB的高度.(參考數(shù)據(jù)≈1.414,≈1.732,結果保留整數(shù))22.(10分)有甲、乙兩個不透明的布袋,甲袋中有2個完全相同的小球,分別標有數(shù)字0和-2;乙袋中有3個完全相同的小球,分別標有數(shù)字-2,0和1,小明從甲袋中隨機取出1個小球,記錄標有的數(shù)字為x,再從乙袋中隨機取出1個小球,記錄標有的數(shù)字為y,這樣確定了點Q的坐標(x,y).(1)寫出點Q所有可能的坐標;(2)求點Q在x軸上的概率.23.(10分)如圖,在四邊形中,,.已知A(-2,0)、B(6,0)、D(0,3)反比例函數(shù)的圖象經過點.(1)求點的坐標和反比例函數(shù)的解析式;(2)將四邊形沿軸向上平移個單位長度得到四邊形,問點是否落在(1)中的反比例函數(shù)的圖象上?24.(10分)如圖,在平面直角坐標系中,拋物線與x軸交于A、D兩點,與y軸交于點B,四邊形OBCD是矩形,點A的坐標為(1,0),點B的坐標為(0,4),已知點E(m,0)是線段DO上的動點,過點E作PE⊥x軸交拋物線于點P,交BC于點G,交BD于點H.(1)求該拋物線的解析式;(2)當點P在直線BC上方時,請用含m的代數(shù)式表示PG的長度;(3)在(2)的條件下,是否存在這樣的點P,使得以P、B、G為頂點的三角形與△DEH相似?若存在,求出此時m的值;若不存在,請說明理由.25.(12分)如圖,AB是⊙O的直徑,弦DE垂直半徑OA,C為垂足,DE=6,連接DB,,過點E作EM∥BD,交BA的延長線于點M.(1)求的半徑;(2)求證:EM是⊙O的切線;(3)若弦DF與直徑AB相交于點P,當∠APD=45°時,求圖中陰影部分的面積.26.某商場購進一種單價為10元的商品,根據(jù)市場調查發(fā)現(xiàn):如果以單價20元售出,那么每天可賣出30個,每降價1元,每天可多賣出5個,若每個降價x(元),每天銷售y(個),每天獲得利潤W(元).(1)寫出y與x的函數(shù)關系式;(2)求W與x的函數(shù)關系式(不必寫出x的取值范圍)(3)若降價x元(x不低于4元)時,銷售這種商品每天獲得的利潤最大為多少元?

參考答案一、選擇題(每題4分,共48分)1、C【分析】根據(jù)二次函數(shù)的定義和開口方向得到關于m的關系式,求m即可.【詳解】解:∵是二次函數(shù),且開口向下,∴,∴,∴.故選:C【點睛】本題考查了二次函數(shù)的定義和二次函數(shù)的性質,熟練掌握二次函數(shù)的定義和性質是解題關鍵.2、C【分析】根據(jù)相反數(shù)的定義即可求解.【詳解】-4的相反數(shù)是4,故選C.【點晴】此題主要考查相反數(shù),解題的關鍵是熟知相反數(shù)的定義.3、C【分析】先解一元二次方程求出m,n即可得出答案.【詳解】解方程得或,則,解方程,得或,則,,故選:C.【點睛】本題考查了解一元二次方程,掌握方程解法是解題關鍵.4、D【解析】根據(jù)點與圓的位置關系判斷得出即可.【詳解】∵點P在圓內,且⊙O的半徑為4,

∴0≤d<4,

故選D.【點睛】本題考查了點與圓的位置關系,點與圓的位置關系有3種.設⊙O的半徑為r,點P到圓心的距離OP=d,則有:①點P在圓外?d>r,②點P在圓上?d=r,③點P在圓內?d<r.5、B【解析】利用二次函數(shù)的解析式與圖象,判定開口方向,求得對稱軸,與y軸的交點坐標,進一步利用二次函數(shù)的性質判定增減性即可.【詳解】解:∵y=x2-2x-3=(x-1)2-4,∴對稱軸為直線x=1,又∵a=1>0,開口向上,∴x<1時,y隨x的增大而減小,令x=0,得出y=-3,∴函數(shù)圖象與y軸的交點坐標是(0,-3).因此錯誤的是B.故選:B.【點睛】本題考查了二次函數(shù)的性質,拋物線與坐標軸的交點坐標,掌握二次函數(shù)的性質是解決本題的關鍵6、A【分析】根據(jù)平行線分線段成比例定理得到比例式,求出BC,計算即可.【詳解】解:∵l1∥l2∥l3,∴,又∵AB=2,∴BC=4,∴AC=AB+BC=1.

故選:A.【點睛】本題考查的是平行線分線段成比例定理,靈活運用定理、找準對應關系是解題的關鍵.7、C【分析】根據(jù)題意和圖形可以求得的長,然后根據(jù)圖形,可知陰影部分的面積是半圓的面積減去扇形的面積,從而可以解答本題.【詳解】解:在中,,,,圖中陰影部分的面積為:,故選:C.【點睛】本題考查扇形面積的計算,解答本題的關鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結合的思想解答.8、D【分析】A、連接PC,根據(jù)已知條件可知△ACP∽△ABO,再由OP=PC,可列出相似比得出;B、由射影定理及勾股定理可得點B坐標,由A、B、O三點坐標,可求出拋物線的函數(shù)表達式;C、由射影定理及勾股定理可計算出點C坐標,將點C代入拋物線表達式即可判斷;D、由A,O,C三點坐標可求得經過A,O,C三點的拋物線的函數(shù)表達式.【詳解】解:如圖所示,連接PC,∵圓P與AB相切于點C,所以PC⊥AB,又∵∠B=90o,所以△ACP∽△ABO,設OP=x,則OP=PC=x,又∵OB=3,OA=5,∴AP=5-x,∴,解得,∴半徑為,故A選項錯誤;過B作BD⊥OA交OA于點D,∵∠B=90o,BD⊥OA,由勾股定理可得:,由面積相等可得:∴,∴由射影定理可得,∴∴,設經過A,O,B三點的拋物線的函數(shù)表達式為;將A(5,0),O(0,0),代入上式可得:解得,,c=0,經過A,O,B三點的拋物線的函數(shù)表達式為,故B選項錯誤;過點C作CE⊥OA交OA于點E,∵,∴由射影定理可知,∴,所以,由勾股定理得,∴點C坐標為,故選項C錯誤;設經過A,O,C三點的拋物線的函數(shù)表達式是,將A(5,0),O(0,0),代入得,解得:,∴經過A,O,C三點的拋物線的函數(shù)表達式是,故選項D正確.【點睛】本題考查相似三角形、二次函數(shù)、圓等幾何知識,綜合性較強,解題的關鍵是要能靈活運用相似三角形的性質計算.9、B【分析】由題意根據(jù)頻率的意義,每組的頻率=該組的頻數(shù):樣本容量,即頻數(shù)=頻率×樣本容量.數(shù)據(jù)落在1.6~2.0(單位:米)之間的頻率為0.28,于是2000名體檢中學生中,身高在1.6~2.0米之間的學生數(shù)即可求解.【詳解】解:0.28×2000=1.故選:B.【點睛】本題考查頻率的意義與計算以及頻率的意義,注意掌握每組的頻率=該組的頻數(shù)樣本容量.10、A【解析】試題分析:不可能事件發(fā)生的概率為0,故A正確;隨機事件發(fā)生的概率為在0到1之間,故B錯誤;概率很小的事件也可能發(fā)生,故C錯誤;投擲一枚質地均勻的硬幣100次,正面向上的次數(shù)為50次是隨機事件,D錯誤;故選A.考點:隨機事件.11、A【分析】分式值為零的條件是分子等于零且分母不等于零,據(jù)此求解即可.【詳解】解:∵分式的值為1,

∴x-2=1且x+4≠1.

解得:x=2.

故選:A.【點睛】本題主要考查的是分式值為零的條件,熟練掌握分式值為零的條件是解題的關鍵.12、B【分析】根據(jù)中心對稱圖形的概念:把一個圖形繞某一點旋轉180°,如果旋轉后的圖形能夠與原來的圖形重合,那么這個圖形就叫做中心對稱圖形,進行判斷.【詳解】從左起第2、4個圖形是中心對稱圖形,故選B.【點睛】本題考查了中心對稱圖形的概念,注意掌握圖形繞某一點旋轉180°后能夠與自身重合.二、填空題(每題4分,共24分)13、【分析】如下圖,連接EB.根據(jù)垂徑定理,設半徑為r,在Rt△AOC中,可求得r的長;△AEB∽△AOC,可得到EB的長,在Rt△ECB中,利用勾股定理得EC的長【詳解】如下圖,連接EB∵OD⊥AB,AB=8,∴AC=4設的半徑為r∵CD=2,∴OC=r-2在Rt△ACO中,,即解得:r=5,∴OC=3∵AE是的直徑,∴∠EBA=90°∴△OAC∽△EAB∴,∴EB=6在Rt△CEB中,,即解得:CE=故答案為:【點睛】本題考查垂徑定理、相似和勾股定理,需要強調,垂徑定理中五個條件“知二推三”,本題知道垂直和過圓心這兩個條件14、1【分析】連接OA,由切線的性質可知OP⊥AB,由垂徑定理可知AP=PB,在Rt△OAP中,利用勾股定理可求得OA的長.【詳解】如圖,連接OP,AO,∵AB是小圓的切線,∴OP⊥AB,∵OP過圓心,∴AP=BP=AB=4cm,∵小圓直徑為6cm,∴OP=3cm,在Rt△AOP中,由勾股定理可得OA==1(cm),即大圓的半徑為1cm,故答案為:1.【點睛】此題考查垂徑定理,勾股定理,在圓中垂徑定理通常與勾股定理一起運用求半徑、弦、弦心距中的一個量的值.15、【解析】分解因式的方法為提公因式法和公式法及分組分解法.原式==a(3+a)(3-a).16、1【解析】由題意,在長為8cm寬6cm的矩形中,截去一個矩形使留下的矩形與原矩形相似,根據(jù)相似形的對應邊長比例關系,就可以求解.【詳解】解:設寬為xcm,

∵留下的矩形與原矩形相似,解得∴截去的矩形的面積為∴留下的矩形的面積為48-21=1cm2,

故答案為:1.【點睛】本題就是考查相似形的對應邊的比相等,分清矩形的對應邊是解決本題的關鍵.17、>【分析】根據(jù)得出反比例圖象在每一象限內y隨x的增大而減小,再比較兩點的橫坐標大小,即可比較兩點的縱坐標大?。驹斀狻拷猓骸撸喾幢壤瘮?shù)的圖象在第一、三象限內,且在每一象限內y隨x的增大而減小,∵點是雙曲線上的點,且1<2,∴,故答案為:>.【點睛】本題考查了反比例函數(shù)的圖象與性質,掌握k>0時,反比例函數(shù)圖象在每一象限內y隨x的增大而減小是解題的關鍵.18、【分析】已知等式左邊通分并利用同分母分式的減法法則計算,整理得到a-b與ab的關系,代入原式計算即可求出值.【詳解】解:∵,∴則,

故對答案為:.【點睛】此題考查了分式的加減法,以及分式的值,熟練掌握運算法則是解本題的關鍵.三、解答題(共78分)19、(1)①;②;當x=1或x=4時,;(1)當時,一元二次方程有一個解;當>2時,一元二次方程無解;當<2時,一元二次方程有兩個解.【分析】(1)①首先根據(jù)題意得出點A、B的坐標,然后代入拋物線解析式即可得出其表達式;②首先由點A的坐標得出直線解析式,然后得出點P、Q坐標,根據(jù)平行構建方程,即可得解;(1)首先得出,然后由PQ的最大值得出最大值,再利用二次函數(shù)圖象的性質分類討論一元二次方程的解即可.【詳解】(1)①∵m=5,∴點A的坐標為(5,0).將x=0代入,得y=1.∴點B的坐標為(0,1).將A(5,0),B(0,1)代入,得解得∴拋物線的表達式為.②將A(5,0)代入,解得:.∴一次函數(shù)的表達為.∴點P的坐標為,又∵PQ∥y軸,∴點Q的坐標為∴∵,∴解得:,∴當x=1或x=4時,;(1)由題意知:設,∴為的二次函數(shù),又<,∵長的最大值為2,∴最大值為2.∴由二次函數(shù)的圖象性質可知當時,一元二次方程有一個解;當>2時,一元二次方程無解;當<2時,一元二次方程有兩個解..【點睛】此題主要考查一次函數(shù)與二次函數(shù)的綜合運用,熟練掌握,即可解題.20、1【分析】根據(jù)特殊角的三角函數(shù)值、零指數(shù)冪的運算法則、負整數(shù)指數(shù)冪的運算法則、絕對值的性質進行化簡,計算即可.【詳解】原式=1×+3﹣+1﹣1=1.【點睛】此題主要考查了實數(shù)的運算,要熟練掌握,解答此題的關鍵是要明確:在進行實數(shù)運算時,和有理數(shù)運算一樣,要從高級到低級,即先算乘方、開方,再算乘除,最后算加減,有括號的要先算括號里面的,同級運算要按照從左到右的順序進行.另外,有理數(shù)的運算律在實數(shù)范圍內仍然適用.21、北塔的高度AB約為35米.【分析】設AE=x,根據(jù)在同一時間,物體高度與影子長度成正比例關系可得CD的長,在Rt△ADE中,由∠ADE=45°可得AE=DE=x,可得EF=(x-14)米,在Rt△AFE中,利用∠AFE的正切列方程可求出x的值,根據(jù)AB=AE+BE即可得答案.【詳解】設AE=x,∵小明身高為1.65米,在太陽光線下的影長為1.1米,測角儀CD的影長為1米,∴∴CD=1.5(米)∴BE=CD=1.5(米),∵在Rt△ADE中,∠ADE=45°,∴DE=AE=x,∵DF=14米,∴EF=DE-DF=(x-14)米,在Rt△AFE中,∠AFE=60°,∴tan60°==,解得:x=()(米),故AB=AE+BE=+1.5≈35米.答:北塔的高度AB約為35米.【點睛】本題考查解直角三角形的應用,熟練掌握各三角函數(shù)的定義及特殊角的三角函數(shù)值是解題關鍵.22、(1)(0,﹣2),(0,0),(0,1),(2,﹣2),(2,0),(2,1);(2)【分析】(1)樹狀圖展示所有6種等可能的結果數(shù);(2)根據(jù)點在x軸上的坐標特征確定點Q在x軸上的結果數(shù),然后根據(jù)概率公式求解.【詳解】(1)畫樹狀圖為:共有6種等可能的結果數(shù),它們?yōu)椋?,﹣2),(0,0),(0,1),(2,﹣2),(2,0),(2,1);(2)點Q在x軸上的結果數(shù)為2,所以點Q在x軸上的概率==.考點:列表法與樹狀圖法;點的坐標.23、(1);(1)點恰好落在雙曲線上【分析】(1)過C作CE⊥AB,由題意得到四邊形ABCD為等腰梯形,進而得到三角形AOD與三角形BEC全等,得到CE=OD=3,OA=BE=1,可求出OE的長,確定出C坐標,代入反比例解析式求出k的值即可;(1)由平移規(guī)律確定出B′的坐標,代入反比例解析式檢驗即可.【詳解】解:(1)過C作CE⊥AB.∵DC∥AB,AD=BC,∴四邊形ABCD為等腰梯形,∴∠A=∠B,DO=CE=3,CD=OE,∴△ADO≌△BCE,∴BE=OA=1.∵B(6,0)∴OB=6∴OE=OB﹣BE=6﹣1=4,∴C(4,3),把C(4,3)代入反比例函數(shù)解析式得:k=11,則反比例解析式為y;(1)由平移得:平移后B的坐標為(6,1),把x=6代入反比例得:y=1,則平移后點落在該雙曲線上.【點睛】本題考查了待定系數(shù)法求反比例解析式,反比例函數(shù)圖象上點的坐標特征,以及坐標與圖形變化,熟練掌握待定系數(shù)法是解答本題的關鍵.24、(1);(2)PG=;(3)存在點P,使得以P、B、G為頂點的三角形與△DEH相似,此時m的值為﹣1或.【解析】試題分析:(1)將A(1,1),B(1,4)代入,運用待定系數(shù)法即可求出拋物線的解析式.(2)由E(m,1),B(1,4),得出P(m,),G(m,4),則由可用含m的代數(shù)式表示PG的長度.(3)先由拋物線的解析式求出D(﹣3,1),則當點P在直線BC上方時,﹣3<m<1.分兩種情況進行討論:①△BGP∽△DEH;②△PGB∽△DEH.都可以根據(jù)相似三角形對應邊成比例列出比例關系式,進而求出m的值.試題解析:解:(1)∵拋物線與x軸交于點A(1,1),與y軸交于點B(1,4),∴,解得.∴拋物線的解析式為.(2)∵E(m,1),B(1,4),PE⊥x軸交拋物線于點P,交BC于點G,∴P(m,),G(m,4).∴PG=.(3)在(2)的條件下,存在點P,使得以P、B、G為頂點的三角形與△DEH相似.∵,∴當y=1時,,解得x=1或﹣3.∴D(﹣3,1).當點P在直線BC上方時,﹣3<m<1.設直線BD的解析式為y=kx+4,將D(﹣3,1)代入,得﹣3k+4=1,解得k=.∴直線BD的解析式為y=x+4.∴H(m,m+4).分兩種情況:①如果△BGP∽△DEH,那么,即.由﹣3<m<1,解得m=﹣1.②如果△PGB∽△DEH,那么,即.由﹣3<m<1,解得m=.綜上所述,在(2)的條件下,存在點P,使得以P、B、G為頂點的三角形與△DEH相似,此時m的值為﹣1或.考點:1.二次函數(shù)綜合題;2.單動點問題;3.待定系數(shù)法的應用;4.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論